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Abstract

This paper studies the problem of information de-
sign in a general security game setting in which
multiple independent self-interested defenders at-
tempt to provide protection simultaneously on the
same set of important targets against an unknown
attacker. A principal, who can be one of the defend-
ers, has access to certain private information (i.e.,
attacker type) whereas other defenders do not. We
investigate the question of how that principal, with
additional private information, can influence the
decisions of the defenders by partially and strategi-
cally revealing her information. In particular, we
develop a polynomial-time ellipsoid algorithm to
compute an optimal private signaling scheme. Our
key finding is that the separation oracle in the ellip-
soid approach can be carefully reduced to bipartite
matching. Furthermore, we introduce a compact
representation of any ex-ante persuasive signaling
schemes by exploiting intrinsic security resource
allocation structures, enabling us to compute an
optimal scheme significantly faster. Our experi-
ment results show that by strategically revealing
private information, the principal can significantly
enhance the protection effectiveness on the targets.

1 INTRODUCTION

In many real-world security domains, there are often multi-
ple self-interested security teams who conduct patrols over
the same set of important targets without coordinating with
each other [Jiang et al., 2013]. Among others, an important
motivating domain of this paper is wildlife conservation —
while patrol teams from various NGOs or provinces patrol
within the same conservation area to protect wildlife from
poaching. Different NGOs or provinces typically have differ-
ent types of targeted species (e.g., the situation in Pakistan

[ministry of WWF-Pakistan, 2015]) and tend to operate
separately. Similarly, there are multiple different countries
which simultaneously plan their own anti-crime actions in
international waters against illegal fishing [Klein, 2017].

The study of multi-defender security games has attracted
much recent attention. Unfortunately, most findings so far
are relatively negative. Specifically, [Lou et al., 2017] show
that the lack of coordination among defenders may signifi-
cantly lessen the overall protection effectiveness, leading to
unbounded price of anarchy. In addition, [Gan et al., 2018]
recently show that finding a Nash-Stackelberg equilibrium
among the defenders, taking into account strategic response
of the attacker, is computationally NP-hard. Given these
negative results, this paper asks the following question:

How to obtain defense effectiveness and computa-
tion efficiency in multi-defender security games?

To answer the above question, we exploit the use of infor-
mation as a “knob” to coordinate strategic agents’ decisions.
Specifically, we study how a principal with privileged pri-
vate information can influence the decisions of all defenders
by strategically reveal her information, a task also known
as information design or persuasion [Dughmi, 2017]. Con-
cretely, we study information design in a Bayesian security
game setting with multiple independent and self-interested
defenders. These defenders attempt to protect important
targets against an unknown attacker. The attacker type is un-
known to the defenders. Nevertheless, all defenders share a
common knowledge of a prior distribution over the attacker
types. In this setting, there is a principal who has additional
information about the attacker type and wants to commu-
nicate with both the defenders and the attacker through a
persuasion signaling mechanism in order to influence all of
their decisions towards the principal’s goal. In wildlife pro-
tection, for example, the principal may be the national park
office. Since many poachers (or the attacker) are local vil-
lagers, park rangers can have access to private information
through local informants about whom (i.e., which attacker
type) is conducting poaching [Viollaz and Gore, 2019].
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In summary, our results show that information design not
only significantly improves protection effectiveness but also
leads to efficient computation. Concretely, assuming the
principal can communicate with defenders privately (a.k.a.,
private signaling [Dughmi and Xu, 2017]), we develop an
ellipsoid-based algorithm in which the separation oracle
component can be decomposed into a polynomial number
of sub-problems, and each sub-problem reduces to a bipar-
tite matching problem. We remark that this by no means
is an easy task, neither conceptually nor technically, since
the outcomes of private signaling form the set of Bayes
correlated equilibria [Bergemann and Morris, 2016] and
computing an optimal correlated equilibrium is a fundamen-
tal and well-known intractable problem [Papadimitriou and
Roughgarden, 2008]. Our proof is technical and crucially
explores the special structure of security games. In addition,
we also investigate the ex-ante private signaling scheme (a
relaxation of private signaling in which the defenders and
attacker decides whether to follow the principal’s signals or
not before any signal is realized [Castiglioni et al., 2021]).
In this scenario, we develop a novel compact representation
for the principal’s signaling schemes by compactly charac-
terizing jointly feasible marginals. This finding enables us
to significantly reduce the signaling scheme computation.

Finally, we present extensive experiment results evaluat-
ing our proposed algorithms in various game settings. We
evaluate two different principal objectives: (i) maximizing
the defenders’ social welfare; and (ii) maximizing her own
utility. Our results show that through signaling schemes, the
principal can significantly increase the social welfare of the
defenders while substantially reducing the attacker’s utility.

1.1 COMPARISON WITH PREVIOUS WORKS

Security Games. Security games refer to a well-studied
class of games which capture strategic interactions between
defenders and attackers in security domains [Tambe, 2011],
with important real-world applications in, e.g., airport secu-
rity [Pita et al., 2008], ferry protection [Shieh et al., 2012],
and wildlife conservation [Fang et al., 2016]. Most relevant
to our work is the recent study of multiple-defender security
games. Several of them consider defenders to have identical
interests [Jiang et al., 2013, Basilico et al., 2017] or to have
their own disjointed set of targets [Laszka et al., 2016, Lou
et al., 2017, Lou and Vorobeychik, 2016, 2015, Smith et al.,
2014]. The game model in [Gan et al., 2018] is the most re-
lated to ours. This previous work investigates the existence
and computation of a Nash-Stackelberg equilibrium among
the defenders. To our knowledge, our work is the first to
study information design in multi-defender security games.
In contrast to previous negative results, our findings are
much more encouraging. Our positive results even extend to
more realistic game models with defender patrolling costs,
which cannot be handled by the existing work.

Information Design. Information design, a.k.a. signaling,
has attracted much interest in various domains such as public
safety [Xu et al., 2015, Rabinovich et al., 2015], wildlife
conservation [Bondi et al., 2019], traffic routing [Vasserman
et al., 2015, Castiglioni et al., 2021] and auctions [Li and
Das, 2019, Emek et al., 2012]. Most related to us is [Xu et al.,
2016] which study signaling in Bayesian Stackelberg games.
All previous work assumes a single defender whereas our
paper tackles the complex multiple-defender setup. This
requires us to work with exponentially large representation
of signaling schemes and necessitates novel algorithmic
techniques with compact representations.

Other Learning-based Solutions. Recent research in
multi-agent reinforcement learning studies factors that influ-
ence agents’ behavior in a shared environment. For example,
[Tian et al., 2020] studies how to convey private information
through actions in cooperative environment. [Jaques et al.,
2019] uses monetary reward (which they call causal infer-
ence reward) to influence opponents’ actions. Unlike the
tools studied in previous MARL literature, our model takes
advantage of information asymmetry to influence attack-
ers’ actions in an adversarial environment. Therefore, both
our setup and approach are different from these previous
learning-based methods.

2 PRELIMINARY

We consider a general security game setting in which there
are multiple self-interest defenders, D = {1, . . . , |D|}, who
have to protect important targets T = {1, . . . , |T|} from an
attacker. Each defender can protect at most 1 target.1 The
defenders do not know the attacker’s type, but share com-
mon prior knowledge about the distribution over possible
attacker types, {q(λ)}λ∈Λ with Λ = {1, . . . , |Λ|}, where
q(λ) is the probability that the attacker has type λ. If a de-
fender d decides to go to a target t, he has a patrolling cost
of Cd(t) < 0. If the attacker λ successfully attacks a tar-
get t, it receives a reward Rλ(t) ≥ 0 while each defender
d receives a penalty P d(t) ≤ 0. Conversely, if any of the
defender catches the attacker λ at t, the attacker receives
a penalty Pλ(t) < 0 while each defender d obtains a re-
ward Rd(t) > 0. Notably, one defender suffices to fully
protect a target whereas multiple defenders on the same tar-
get will not be any more effective. This is the major reason
of inefficiency without coordination [Lou et al., 2017].

3 OPTIMAL PRIVATE SIGNALING

We first study the design of private signaling schemes which
help the principal to coordinate the defenders. The principal
leverages her private information about the attacker type to

1This is w.l.o.g since any defender who can cover multiple
targets can be “split” into multiple defender with the same utilities.



influence the decisions of all players (including the attacker)
by strategically revealing her information. We adopt the
standard assumption of information design [Kamenica and
Gentzkow, 2011], and assume that the principal commits
to a signaling scheme ω and ω is publicly known to all
players. At a high level, a private signaling scheme generates
a random variable called signal profile s, which is correlated
with λ, where s(d) is the private signal sent to the defender
d and s(a) is the signal sent to the attacker. Each defender d,
once receiving a certain private signal s0, updates his belief
on the attacker type, using Bayes rule as follows:

P (λ | s0) =
q(λ)

∑
s:s(d)=s0

ω(s | λ)∑
λ′ q(λ′)

∑
s:s(d)=s0

ω(s | λ′)

where ω(s | λ) is the probability the signal profile s is
generated given the attacker type is λ.

Any private signaling scheme induces a Bayesian game
among players. According to [Bergemann and Morris,
2016], all the Bayes Nash equilibria that can possibly arise
at any private signaling scheme forms the set of Bayes corre-
lated equilibrium (BCEs). Similar to the standard correlated
equilibria, the signals of a private signaling scheme in a BCE
can also be interpreted as obedient action recommendations.
Therefore, a private signal profile can be represented as
s = ({s(d)}, s(a)) where s(d) ∈ T is the suggested protec-
tion target for defender d and s(a) ∈ T is the suggestion
of a target to attack for the attacker. With slight abuse of
notations, we use s(−a) to represent the set of signals sent
to the defenders and s(−a,−d) is the set of signals sent to
other defenders except the defender d.

3.1 AN EXPONENTIAL-SIZE LP FORMULATION

Like typical formulation of optimal correlated equilibrium,
optimal private signaling can also be formulated as an
exponentially large linear program (LP). Specifically, the
principal attempts to find an optimal signaling scheme
Ω = {ω(s | λ)} to optimize her objective, which can be
either her own utility (if she is a defender) or the social
welfare of the defenders. We abstractly represent the princi-
pal’s objective function w.r.t a signal s as U(s). The optimal
private signaling can be formulated as following LP:

max
∑

λ
q(λ)

∑
s
ω(s | λ)U(s) s.t. (1)

(Attacker obedience) ∀λ, t, t′ :∑
s:t=s(a)

ω(s | λ)Uλ(s) ≥
∑

s:t=s(a)

ω(s | λ)Uλ(s(−a), t′) (2)

(Defender obedience) ∀d, t, t′ :∑
λ
q(λ)

∑
s:s(d)=t

ω(s | λ)Ud(s) (3)

≥
∑

λ
q(λ)

∑
s:s(d)=t

ω(s | λ)Ud(s(−a,−d), t′, s(a))∑
s
ω(s | λ) = 1, ω(s | λ) ≥ 0,∀s, λ (4)

where (2–3) are obedience constraints which guarantee the
attacker of any type and all defenders will follow the princi-
pal’s recommendation. The utilities of each defender d and
each attacker type λ are determined as follows:

Ud(s) = Cd(s(d)) + P d(s(a)), if ∀d′ : s(a) 6= s(d′)

Ud(s) = Cd(s(d)) +Rd(s(a)), if ∃d′ : s(a) = s(d′)

Uλ(s) = Rλ(s(a)), if ∀d′ : s(a) 6= s(d′)

Uλ(s) = Pλ(s(a)), if @d′ : s(a) = s(d′)

Problem (1 – 4) has an exponential number of variables
{ω(s | λ)} due to exponentially many possible defender al-
locations. This is also the common challenge in computing
optimal correlated equilibrium for succinctly represented
games with many players (defenders in our case). Indeed, op-
timal correlated equilibrium is proved to be NP-hard in many
succinct games [Papadimitriou and Roughgarden, 2008].
Perhaps surprisingly, next we show that LP (1 – 4) can be
solved in a polynomial time in our case.

3.2 A POLYNOMIAL-TIME ALGORITHM

We prove the following main positive result.

Theorem 1. The optimal private signaling scheme can be
computed in polynomial time.

The rest of this section is devoted to the proof of Theorem 1.
We elaborate the proof for the principal objective of maxi-
mizing the defender social welfare, i.e., U(s) =

∑
d U

d(s).
The proof is similar when the principal is one of the defender.
Our proof is divided into three major steps, and crucially
exploits the structure of security games.

Step 1: Restricting to simplified pure strategy space. One
challenge of designing the signaling scheme is when multi-
ple defenders are recommended a same target, which signif-
icantly complicates computation of marginal target protec-
tion. Therefore, our first step is to simplify the pure strategy
space to include only those in which all defenders cover
different targets. To do so, we create D dummy targets at
which rewards and penalties and costs are zero for both de-
fenders and attacker. When the players choose one of these
dummy targets, it means they choose to do nothing. As a
result, we have (T + D) targets in total, including these
dummy targets. The creation of these dummy targets does
not influence the actual outcome of any signaling scheme,
but introduce a nice characteristic of the optimal signaling
scheme (Lemma 1). This characteristic of at most one de-
fender at each target allows us to provide more efficient
algorithms to find an optimal signalling scheme.

Lemma 1. There is an optimal signaling scheme such that
for any signal profile s with a positive probability (i.e., ω(s |
λ) > 0), then s(d) 6= s(d′) for all d 6= d′.



Proof. Let’s assume in a signaling scheme, there is a signal
in which multiple defenders are sent to the same target t.
We revise this signal by only suggesting the defender d with
the lowest cost Cd(t) to t and other defenders are sent to
dummy targets instead. First of all, the expected cost will be
reduced while the coverage probability at each non-dummy
target remains the same. As a result, the principal’s objective
does not change. Second, the attacker obedience constraints
does not change. Third, the LHS of the defender’s obedience
constraints increases while the RHS is the same. This means
no obedience constraint is violated.

Step 2: Working in the dual space. Since LP (1 – 4) has
exponentially many variables, we first reduce it to the fol-
lowing dual linear program (1 – 4), which turns out to be
more tractable to work with:

min
∑

λ
γ(λ) s.t. (5)

γ(λ) +
∑

t′

[
Uλ(s(−a), t′)− Uλ(s)

]
αλ(s(a), t′) (6)

+q(λ)
∑

d,t′

[
Ud(s(−a,−d), t′, s(a))−Ud(s)

]
βd(s(d), t′)

≥ q(λ)U(s),∀(s, λ)

αλ(t, t′), βd(t, t′) ≥ 0,∀λ, d, t, t′. (7)

where each constraint in (6) corresponds to the primal vari-
able ω(s | λ). The dual variables αλ(t, t′) correspond to at-
tacker obedience constraints (2). The dual variables βd(t, t′)
correspond to defender obedience constraints (3). Finally,
the variables γ(λ) corresponds to constraints (4).

Problem (5–7) has an exponential number of constraints.
We employ the ellipsoid method [Grötschel et al., 1981]
by designing a polynomial-time separation oracle. In this
oracle, given a value of (αλ(t, t′), βd(t, t′), γ(λ)), it either
establishes that this value is feasible for the problem or, if
not, it outputs an hyper-plane separating this value from the
feasible region. In the following, we focus on a particular
type of oracles: those generating violated constraints. The
oracle solves the following optimization problems, each
corresponds to a fixed λ and s(a) (to be some target t0),

min
s:s(a)=t0

∑
t′

[
Uλ(s(−a), t′)− Uλ(s)

]
αλ(t0, t

′) (8)

+q(λ)
∑

d,t′

[
Ud(s(−a,−d), t′, t0)−Ud(s)

]
βd(s(d), t′)

− q(λ)U(s)

If the optimal objective of this problem is strictly less than
−γ(λ) for any (λ, t0), it means we found a violated con-
straint corresponding to (s∗, λ) where s∗ is an optimal solu-
tion of (8). We iterate over every (λ, t0) to find all violated
constraints and add them to the current constraint set.

Step 3: Establishing an efficient separation oracle. We now
solve (8) for any given (λ, t0). We further divide this prob-
lem into two sub-problems; each can be solved via bipartite

matching (which is polynomial-time). More specifically, we
divide the signal set {s : s(a) = t0} into two different
subsets, as elaborated in the following.

Case 1 of Step 3: Attacked target is not covered. The first
subset consists of all signals such that t0 /∈ s(−a), that
is, none of the defender is assigned to t0. In this case, the
attacker will receive a reward Rλ(t0) for attacking t0 while
every defender d receives a penalty P d(t0). Thus, each of
the following elements in (8) is straightforward to compute:

Uλ(s(−a), t′)− Uλ(s) =

{
Pλ(t′)−Rλ(t0) if t′∈s(−a)

Rλ(t′)−Rλ(t0) if t′ /∈s(−a)

Ud(s(−a,−d), t′, t0)− Ud(s)

=

{
Cd(t′)− Cd(s(d)) if t′ 6= t0

Rd(t0) + Cd(t0)−P d(t0)−Cd(s(d)) if t′ = t0

U(s) =
∑

d
P d(t0) + Cd(s(d))

Given the above computation, we observe that the second
and third components (in the second and third lines) of
the objective (8), which only depends on the defender utili-
ties, consists of multiple terms — each term depends only
on the allocation of each individual defender (d, s(d)). On
the other hand, the first component (in the first line) of
the objective, which depends on the attacker’s utility, has
terms which depends on targets not in the defender alloca-
tion. Therefore, in order to create a corresponding bipartite
matching problem, we introduce |T| new dummy defenders
and the following weights between |T|+ |D| defenders and
|T|+ |D| targets:

η(d, t) = q(λ)
∑

t′ 6=t0

[
Cd(t′)−Cd(t)

]
βd(t, t′)

+ q(λ)
∑

t′=t0

[
Rd(t0)+Cd(t0)−P d(t0)−Cd(t))

]
βd(t, t′)

+ [Pλ(t)−Rλ(t0)]αλ(t0, t)−q(λ)Cd(t),∀t 6= t0, d ≤ |D|
η(d, t0) = +∞,∀d ≤ |D|

η(d, t) = [Rλ(t)−Rλ(t0)]αλ(t0, t),∀t, dummy d > |D|

Weights associated with these dummy defenders correspond
to the terms in (8) which depends on targets not in the actual
defender allocation. The weight η(d, t0) = +∞ is to ensure
that no actual defender in D will be assigned to t0.

We now present Lemma 2 (which can be proved via a couple
of algebra computation steps), showing that Problem (8)
becomes a Minimum Bipartite Matching between |T|+ |D|
defenders and |T|+ |D| targets.

Lemma 2. The problem (8) can be now reduced to as the
following bipartite matching problem using η(d, t):

min
m

∑
d
η(d,m(d))

after removing the constant term −q(λ)
∑
d∈D P d(t0) in

(8)). Here, m(d) is a target matched to the defender d.



Case 2 of Step 3: Attacked target is covered. On other other
hand, the second subset consists of all signals such that t0
is assigned to one of the defender. In this case, we further
divide this sub-problem into multiple smaller problems, by
fixing the defender who covers t0, denoted by d0. Similar
to Sub-problem P1, we introduce the following weights: ∀t

η(d, t) = q(λ)
∑

t′
[Cd(t′)−Cd(t)]βd(t, t′)

+ [Pλ(t)−Pλ(t0)]αλ(t0, t)− q(λ)Cd(t),∀t, ∀d ∈ D \ {d0}
η(d, t) = [Rλ(t)− Pλ(t0)]αλ(t0, t),∀t, dummy d > |D|

Lemma 3. The problem (8) can be now reduced to as the
following bipartite matching problem using η(d, t):

min
m

∑
d6=d0

η(d,m(d))

after removing the constant terms
∑
t′ 6=t0 [P d0(t0) +

Cd0(t′)−Rd0(t0)−Cd0(t0)]βd0(t0, t
′)−q(λ)

∑
dR

d(t0).
In addition, (d0, t0) is removed from our matching setting.

We now have the problem of a Minimum Bipartite Matching
between |T|+ |D| − 1 defenders to |T|+ |D| − 1 targets,
which can be solved in a polynomial time.

4 OPTIMAL EX ANTE PRIVATE
SIGNALING

This section relaxes the private signaling requirement and
assumes that players make decision on whether to follow
signals or not before any signal is sent. Such ex ante private
signaling has been studied recently in routing [Castiglioni
et al., 2021] and abstract games [Xu, 2020]. However, both
works have used the ellipsoid algorithm to compute the
optimal scheme. While the ellipsoid algorithm is theoret-
ically efficient, as we will show in our experiments, they
are practically quite slow. In our case, we could have also
just employed similar technique. However, we take one step
further and present a novel idea of using compact repre-
sentation of the signaling schemes such that the “reduced”
signaling space become polynomial size in the number of
targets. This important result helps in significantly scaling
up the problem computation.

4.1 AN EXPONENTIAL-SIZE LP FORMULATION

Overall, the problem of finding an optimal ex ante private
signaling scheme can be formulated as the following LP
which has an exponential number of variables {ω(s | λ)}:

max
∑

λ
q(λ)

∑
s
ω(s | λ)U(s) s.t. (9)

(Attacker obedience) ∀λ, t′ :∑
s
ω(s | λ)Uλ(s)≥

∑
s
ω(s | λ)Uλ(s(−a), t′) (10)

(Defender obedience) ∀d, t′ :∑
λ
q(λ)

∑
s
ω(s | λ)Ud(s) (11)

≥
∑

λ
q(λ)

∑
s
ω(s | λ)Ud(s(−d), t′, s(a))∑

s
ω(s | λ) = 1,∀λ, ω(s | λ) ≥ 0,∀s, λ (12)

Similar to private signaling, we show that the optimal ex-
ante signaling scheme can be computed in a polynomial
time (Theorem 2) by developing an ellipsoid algorithm.

Theorem 2. The optimal private ex-ante signaling scheme
can be computed in a polynomial time.

4.2 COMPACT SIGNALING REPRESENTATION

As we mentioned previously, while the ellipsoid algorithm
is theoretically efficient, they run slowly in practice. There-
fore, we further show that in this scenario, we can provide
a compact representation of signaling schemes such that
the signaling space is polynomial in the number of targets.
This immediately leads to a polynomial time algorithm for
optimal ex ante private signaling by directly solving the
polynomial-size linear program. Give any signaling scheme
ω, we introduce the new variable ω(a → t, d → t′ | λ)
which is the marginal probability that the attacker is sent to
target t and the defender d is sent to target t′, given that the
attacker type is λ. In addition, we introduce ω(a → t | λ)
which is the probability the attacker is sent to t. Reformulat-
ing (9-11) based on these new variables is straightforward.
For example, the objective (9) is reformulated as following:∑

λ
q(λ)

∑
t,d
ω(a→ t, d→ t | λ)Rd(t)

+
∑

λ
q(λ)

∑
t

[
ω(a→ t | λ)

−
∑

d
ω(a→ t, d→ t | λ)

]
[
∑

d
P d(t)]

+
∑

λ
q(λ)

∑
t′,d

[∑
t
ω(a→ t, d→ t′ | λ)

]
Cd(t′)

The crux of this section is the following theorem. It fully
characterize the conditions under which the compact repre-
sentation corresponds to a feasible ex ante signaling scheme.

Theorem 3. The following conditions are necessary and
sufficient conditions to generate a feasible ex ante signal-
ing scheme from a compact representation (ω(a → t |
λ), ω(a→ t, d→ t′ | λ)):∑

t
ω(a→ t | λ) = 1,∀λ (13)∑
t′
ω(a→ t, d→ t′ | λ) = ω(a→ t | λ),∀λ, d (14)∑

d
ω(a→ t, d→ t′ | λ) ≤ ω(a→ t | λ),∀λ, t′ (15)

ω(a→ t | λ)≥0, ω(a→ t, d→ t′ | λ)≥0,∀λ, t, d, t′ (16)



Proof. It is obvious that these conditions are necessary con-
ditions. Let’s consider {ω(a→ t | λ)} and ω(a→ t, d→
t′ | λ) satisfying these conditions. We will show that these
correspond to a feasible signaling scheme. First, we have:

ω(d→ t′ | a→ t, λ) =
ω(a→ t, d→ t′ | λ)

ω(a→ t | λ)

which is the probability of assigning defender d to target t′

given the attacker is of type λ and is assigned to target t. By
fixing λ and a→ t0, we use ω(d→ t′) as an abbreviation
of ω(d → t′ | a → t0, λ) when the context is clear. We
will prove that any {ω(d → t)} satisfying the following
conditions correspond to a feasible signaling scheme:∑

t
ω(d→ t) = 1,∀d∑
d
ω(d→ t) ≤ 1,∀t

In order to do so, we introduce the following general lemma:

Lemma 4. For any a coverage vector {ω(d, t)} such that:∑
t
ω(d, t) = r (17)∑
d
ω(d, t) ≤ r, (18)

given 0 ≤ r ≤ 1, there is an assignment of defenders to
targets, denoted by (d1, t1), . . . (d|D|, t|D|), such that:2

• ω(di, ti) > 0 for all i ∈ {1, . . . , |D|}
• Every maximally-covered target t, i.e.,

∑
d ω(d, t) = r,

is assigned to a defender, that is, t ∈ {t1, . . . , t|D|}.

Proof. Let D(t)={d :ω(d, t)>0} the support defender set
of target t. Similarly, we also denote by T(d)={t :ω(d, t)>
0} the support target set of defender d. We divide the set of
targets into two groups: (i) Group of all maximally-covered
targets Thigh = {t :

∑
d ω(d, t)} = r; and (ii) Group of

other targets Tlow ={t :
∑
d ω(d, t)<r}. W.l.o.g, we repre-

sent Thigh ={t1, . . . , tH} and Tlow ={tH+1, . . . , t|T|+|D|}
where {ti} is a permutation of targets {1, . . . , |T|+ |D|}.

Step 1: Inclusion of high-coverage target group Thigh. We
first prove that there is a partial allocation from defenders
to targets in Thigh, denoted by (d1, . . . , dH) such that di ∈
D(t) for all ti ∈ Thigh and they are pair-wise different, i.e.,
di 6=dj for all ti 6= tj ∈Thigh. We use induction w.r.t t.

In the base, t = 1, the above statement holds true. Let’s
assume this statement is true for some t < |Thigh|. We
will prove that it is also true for t + 1. Let’s denote
by (d1, 1), . . . , (dt, t) the current sequence of defender-to-
target assignment. At target t+ 1, if there is d ∈ D(t+ 1)
such that d 6= dj for all j ≤ t, then we obtain a new satis-
factory partial assignment {(d1, 1), . . . , (dt, t), (d, t+ 1)}.

2Since we have (T + D) targets in total while there are only
|D| defenders, some targets will not be assigned to any defenders.

Conversely, if D(t+ 1) ⊆ {d1, . . . , dt}, w.l.o.g, we assume
D(t+ 1)={d1, d2, . . . , dt′} for some t′≤ t. We obtain:

Observation 1. There exists a target t0 ≤ t and a defender
d0 /∈ {d1, . . . , dt} such that ω(d0 → t0) > 0.

Indeed, if there is no such (d0, t0), it means all targets
{1, . . . , t+ 1} can be only assigned to one of the defenders
in {d1, . . . , dt}. As a result, we will have:

r×(t+1)=

t+1∑
j′=1

∑
d∈D(j′)

ω(d, j′)≤
t∑

j′=1

∑
j′′∈T(dj′ )

ω(dj′ , j
′′)

= r × t (contradiction) (19)

Now, if that target t0 ≤ t′, then we obtain a new partial
assignment {. . . , (d0, t0), . . . , (dt0 , t+ 1)} by assigning d0

to target t0 and reallocating dt0 to t+ 1 while keeping other
assignments the same. On the other hand, if t′ < t0 ≤ t,
it means D(j) ⊆ {d1, . . . , dt} for all j ≤ t′. W.l.o.g, let’s
assume that target t0 = t′ + 1. We observe that there must
exist a target t00 ∈ {1, . . . , t} \ {t′ + 1} and a defender
d00 /∈ {d1, . . . , dt} \ {dt′+1} such that ω(d00 → t00) > 0.
Indeed, if there is no such (d00, t00), it means all targets
{1, . . . , t+ 1} \ {t′ + 1} can be only assigned to one of the
defenders in {d1, . . . , dt} \ {dt′+1}. As a result, we have:

r × t =

t+1∑
j′=1,j′ 6=t′+1

∑
d∈Dj′

ω(d, j′)

≤
t∑

j′=1,j′ 6=t′+1

∑
j′′∈T(dj′ )

ω(dj′ , j
′′)

= r×(t−1) (contradiction)

Now, if that target t00 ≤ t′ and d00 = dt′+1, then
we can do the swap (dt′+1, t00), (dt00 , t + 1), (d0, t

′ + 1)
while keeping other assignments the same. If that target
t00 ≤ t′ and d00 6= dt′+1, then we can do a different swap
(dt00 , t+ 1), (d00, t00). Finally, if t00 > t′ + 1, w.l.o.g, we
assume t00 = t′ + 2. We repeated the same above analy-
sis process until at some point, we either already found a
feasible assignment or would reach the following situation:

• ∃d0 /∈ {d1, . . . , dt} s.t ω(d0 → t′ + 1) > 0

• ∃d00 /∈ {d1, . . . , dt} \ {dt′+1} s.t. ω(d00 → t′+ 2) >
0

• . . .

• ∃dfinal /∈ {d1, . . . , dt′} and ∃tfinal ∈ {1, . . . , t′} such
that ω(dfinal → tfinal) > 0 where final = [0]t−t

′
.

In this situation, we first swap (dtfinal , t + 1), (dfinal, tfinal).
There are two cases. If dfinal /∈ {d1, . . . , dt}, then we found
a solution. If dfinal is equal to some dt′+j for some j ≤ t−t′,
we then reassign (d[0]t′+j , t′+ j). At this step, there are two
cases again. That is either d[0]t′+j /∈ {d1, . . . , dt} or d[0]t′+j



is one of {dt′+1, . . . , dt′+j−1}. The former case means we
found a solution while the latter case indicates we have to do
the reassignment again for a target in {t′+1, . . . , t′+j−1}.
Observe that, every time we have to do a reassignment, the
index of the target for the reassignment is decreased. In the
end, it will reach target t′ + 1 for which we can reassign
d0 /∈ {d1, . . . , dt} and obtain a feasible solution.

Step 2: Extension to include target group Tlow. We are
going to prove that there is an assignment from defenders
D to |D| targets, including all targets in Thigh. We apply
induction with respect to the defender d. Note that we cannot
apply induction with respect to the targets t since we include
target group Tlow in this analysis and as a result, the equality
on the LHS of (19) no longer holds.

In the base, we start with the feasible assignment of the
group Thigh. Then at each induction step, we perform a
defender-target swapping process which is similar to the
case of high-coverage target group Thigh. The tricky part is
that for any swapping, we do not get rid of any targets that
have been assigned so far (besides changing the defender
assigned to them). It means that in the final assignment of
the induction process, denoted by (1, t1), . . . , (|D|, t|D|),
all targets in Thigh are still included. The detailed of this
induction process is in the appendix.

Based on the result of Lemma 4, we allocate the following
non-zero probability to the assignment with r = 1:

p = min{min
d
{ω(d, td)}, r − max

t/∈{t1,...,tD}

∑
d
ω(d, t)}

Given this assignment, we update w(d, td) = w(d, td) −
p for all d. The resulting coverage vector {ω(d, t)} still
satisfies the conditions (17–18) with the remaining r =
r − p < 1. We keep doing this probability allocation until
we obtain a feasible signaling scheme (aka, r reaches 0).

5 EXPERIMENTS

In our experiments, we aim at evaluating both the solu-
tion quality and runtime performance of our algorithms in
various game settings. All the LPs in our algorithms are
solved with the CPLEX solver (version 20.1). We run our
algorithms on a machine with an Intel i7-8550U CPU and
15.5GB memory. The rewards and penalties of players are
generated uniformly at random between [0, 20] and [-20, 0],
respectively. All data points are averaged over 40 random
games and the error bars represents the standard error.

We compare our private and ex ante signaling schemes with:
(i) a baseline method in which each defender optimizes
his utilities separately by solving a Bayesian Stackelberg
equilibrium between that defender and attacker, without
considering strategies of other defenders; and (ii) the Nash
Stackelberg equilibrium (NSE) among the defenders. We

(a) |D| = |Λ| = 4, |T| = 12 (b) |D| = |Λ| = 4

(c) |Λ| = 4, |T| = 12 (d) |D| = 4, |T| = 12

Figure 1: Average Defender Social Welfare. The defenders’
cost range is fixed to [0, 10] in sub-figures (b), (c), (d).

(a) |D| = |Λ| = 4, |T| = 12 (b) |D| = |Λ| = 4

(c) |Λ| = 4, |T| = 12 (d) |D| = 4, |T| = 12

Figure 2: Average Attacker Utility. The defenders’ cost
range is fixed to [0, 10] in sub-figures (b), (c), (d).

use the method provided in [Gan et al., 2018] to approximate
an NSE. We evaluate our signaling schemes in two scenarios
corresponding to two different objectives of the principal: (i)
maximizing the social welfare of the defenders (Figures 1–
3); and (ii) maximizing her own defense utility (i.e., the
principal is one of the self-interested defenders) (Figure 4).
Next, we highlight our important results. Additional results
can be found in the appendix.

In Figures 1 and 2, the x-axis is either the defender’s cost
range (the defense cost of each defender is randomly gener-
ated within this range), or the number of targets, or the num-
ber of defenders, or the number of attacker types. The y-axis
is either the defender social welfare (Figure 1) or the average
utility of the attacker (Figure 1). Note that in these figures,
we do not consider the Nash Stackelberg equilibrium (NSE)
among the defenders. This is because the method provided



(a) |D| = |Λ| = 4, Cd(t) = 0 (b) |D| = |Λ| = 4, Cd(t) = 0

Figure 3: All evaluated algorithms, no patrolling costs.

(a) Attacker utility (b) Principal utility

Figure 4: The principal optimizes her own utility when
|D|= |Λ|=4 and the defenders’ cost range Cd(t)∈ [0, 10].

in [Gan et al., 2018] to approximate an NSE is only appli-
cable for the no-patrolling-cost setting. Figure 1 shows that
signaling schemes (Private and ExAnte) helps in signifi-
cantly increasing the defender social welfare compared to
the Baseline case. In addition, the defender social welfare
in ExAnte is substantially higher than the Private case.
This result makes sense since the persuasion constraints in
ExAnte are less restricted. In addition, the social welfare
is roughly a decreasing linear function of the cost range
and the number of targets while it increases linearly in the
number of defenders. This is because the social welfare is a
decreasing function of the defenders’ coverage probability
at each target and the higher the number of defenders is,
the more coverage at each target is. Conversely, we see an
opposite trend in the attacker graphs (Figure 2).

Furthermore, we include the NSE in our experiments
with no defense cost. Figure 3 shows that despite
NashStackelberg results in a higher social welfare for
the defenders compared to Baseline in which each de-
fender ignores the presence of other defenders, the social
welfare in NashStackelberg is still significantly lower
than Private and ExAnte. The results in Figures 1, 2 and 3
clearly show that coordinating the defenders through the
principal’s signaling schemes helps in significantly enhanc-
ing the protection effectiveness on the targets.

In Figure 4, we examine the situation in which the principal
attempts to maximize her own utility (given she is one of
the self-interested defenders). We again observe that the
attacker suffers a significant loss in its utility compared
to Baseline (Figure 4(a), Private and ExAnte versus
Baseline). Conversely, the principal can get a significant
benefit for strategically revealing her private information
through the signaling mechanisms (Figure 4(b)).

(a) |D|= |Λ|=4, Cd(t)∈ [0, 10] (b) |D|= |Λ|=4, Cd(t)=0

Figure 5: Log run time in seconds.

Figure 5 shows the logarithm runtime of our algorithms com-
pared to Baseline and NSE. We observe that our algorithms
(Private and ExAnte) are suitable for medium games. In
Figure 5(a), it takes Private and ExAnte approximately
23 minutes and 40 seconds respectively to solve 20-target
games. Furthermore, our compact representation method
(ExAnteCompact) helps in solving the signaling scheme
significantly faster. It only takes ExAnteCompact approxi-
mately 2.7 seconds to solve 20-target games.

(a) |Λ| = 20 (b) |Λ| = 20

(c) |Λ| = 20 (d) |T | = 20

Figure 6: Scalability of target number or attacker types in
ex ante setting when |D| = 4 and the defenders’ cost range
Cd(t)∈ [0, 10].

Finally, we examine the performance in the ex ante case
with large number of targets or attacker types in Figure 6.
Our algorithms can easily scale to about 160 targets, which
makes large improvement compared to previous works [Yin
and Tambe, 2012, Nguyen et al., 2014]. We remark that it
is typically impossible to test running time for such compli-
cated security games for more than 200 targets on a single
machine (most real world applications such as conserva-
tion area protection or border protection have less than 200
targets as well). For large number of attacker types, our
experiments show that the running time dependence of our
algorithm on the number of attacker types is linear, which
is extremely efficiency.



6 SUMMARY

In this paper, we study information design in a Bayesian
security game setting with multiple independent and self-
interested defenders. Our results (both theoretically and
empirically) show that information design not only signif-
icantly improves protection effectiveness but also leads to
efficient computation. In particular, in computing an optimal
private signaling scheme, we develop an ellipsoid-based al-
gorithm in which the separation oracle component can be
decomposed into a polynomial number of sub-problems,
and each sub-problem reduces to a bipartite matching prob-
lem. This is a non-trivial task, since the outcomes of private
signaling form the set of Bayes correlated equilibria and
computing an optimal correlated equilibrium is a fundamen-
tal and well-known intractable problem. Our proof is techni-
cal and crucially explores the special structure of security
games. Furthermore, we investigate the ex-ante private sig-
naling scheme. In this scenario, we develop a novel compact
representation for the signaling schemes by compactly char-
acterizing jointly feasible marginals. This finding enables
us to significantly reduce the signaling scheme computation
compared to the ellipsoid approach (which is efficient in
theory but slow in practice).
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