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Abstract

Learning attacker behavior is an important research
topic in security games as security agencies are
often uncertain about attackers’ decision making.
Previous work has focused on developing various
behavioral models of attackers based on historical
attack data. However, a clever attacker can manip-
ulate its attacks to fail such attack-driven learning,
leading to ineffective defense strategies. We study
attacker behavior deception with three main con-
tributions. First, we propose a new model, named
partial behavior deception model, in which there
is a deceptive attacker (among multiple attackers)
who controls a portion of attacks. Our model cap-
tures real-world security scenarios such as wildlife
protection in which multiple poachers are present.
Second, we introduce a new scalable algorithm,
GAMBO, to compute an optimal deception strategy
of the deceptive attacker. Our algorithm employs
the projected gradient descent and uses the implicit
function theorem for the computation of gradient.
Third, we conduct a comprehensive set of experi-
ments, showing a significant benefit for the attacker
and loss for the defender due to attacker deception.

1 Introduction

In many real-world security domains, security agencies are
generally uncertain about human attackers’ decision making.
Therefore, recent research in security games has focused on
developing different behavior models of attackers, leveraging
historical attack data [Yang et al., 2011; Nguyen et al., 2013;
Kar et al., 2015; Sinha et al., 2016]. For example, in wildlife
protection, rangers collect poaching signs during their patrols
and use such data to learn behavior of poachers. The trained
model is then used to generate an optimal defense strategy.
However, since the defender relies on historical attack data,
the generated defense strategy is vulnerable to manipulative
attacks. The attacker manipulation can influence the learning
outcome, leading to ineffective defense strategies. We study
the attacker behavior deception in Stackelberg security games
(SSGs), a well-known class of games which has been widely
applied in security domains [Tambe, 2011]. We aim at char-

acterizing the attacker’s deception strategy and analyzing the
consequent benefit of the attacker and loss of the defender.

Specifically, we consider the scenario in which there are
multiple attackers with different behavior. Among these at-
tackers, there is a rational attacker who intends to play de-
ceptively to mislead the defender. The other attackers always
respond honestly. The defender models the whole population
of attackers as one adversary and attempts to learn an adver-
sary behavior model based on historical attack data. Previous
work in wildlife protection has followed this single-behavior-
model approach to predict the behavior of poachers [Fang et
al., 2016; Kar et al., 2017]. Our hypothesis is that even if
only one of the attackers is deceptive, then this attacker can
cause a great harm to the defender by employing deception.

To test our hypothesis, we propose a new model, partial be-
havior deception model, in which all attackers have the same
payoff but may behave differently. The defender knows the
attacker payoffs but is uncertain about their behavior. In the
learning phase, the defender collects attack data and trains an
attacker behavior model accordingly. In the planning phase,
the defender determines an optimal defense strategy to play
based on the learning outcome. While the non-deceptive at-
tackers play honestly in both phases, the rational deceptive at-
tacker intentionally modifies its attack strategy in the learning
phase to maximize its gain in the planning phase. The decep-
tive attacker has no control over attacks by other attackers.

Our second contribution is a new scalable algorithm to
solve the problem of finding an optimal strategy of the decep-
tive attacker in the learning phase, called GAMBO (Gradient-
based method for Attacker Manipulation of BehaviOr). This
computational problem is a tri-level optimization (that is,
three levels of nested optimization) as well as non-convex.
We employ a projected gradient-based method to solve this
optimization. To enable this gradient-based method, we pro-
vide a novel dependent differentiation technique by exploit-
ing the uniqueness of the optimal defense strategy and mak-
ing use of the implicit function theorem.

Finally, we conduct extensive experiments to evaluate the
impact of the attacker behavior deception. We show that even
though the deceptive attacker can only influence a portion of
the attacks in the training phase, the attacker’s manipulation
substantially changes the learning outcome of the defender.
Eventually, it leads to a significant benefit for the deceptive
attacker and loss for the defender in the planning phase.



2 Related Work

Attacker behavior learning in security games. Learning
bounded rational attacker behavior is an important line of re-
search in security games in which various behavior models of
the attacker such as Quantal Response, etc. [Yang et al., 2011;
Nguyen et al., 2013; Sinha et al., 2016; Kar et al., 2017]
have been explored. The behavior learning outcomes are then
used to generate a defender strategy, which is vulnerable to
attacker manipulation. Our work is orthogonal to work on
learning about a rational attacker [Blum et al., 2014] or a ra-
tional attacker with multiple resources [Korzhyk et al., 2011].

Deception in security games. There are several works
studying deception in security [Carroll and Grosu, 2011;
Horék et al., 2017]. A majority of previous work in SSGs, in
particular, investigates deception on the defender side [Guo
et al., 2017; Rabinovich et al., 2015; Xu et al., 2015; Zhuang
et al., 2010]. That is, the defender exploits the information
asymmetry to fool the attacker. Recently, some research has
started to study attacker deception in SSGs [Gan et al., 2019a;
Nguyen and Xu, 2019; Nguyen et al., 2019] or on the fol-
lower side in general Stackelberg games [Gan et al., 2019b].
These existing work mainly focuses on the scenario the de-
fender is uncertain about the attacker’s payoff while the at-
tacker is known to be perfectly rational. In contrast, in our
setup, there are multiple attackers whose attack behavior is
unknown while the attacker’s payoff is known. Also, only the
single rational attacker is deceptive.

Adversarial machine learning (ML). Adversarial ML has
received lot of attention in the ML community [Biggio and
Roli, 2018; Huang et al., 2011; Lowd and Meek, 2005; Madry
et al., 2017]. The attacker behavior deception in our study
can be considered as a causative attack in adversarial ML.
In adversarial ML, prediction accuracy is the main measure
to evaluate attacks against ML algorithms, whereas, in our
setting the goal of both players is to maximize their utility,
taking into account the learning outcome of the defender.

Decision-focused learning. Our work is also related to
work on decision-focused learning, where ML models are
trained jointly with optimization algorithms to obtain high-
quality decisions [Donti ef al., 2017; Wilder ef al., 2019].
Indeed, our use of implicit function theorem is inspired by
the application of this theorem in decision-focused learning,
but our novelty is in performing dependent differentiation of
a binary search approach to solve an optimization.

3 Background

Stackelberg security games (SSGs). In SSGs [Tambe,
2011], a defender attempts to protect a set of T targets
{1,2,...,T} from an attacker. The defender has a limited
number of security resources (K < T') to allocate over these
targets. A pure strategy of the defender is an allocation
of these security resources to K targets. A mixed strategy
of the defender is a probability distribution over all of his
pure strategies. In this work, we consider the no-scheduling-
constraint scenario in which each mixed strategy of the de-
fender can be equivalently represented as a marginal coverage
probability vector, denoted by x = {x1,x9,...,x7} where

x; € [0,1] is the coverage probability the defender protects
target i and ), x; < K. In the Stackelberg setting, the at-
tacker is aware of the defender’s mixed strategy and chooses
one of the targets to attack accordingly.

When the attacker attacks a target ¢, if the defender is not
protecting 4, then the attacker obtains a reward of R{ while
the defender receives a penalty of PZ. Conversely, if the
defender is protecting ¢, then the attacker has a penalty of
P? < R¢ and the defender gets a reward of R¢ > P¢. Given
x, the expected utility of the defender and attacker for an at-
tack on target ¢ is formulated as follows:

UZd(S(}Z) = JJZRfl + (1 — aji)Pid

Ul“(xz) = .%‘iPZ-a + (1 — LL'Z)R;I
Quantal Response model (QR). QR is a well known model
used to model the attacker’s behavior in SSGs [McFadden and
others, 1973; McKelvey and Palfrey, 1995; Yang et al., 2011].

Essentially, QR predicts the probability the attacker will attack
each target ¢, which is formulated as follows:

gi(x;\) = (eAUf(“%))/(Zj e’\UJ'a('”J'))

Intuitively, the higher expected utility of a target is, the higher
probability the attacker will attack that target. The parameter
A governs the attacker’s rationality. In particular, when \ =
0, the attacker is predicted to attack each target uniformly at
random. When A = 400, the attacker is perfectly rational
(i.e., attacks a target with the highest expected utility).

Implicit Function Theorem. We state this theorem infor-
mally [Krantz and Parks, 2012; Rudin, 1986]: given x € R™,
y € R™, consider m equations fi(z,y)=...= fm(z,y)=0
at a fixed z=a,y=>b. Then, under some mild conditions,
there exists a function ¢ such that g(z) = y, in a ball B
around (a,b), and Vg(z) = —(4,(z, 9(z)))* Ay (z, g(x))
in ball B where [A,(x, g(z))A,(z, g(z))] is the Jacobian of
f=1[f1,--., fm] evaluated at (z, g(z)).

Recently, a few papers have used the implicit function the-
orem on KKT conditions of optimization problems to obtain
derivative of the optimal solution with respect to input pa-
rameters [Wilder et al., 2019]. For example, consider the fol-
lowing convex optimization problem which depends on some
parameter 0: min, f(x,0) subject to Az < b. The implicit
function theorem applied on the KKT conditions gives:

Vif(z,0) AT | |
diag(n)A  diag(Az —b) g—g 0

Hence, the derivative ‘;—g can be computed, given the closed
form of the optimal decision x as a function of 6 is not known.

4 Partial Behavior Deception Model

In our game model, the attackers have the same payoffs but
different attack behavior arising from different rationality lev-
els. The defender knows the attacker payoffs but is uncer-
tain about the attackers’ behavior. Thus, the defender typ-
ically learns a single behavior model of the whole attacker
population based on historical attack data. This is the preva-
lent approach in real-world domains such as wildlife protec-
tion since park rangers mostly cannot distinguish poaching



signs from different poachers [Kar et al., 2017]. We con-
sider the setting in which the defender adopts QR to model
the attacker behavior. The overall problem of the defender
has two phases: learning and planning. In the learning phase,
the defender optimizes the QR parameter based on the training
attack dataset, formulated as follows:
A* € argmax,, L(A, D)

where D is the training set and £(\, D) is the log-likelihood
function. In particular, D can be compactly represented as
{x™ {zm}L }M_| in which M is the number of defense
strategies and 2" is the number of times target ¢ is attacked
with respect to the defender’s mixed strategy x™

In the planning phase, the defender computes a strategy x*
that maximizes the defender’s expected utility against a QR
attacker with this \*, which is the result of:

x* eargmaxz qi (35, N U (x3)

sty @ <K,z €0,1),Vi
K3

While the defender relies on a single behavior model, some
among the attackers can change their attack strategy in the
learning phase to benefit in the planning phase. In particular,
we expect only a perfectly rational attackers to exhibit such
clever deceptive behavior. Hence, we focus on the decep-
tion situation in which there is a rational deceptive attacker
(in addition to other sub-rational and non-deceptive attack-
ers) who can perturb a fixed fraction of the training attack set.
The fixed fraction enforces a natural constraint on the limited
amount of deception that the deceptive attacker can do.

Deception mathematical framework. For each strategy,

™, in the training set D, we denote by n;"* the number of at-
tacks from non-deceptive attackers at target ¢ against x"*. The
total number of attacks against x"™ of these non-deceptive at-
tackers is ), n/". We assume the deceptive attacker can at-
tack at most f(D_, n") attacks against x™ where f is the
attack ratio of the deceptive attacker to the non-deceptive at-
tackers. The problem of finding the best perturbation for the
deceptive attacker can be formulated as follows:

max,my U (x") (1
subject to A* € argmax, L£(\, D) )

x* € argmax ZZ qi(wi; /\*)Uid(xi) &)

s.t.z_z,; <K,z; €[0,1,Vi (4
zt > n 2 e N,Vm, i (5)

m m

Z,Zt S(f—i—l)zini ,Vm. (6)
which maximizes the deceptive attacker’s utility in the plan-
ning phase of the defender. The variable z;" is the perturbed
number of attacks at target ¢ against the defender’s strategy
™. Constraints (5-6) guarantee that the deceptive attacker
can only manipulate its own attacks. Finding the best per-
turbation for the attacker involves three nested optimization
problems, which is not straightforward to solve. In this work,
we propose a new algorithm to tackle this challenge, leverag-
ing the implicit function theorem to apply the projected gra-

dient descent (PGD) method as described in next section.

S GAMBO: A Behavior Deception Algorithm

Our algorithm applies the projected gradient descent (PGD)
to find an optimal attacker perturbation {z!"} given the con-
straint that the deceptive attacker can only manipulate its own
attacks. Since z]" is discrete, we relax the feasible region of
these variables to be continuous. We denote by Z = {z :
20 < (f+ 1)), n",Vmand 2] > nl*,¥Ym, i} the re-
laxed region of the attacker’s manipulation. Given a starting
point zg € Z, PGD iteratively improves the value of z based
on the gradients of the attacker’s utility with respect to the
current value of z. In particular, at step ¢ + 1, given the cur-
rent value z;, the new value, z; 1, is updated as follows:

Ziy1 = Hz(Zt =+ ’sztUa)

where v > 0 is the step size and II, is the Ly projection. In
particular, IT,(z; + V,,U?) is defined as the feasible point
closest to the gradient ascent update:

I, (z; + 7V, U®) € argmin, ey ||z; + YV, U — z||2
The gradient V,U® can be decomposed using chain rule:

ou*® oU 0x; ON*
- e B
9z 2, oz’ ox oz
The main challenge of computing V U @ lies in the compu-
6x 3 )\
tation of each gradient component M* s B and -
pecially when we do not have closed forms for these com-
ponents. In the following sub-sections, we elaborate the chal-
lenges of computing each component and our ideas to address
those challenges, in an increasing order of complexity.

dU _ {aUa}

In the planning phase, the rational deceptive attacker will
attack the target which gives it the highest expected utility
against x*. However, this means that U is not a differen-
tiable function of x*. We propose to approximate U® as the
following differentiable function, by assuming that the decep-
tive attacker follows a QR model with a very large A, denoted

by A (when A — oo, the attacker is perfectly rational):

U% ~ Zj (X% X)Uﬂx;)

It is now straightforward to compute the derivative %Z: .
J
: : : d\* _ [ ON*
5.2 Computing the Derivative ;- = azg"}

By using Maximum Log-Likelihood Estimation (MLE), find-
ing an optimal \* with respect to the training set {2/} can be
formulated as the following optimization problem:

maxz Z 2" log q;(x™; \)
N Zm {)\ ZiZTUf(‘EZ") - (ZZ z;”) log Ziew{l(wz”}

While it is straightforward to compute the optimal A\* with
respect to the variable {2/}, it is unclear how to compute

the derivative g;\m

maxﬁ A\, D)




A* as a function of {z"}. Therefore, we propose to apply
the implicit function theorem which can be directly applied
for convex optimization problems. Note that, —L(\, D) is a
convex function (its Hessian matrix is positive semi-definite).
Therefore A* satisfies the following KKT conditions:

OL(A\, D)
oA
By applying the implicit function theorem, we can differenti-

ate the solution to this linear system, which yields: V(m, )
ox 0G | 0G
o = o/ o

G=- =0at \*

) ,Ym, 1.
The RHSs of these equations are straightforward to compute.

5.3 Computing the Derivative & o )\* = {a)\ﬁ}

Recall that x* is the defender’s optimal strategy, obtained by
maximizing the defender’s expected utility with respect to the
learnt \*. The optimization problem is formulated as follows:

X" € argmax, Z qi(x, N UE () DefOPT

s.t. Zml <K,z; €
1

in which the objective is non-convex. In order to compute
Z’/\‘ , we first need to show given a \* there is a unique x*,
which is not obvious as the objective is non-convex. This is
required for x* to be a well-defined function of A\*. We prove
the uniqueness by analyzing the GOSAQ algorithm [Yang et

al., 2012] to solve DefOPT, which is briefly explained below.

The GOSAQ Algorithm

At ahigh level, GOSAQ applies binary search and then variable
conversion to convert the feasibility problem of binary search
into a convex optimization, which can be solved exactly. The
binary search idea is simple: given some lower and upper
bound on the objective, say (L,U), it starts by solving the
feasibility problem: does there exist a strategy, x, such that
the defender’s expected utility is greater than r = (L+U)/2?

[0,1],Vi

T

Z._l G (3, XU (25) > r

If it is feasible, then binary search updates the lower bound
as L = r. Otherwise, it updates the upper bound as U =
r. Binary search then solves the feasibility problem again
with the updated bounds. This process will continue until it
reaches a stopping condition (i.e., U — L < ¢).

Observe that the feasibility problem can be solved by solv-
ing the following minimization problem (BinaryOPT):

Inmxz e Ui (@) —Udxy)) @)
s.t.z,xi < K,x; €0,1],Vi (8)

Specifically, if the minimum of the objective in (7) is less
than zero, then the corresponding optimal solution of x for
(7-8) is a feasible solution of the feasibility problem in bi-
nary search. Otherwise, if it is strictly greater than zero, there
does not exist a feasible x. Note that (7-8) is a non-convex

optimization problem, GOSAQ then uses the variable transfor-
mation y; = N (B =Rz for (7-8), resulting in the follow-
ing strictly convex program (BinaryOPTTransformed):

T AR
m}}n Ze,\ B (r—p? yﬁz o R“ ) yilny; (9)
i=1
T 1
yi —1<0,Vi (11)
—y + N PIRED <0, (12)

where the objective in (9) is equivalent to the objective in (7).
Constraints (10—12) correspond to constraint (8).

Proof of the Uniqueness of x*
Based on the strict convexity of BinaryOPTTransformed,
our Lemma 1 proves the uniqueness of x* for any given \*.

Lemma 1. Let 1,4, be the maximum value of DefOPT. There
is a unique X* such that v, = ZiT=1 ¢ (x5 AU ()

Proof. The optimal solution of BinaryOPTTransformed is
unique for any 7, by strict convexity. Thus, there is a unique
y* as the optimal solution of BinaryOPTTransformed for
r = T'maz. AS the x-to-y transform is one-one, there is a
corresponding unique optimal solution x* of BinaryOPT.

In addition, by definition of 7,4, it must be the case that
the objective value of BinaryOPT at x* is 0, which is equiva-
lentto rpqr = 221 qi(x3; \*)Ug (). This can be checked
by contradiction: assume the optimal ob]ectlve value in (7) is
not 0, then let it be a # 0. First assume a > 0, we obtain:

>, g — Uf(:)) 2 ,¥x
a * d .
= Tmaz = W + ZZ qi(x, \*)U;" ()

J

> Zi qi (3, N U (), Vx

= Tmaz > maxz. Qz‘(X, )\*)Uzd(xz) = Tmax
X 3
which is contradiction. Next, assume a < 0, then, we obtain:
>, D (e = U (@) = a < 0

* * d *

= Tmaz < ZL Qi(x 7/\ )Uz ($z>
which directly contradicts the definition of 7,4 O

Since the optimal solution x* of DefOPT is unique for each
A* according to Lemma 1, x* is a well-defined function of
A*. Yet, we do not have a closed-form function of \* for x*.
Therefore, we propose to apply the implicit function theorem
to compute as explained in next section.

s
Applying the Implicit Function Theorem

In order to apply the implicit function theorem to get the
derivative %, we propose to use the KKT conditions of
BinaryOPTTransformed. Note that we cannot use KKT con-
ditions of BinaryOPT or DefOPT as these are non-convex op-
timizations and thus KKT conditions are not the sufficient con-

ditions for the optimal solution of these two problems.



First we relate x* (the optimal solution of DefOPT) and x
(the optimal solution of BinaryOPT) (the uniqueness of x*
follows the strict convexity of BinaryOPTTransformed).
This relation is required to get the correct derivative of x*
through the dependent x*.! While x* and x* are dependent
variables as x*(\*) and x* (\*, r), for notation ease, we skip
writing the explicit dependence in the rest of this paper.

Lemma 2. x* = xt under F(x,\*,r) = 0 where:
T
F(xt)\*r) = {Zi_l G(xT, VU )| —r
Proof. Given \*, F(x*,\*,r) = 0 implies:

Ze/\Uf )):0

Since x™ is an optimal solution of BinaryOPT with respect
to r, we obtain the following inequality: for all x,

Ze U@ (p >ZeA VR D) (r— U (2
:>7">Z qi (36, N U ()

Based on (13) and F'(x*, A* ) =0, then r is the maximum
objective of DefOpt and x™ is the corresponding maximizer.
Since such a maximizer is unique (Lemma 1), xT=x*. [

rfUd(

i) =0
(13)

. +

Thus, ‘é;‘* is same as ‘fi’)‘\ under the dependence
F(xT,\*,7) = 0; in the sequel we refer to F(xT, \*,r)
using the shorthand F'. Based on this dependency, we invoke
the implicit function theorem to get 4 N A* as follows. We first

use the KKT conditions of BinaryOPTTransformed around
N (Pf—R$)zf

its optimal solution y*. We then replace y; = e
in these KKT conditions and apply Lemma 2 (from where we
get ) to obtain the following equality system of x*:

e,\*Rg( _Pd)+u(1+)\ Py R“) )
O M(RE-P)
Ho ;
(P Rmer Gt T =0 (F)
T

MO(Zi:1$Z—-F7K):O (Fuo
Mi(eA*(piar,Rg)mj' —1)=0,Vi (FM
i gs(—eN (RO A PEZRD) = 0, v (F,

T NUMEHpd(pt
lele Uz(ajz)_,rzo (F)

T A U(zT)
Zj:le 7

where {uo, .., por} are dual variables.
G = [F17""FT’FM0’FH1>" s Furs Fur iy, FMzT’F]T
the LHSs of above equality constraints. All of these func-
tions take as arguments (x*, \*,r, ;). We get a system of
3T+ 2 equations, which allows us to invoke the implicit func-

tion theorem. The implicit function theorem states that given

We denote by

Capturlng dependence is critical to get the correct derivative.
For example, ““V’ = y when y is not dependent on x, but, under the
dependence y = x we have % =2z

the function G(\*, (x*,r, u)) = 0, which is a function from
3T + 3 variables to 37" + 2 dimensional space given by the
3T + 2 equations above, we have the derivative:

o(x*,r, 1) 1
78)\* =-M X
where M is the (37 4 2) x (3T + 2) matrix, represented as:
oF, oF, 9F, 8F,  OR oOF,
3w1+ T Bz; or o Our """ Opar
OFr 8FT OFr OFr OFr OFT
ozt 77 Bxf or Ouo O Opar
OF,, OFu, OFy OFiy  OFig OF,,
L or Opo Opa Opar
OF 51 OF 57 8F,L2T 8Fu2T OF 5 3FH2T
ozt T Baf or Ouo O Ouar
OF oF  aF  9F  OF OF
ozt T Bxh or Opo Op Opar

and X is the (37 + 2) x 1 column vector, represented as:

X [@ OFy OF,, OF,  OF,,, OF1T
“LoNT T N O AT T TN oA

and all the partial derivatives are evaluated at x™, )\* T, .
The first T’ components of —M ~1X is the derlvatlve i )\* un-

(Lemma 2).

der the dependence F' = 0, which is same as d/\*

6 Experiments

We analyze the impact of the attacker deception on: (i) the
deceptive attacker’s utility benefit; (ii) the defender’s util-
ity loss; and (iii) the defender’s learning outcome. For the
sake of analysis, besides the rational attacker, we consider
the presence of a boundedly rational (non-deceptive) attacker
whose responses follow QR with a fixed \. We compare
two scenarios: (i) Deception: the rational attacker plays
deceptively—its attacks in the training phase are computed
by our algorithm, GAMBO; (ii) Non-deception: the rational
attacker plays non-deceptively. We use the game generator,
GAMUT (http://gamut.stanford/edu) to generate player payoffs.

In creating the training dataset, for each game, we gener-
ate M = 5 different defense strategies uniformly at random.
For each generated strategy x™, we sample 50 attacks (i.e.,
>, i = 50) for the boundedly rational attacker with respect

i/ to its A. We plot the experiment results in three cases (the x-

axis in the plotted figures): (i) varying the A of the boundedly
rational attacker; (ii) varying the percentage of deceptive at-
tacks (%); and (iii) varying resource-target ratio (%). Each
data point is averaged over more than 3000 game instances.

6.1 Evaluation on Utility of Players

In the following, we highlight the results of 40-target games.
Figure 1 illustrates our evaluation on the utility of the ratio-
nal (deceptive) attacker and the defender. Note that the de-
fender’s utility is computed as an expectation over the de-
ceptive and non-deceptive attackers. Figure 1 shows that the
rational attacker obtains a significantly higher expected util-
ity on average when it plays deceptively compared to when it
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Figure 1: Evaluation on the players’ utility

plays honestly (Deception versus Non-Deception). Con-
versely, the defender receives a significantly lower utility.

In Figures 1(a) and 1(b), the attacker’s utility is roughly
a decreasing convex function while the defender’s utility is
an increasing concave function of the QR’s A\ of the non-
deceptive attacker. When this A is close to zero, the non-
deceptive attacker becomes less strategic and thus has less
impact on the learning outcome, reflecting increased chance
for successful deception of the rational attacker.

In Figures 1(c) and 1(d), in Deception, the utility of the
rational attacker increases quickly while the utility of the de-
fender decreases quickly as the percentage of deceptive at-
tacks increases. The increase in the attack percentage reflects
the growth in options for deception, leading to increased ben-
efit of the rational attacker for misleading the defender.

In Figures 1(e) and 1(f), the average utility of players is
roughly a linearly function (decreasing for the attacker and
increasing for the defender) of the resource-target ratio. This
makes sense as the players’ expected utility at each target is a
linearly function (also decreasing for the attacker and increas-
ing for the defender) of the defender’s coverage probability.

6.2 Evaluation on Learning Outcomes

Figure 2 shows the learning outcome (i.e., the learnt A*) of
the defender. When the rational attacker plays honestly, the
learnt \* gradually increases when A of the non-deceptive
attacker or the percentage of attacks by the rational attacker
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Figure 2: Evaluation on the learnt \* of the defender
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Figure 3: Runtime performance of GAMBO

increases. Conversely, by playing deceptively, the rational
attacker could influence the learning outcome towards a very
small learnt \*. Finally, our results show that the learnt \*
is roughly constant when varying the resource-target ratio,
showing that this factor does not impact the learning outcome
(we do not plot these results due to limited space).

6.3 Runtime Performance

Finally, the runtime performance of our algorithm, GAMBO, is
shown in Figure 3. The y-axis is the runtime in seconds on av-
erage. Figure 3(a) shows that the runtime of GAMBO increases
gradually when the X of the non-deceptive attacker increases
and then becomes roughly constant when this A reaches the
value of 2. This shows that when the non-deceptive attacker
is nearly non-strategic (its A is close to zero), GAMBO can
quickly find a deception strategy for the rational attacker. In
Figure 3(b), the peak of GAMBO’s runtime is at the attack per-
centage of 0.5, reflecting that the time complexity of GAMBO is
highest when the deceptive and non-deceptive attackers con-
tribute equally to the attack dataset. Finally, GAMBO can solve
large games (i.e., 200-target games) in approximately 10 min-
utes (we do not plot these results due to limited space).

7 Summary

This paper studied the problem of the attacker deception in
security games, where the defender relies on historical attack
data to learn the attackers’ behavior. We proposed a novel
partial behavior deception model and introduced a new scal-
able algorithm, GAMBO, to compute an optimal deception strat-
egy of the deceptive attacker. Our algorithm provided a novel
usage of the implicit function theorem to solve a tri-level op-
timization problem. Our thorough experiments reveal a sig-
nificant benefit for the deceptive attacker while the defender
suffers a significant loss in utility.
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