
The Risk of Attacker Behavioral Learning: Can
Attacker Fool Defender under Uncertainty?

Thanh Hong Nguyen1 and Amulya Yadav2

1 University of Oregon, Eugene, OR 97403 thanhhng@cs.uoregon.edu
2 Pennsylvania State University, University Park, PA 16802 amulya@psu.edu

Abstract. In security games, the defender often has to predict the at-
tacker’s behavior based on some observed attack data. However, a clever
attacker can intentionally change its behavior to mislead the defender’s
learning, leading to an ineffective defense strategy. This paper investi-
gates the attacker’s imitative behavior deception under uncertainty, in
which the attacker mimics a (deceptive) behavior model by consistently
playing according to that model, given that it is uncertain about the
defender’s learning outcome. We have three main contributions. First,
we introduce a new maximin-based algorithm to compute a robust at-
tacker deception decision. Second, we propose a new counter-deception
algorithm to tackle the attacker’s deception. We show that there is a
universal optimal defense solution, regardless of any private knowledge
the defender has about the relation between his learning outcome and
the attacker deception choice. Third, we conduct extensive experiments,
demonstrating the effectiveness of our proposed algorithms.

Keywords: Security games · Behavior models · Deception · Uncertainty.

1 Introduction

In many real-world security domains, security agencies (defender) attempt to
predict the attacker’s future behavior based on some collected attack data, and
use the prediction result to determine effective defense strategies. A lot of existing
work in security games has thus focused on developing different behavior models
of the attacker [24,27,20]. Recently, the challenge of playing against a deceptive
attacker has been studied, in which the attacker can manipulate the attack
data (by changing its behavior) to fool the defender, making the defender learn
a wrong behavior model of the attacker [18]. Such deceptive behavior by the
attacker can lead to an ineffective defender strategy.

A key limitation in existing work is the assumption that the defender has
full access to the attack data, which means the attacker knows exactly what the
learning outcome of the defender would be. However, in many real-world do-
mains, the defender often has limited access to the attack data, e.g., in wildlife
protection, park rangers typically cannot find all the snares laid out by poachers
in entire conservation areas [8]. As a result, the learning outcome the defender
obtains (with limited attack data) may be different from the deception behavior

2 Thanh Hong Nguyen and Amulya Yadav

model that the attacker commits to. Furthermore, the attacker (and the de-
fender) may have imperfect knowledge about the relation between the deception
choice of the attacker and the actual learning outcome of the defender.

We address this limitation by studying the challenge of attacker deception
given such uncertainty. We consider a security game model in which the defender
adopts Quantal Response (QR), a well-known behavior model in economics and
game theory [15,16,27], to predict the attacker’s behavior, where the model pa-
rameter λ ∈ R is trained based on some attack data. On the other hand, the
attacker plays deceptively by mimicking a QR model with a different value of λ,
denoted by λdec. In this work, we incorporate the deception-learning uncertainty
into this game model, where the learning outcome of the defender (denoted by
λlearnt) can be any value within a range centered at λdec.

We provide the following key contributions. First, we present a new maximin-
based algorithm to compute an optimal robust deception strategy for the at-
tacker. At a high level, our algorithm works by maximizing the attacker’s utility
under the worst-case of uncertainty. The problem comprises of three nested opti-
mization levels, which is not straightforward to solve. We thus propose an alter-
native single-level optimization problem based on partial discretization. Despite
this simplification, the resulting optimization is still challenging to solve due
to the non-convexity of the attacker’s utility and the dependence of the uncer-
tainty set on λdec. By exploiting the decomposibility of the deception space and
the monotonicity of the attacker’s utility, we show that the alternative relaxed
problem can be solved optimally in polynomial time.

Second, we propose a new counter-deception algorithm, which generates an
optimal defense function that outputs a defense strategy for each possible (de-
ceptive) learning outcome. Our key finding is that there is a universal optimal
defense function for the defender, regardless of any additional information he has
about the relation between his learning outcome and the deception choice of the
attacker (besides the common knowledge that the learning outcome is within a
range around the deception choice). Importantly, this optimal defense function,
which can be determined by solving a single non-linear program, only generates
two different defense strategies despite the infinite-sized learning outcome space.

Third, we conduct extensive experiments to evaluate our proposed algorithms
in different game settings. Our results show that (i) despite the uncertainty, the
attacker still obtains a significantly higher utility by playing deceptively; and (ii)
the defender can substantially diminish the impact of the attacker’s deception
when following our counter-deception algorithm.

2 Related Work

Parameterized models of attacker behavior such as Quantal Response, and other
machine learning models have been studied for SSGs [8,13,1]. These models
provide general techniques for modeling the attacker decision making. Prior work
assumes that the attacker always plays truthfully. Thus, existing algorithms for
generating defense strategies would be vulnerable against deceptive attacks by

Title Suppressed Due to Excessive Length 3

an attacker who is aware of the defender’s learning. Our work addresses such a
strategic deceptive attacker by planning counter-deception defense strategies.

Deception is widely studied in security research [3,5,11,28,10,6]. In SSG litera-
ture, a lot of prior work has studied deception by the defender, i.e., the defender
exploits his knowledge regarding uncertainties to mislead the attacker’s decision
making [9,21,22,26]. Recently, deception on the attacker’s side has been studied.
Existing work focuses on situations in which the defender is uncertain about
the attacker type [7,19,4]. Some study the attacker behavior deception prob-
lem [18,17]. They assume that the attacker knows exactly the learning outcome
while in our problem, the attacker is uncertain about that learning outcome.

Our work is also related to poisoning attacks in adversarial machine learn-
ing in which an adversary can contaminate the training data to mislead ML
algorithms [2,12,23,25]. Existing work in adversarial learning uses prediction ac-
curacy as the measure to analyzing such attacks, while in our game setting, the
final goals of players are to optimize their utility, given some learning outcome.

3 Background

Stackelberg Security Games (SSGs) . There is a set of T = {1, 2, . . . , T} targets
that a defender has to protect using L < T security resources. A pure strategy
of the defender is an allocation of these L resources over the T targets. A mixed
strategy of the defender is a probability distribution over all pure strategies. In
this work, we consider the no-scheduling-constraint game setting, in which each
defender mixed strategy can be compactly represented as a coverage vector x =
{x1, x2, . . . , xT }, where xt ∈ [0, 1] is the probability that the defender protects
target t and

∑
t xt ≤ L [14]. We denote by X the set of all defense strategies.

In SSGs, the defender plays first by committing to a mixed strategy, and the
attacker responds against this strategy by choosing a single target to attack.

When the attacker attacks target t, it obtains a reward Rat while the defender
receives a penalty P dt if the defender is not protecting that target. Conversely,
if the defender is protecting t, the attacker gets a penalty P at < Rat while the
defender receives a reward Rdt > P dt . The expected utility of the defender, Udt (xt)
(and attacker’s, Uat (xt)), if the attacker attacks target t are computed as follows:

Udt (xt) = xtR
d
t + (1− xt)P dt Uat (xt) = xtP

a
t + (1− xt)Rat

Quantal Response Model (QR). QR is a well-known behavioral model used to pre-
dict boundedly rational (attacker) decision making in security games [15,16,27].
Essentially, QR predicts the probability that the attacker attacks each target t
using the following softmax function:

qt(x, λ) =
eλU

a
t (xt)∑

t′ e
λUa

t′ (xt′)
(1)

where λ is the parameter that governs the attacker’s rationality. When λ = 0,
the attacker attacks every target uniformly at random. When λ = +∞, the

4 Thanh Hong Nguyen and Amulya Yadav

attacker is perfectly rational. Given that the attacker follows QR, the defender
and attacker’s expected utility is computed as an expectation over all targets:

Ud(x, λ) =
∑

t
qt(x, λ)Udt (xt) (2)

Ua(x, λ) =
∑

t
qt(x, λ)Uat (xt) (3)

The attacker’s utility Ua(x, λ) was proved to be increasing in λ [18]. We leverage
this monotonicity property to analyze the attacker’s deception. In SSGs, the
defender can learn λ based on some collected attack data, denoted by λlearnt,
and find an optimal strategy which maximizes his expected utility accordingly:

max
x∈X

Ud(x, λlearnt)

4 Attacker Behavior Deception under Uncertainty

We first study the problem of imitative behavior deception in an uncertainty
scenario in which the attacker is uncertain about the defender’s learning out-
come. Formally, if the attacker plays according to a particular parameter value
of QR, denoted by λdec, the learning outcome of the defender can be any value
within the interval [max{λdec−δ, 0}, λdec +δ], where δ > 0 represents the extent
to which the attacker is uncertain about the learning outcome of the defender.
We term this interval, [max{λdec − δ, 0}, λdec + δ], as the uncertainty range of
λdec. We are particularly interested in the research question:

Given uncertainty about learning outcomes, can the attacker still benefit
from playing deceptively?

In this section, we consider the scenario when the attacker plays deceptively
while the defender does not take into account the prospect of the attacker’s de-
ception. We aim at analyzing the attacker deception decision in this no-counter-
deception scenario. We assume that the attacker plays deceptively by mimicking
any λdec within the range [0, λmax].3 The value λmax represents the limit to
which the attacker plays deceptively. When λmax → ∞, the deception range of
the attacker covers the whole range of λ. We aim at examining the impact of
λmax on the deception outcome of the attacker later in our experiments. Given
uncertainty about the learning outcome of the defender, the attacker attempts
to find the optimal λdec ∈ [0, λmax] to imitate that maximizes its utility in the
worst case scenario of uncertainty, which can be formulated as follows:

(Pdec) : max
λdec

min
λlearnt

Ua(x(λlearnt), λdec)

s.t. λdec ∈ [0, λmax]

max{λdec − δ, 0} ≤ λlearnt ≤ λdec + δ

x(λlearnt) ∈ argmax
x′∈X

Ud(x′, λlearnt)

3In this work, we consider λ ≥ 0 as this is the widely accepted range of the attacker’s
bounded rationality in the literature.

Title Suppressed Due to Excessive Length 5

where x(λlearnt) is the defender’s optimal strategy w.r.t his learning outcome
λlearnt. The objective Ua(x(λlearnt), λdec) is essentially the attacker’s utility when
the defender plays x(λlearnt) and the attacker mimics QR with λdec to play (see
Equations (1 – 3) for the detailed computation).

4.1 A Polynomial-Time Deception Algorithm

(Pdec) involves three-nested optimization levels which is not straightforward to
solve. We thus propose to limit the possible learning outcomes of the defender by
discretizing the domain of λlearnt into a finite set Λlearnt

discrete = (λlearnt1 , λlearnt2 , . . . , λlearntK)
where λlearnt1 = 0, λlearntK = λmax + δ, and λlearntk+1 − λlearntk = η,∀k < K where

η > 0 is the discretization step size and K = λmax+δ
η +1 is the number of discrete

learning values.4 For each deception choice λdec, the attacker’s uncertainty set
of defender’s possible learning outcomes λlearnt is now given by:

Λlearnt
discrete(λ

dec) = Λlearnt
discrete ∩ [λdec − δ, λdec + δ]

For each λlearntk , we can easily compute the corresponding optimal defense strat-
egy x(λlearntk) in advance [27]. We thus obtain a simplified optimization problem:

(Pdec
discrete) : max

λdec∈[0,λmax]
U

s.t. U≤Ua(x(λlearntk), λdec), for all λlearntk ∈Λlearnt
discrete(λ

dec)

Remark on computational challenge. Although (Pdec
discrete) is a single-level

optimization, solving it is still challenging due to (i) (Pdec
discrete) is a non-convex

optimization problem since the attacker’s utility Ua(x(λlearntk), λdec) is non-
convex in λdec; and (ii) the number of inequality constraints in (Pdec

discrete) vary
with respect to λdec, which complicates the problem further. By exploiting the
decomposability property of the deception space [0, λmax] and the monotonicity
of the attacker’s utility function Ua(x(λlearntk), λdec), we show that (Pdec

discrete) can
be solved optimally in a polynomial time.5

Theorem 1 (Time complexity). The problem (Pdec
discrete) can be solved opti-

mally in a polynomial time.

Overall, the proof of Theorem 1 is derived based on (i) Lemma 1 — showing that
the deception space can be divided into an O(K) number of sub-intervals, and
each sub-interval leads to the same uncertainty set; and (ii) Lemma 2 — showing
that (Pdec

discrete) can be divided into a O(K) sub-problems which correspond to
the decomposability of the deception space (as shown in Lemma 1), and each
sub-problem can be solved in polynomial time.

4We use a uniform discretization for the sake of solution quality analysis (as we will
describe later). Our approach can be generalized to any non-uniform discretization.

5All of our detailed proofs are in online appendix: https://www.dropbox.com/s/
frebqe6etjns6c6/appendix.pdf?dl=0.

https://www.dropbox.com/s/frebqe6etjns6c6/appendix.pdf?dl=0
https://www.dropbox.com/s/frebqe6etjns6c6/appendix.pdf?dl=0

6 Thanh Hong Nguyen and Amulya Yadav

0 2.3

0.4 2

λ!"#$%&'

int()#* = [0,0.4)
Λ("#$%&' = {0}	

Attacker deceptive sub-intervals with uncertainty learning sets

0.9 1.7

1.41.20.5 1.8

int+)#* = [0.4,0.5]
Λ+"#$%&' = {0, 0.9}

int,)#* = (0.5,1.2)
Λ,"#$%&' = {0.9}	

int-)#* = [1.2,1.4]
Λ-"#$%&' = {0.9,1.7}	

int.)#* = (1.4,1.8)
Λ."#$%&' = {1.7}	

int/)#* = [1.8,2]
Λ/"#$%&' = {1.7,2.3}

Fig. 1: An example of discretizing λlearnt, Λlearnt = {0, 0.9, 1.7, 2.3}, and the six resulting
attacker sub-intervals and corresponding uncertainty sets, with λmax = 2, δ = 0.5. In
particular, the first sub-interval of deceptive λdec is int1 = [0, 0.4) in which any λdec

corresponds to the same uncertainty set of possible learning outcomes Λlearnt
1 = {0}.

Lemma 1 (Decomposability of deception space). The attacker deception
space [0, λmax] can be decomposed into a finite number of disjointed sub-intervals,
denoted by intdecj where j = 1, 2, . . . , and intdecj ∩ intdecj′ = ∅ for all j 6= j′ and

∪jintdecj = [0, λmax], such that each λdec ∈ intdecj leads to the same uncertainty

set of learning outcomes, denoted by Λlearnt
j ⊆ Λlearnt

discrete. Furthermore, these sub-

intervals and uncertainty sets (intdecj , Λlearnt
j) can be found in a polynomial time.

An example of the deception-space decomposition is illustrated in Figure 1.
Intuitively, although the deception space [0, λmax] is infinite, the total number
of possible learning-outcome uncertainty sets is at most 2K (i.e., the number of
subsets of the discrete learning space Λlearnt

discrete). Therefore, the deception space
can be divided into a finite number of disjoint subsets such that any deception
value λdec within each subset will lead to the same uncertainty set. Moreover,
each of these deception subsets form a sub-interval of [0, λmax], which is derived
from the following observation:

Observation 1 Given two deception values λdec1 < λdec2 ∈ [0, λmax], if the
learning uncertainty sets corresponding to these two values are the same, i.e.,
Λlearnt
discrete(λ

dec
1) ≡ Λlearnt

discrete(λ
dec
2), then for any deception value λdec1 < λdec < λdec2 ,

its uncertainty set is also the same, that is:

Λlearnt
discrete(λ

dec) ≡ Λlearnt
discrete(λ

dec
1) ≡ Λlearnt

discrete(λ
dec
2)

The remaining analysis for Lemma 1 is to show that these deception sub-intervals
can be found in polynomial time, which is obtained based on Observation 2:

Observation 2 For each learning outcome λlearntk , there are at most two de-
ception sub-intervals such that λlearntk is the smallest learning outcome in the
corresponding learning uncertainty set. As a result, the total number of decep-
tion sub-intervals is O(K), which is polynomial.

Title Suppressed Due to Excessive Length 7

Since there is a O(K) number of deception sub-intervals, we now can develop
a polynomial-time algorithm (Algorithm 1) which iteratively divides the decep-
tive range [0, λmax] into multiple intervals, denoted by {intdecj }j . Each of these

intervals, intdecj , corresponds to the same uncertainty set of possible learning

outcomes for the defender, denoted by Λlearnt
j . In this algorithm, for each λlearntk ,

Algorithm 1: Imitative behavior deception — Decomposition of QR
parameter domain into sub-intervals

1 Input: Λlearnt = {λlearnt
1 , λlearnt

2 , . . . , λlearnt
K };

2 Initialize interval index: j = 1; start = 0; open = false;

Λlearnt
j = {λlearnt

k ∈ Λlearnt : λlearnt
k ∈ [start− δ, start+ δ]};

3 while Λlearnt
j 6= ∅ do

4 Set the max index: kmax
j = maxk{λlearnt

k ∈ Λlearnt
j };

5 Set the min index: kmin
j = mink{λlearnt

k ∈ Λlearnt
j };

6 if kmax
j < K & lbkmax

j +1 ≤ ubkmin
j

then

7 if open then Set intdecj = (start, lbkmax
j +1);

8 else Set intdecj = [start, lbkmax
j +1);

9 Update start = lbkmax
j +1; open = false;

10 Λlearnt
j+1 ={λlearnt

k ∈Λlearnt :λlearnt
k ∈ [start−δ, start+δ]};

11 else

12 if open then Set intdecj = (start, ubkmin
j

];

13 else Set intdecj = [start, ubkmin
j

];

14 Update start = ubkmin
j

; open = true;

15 Λlearnt
j+1 ={λlearnt

k ∈Λlearnt :λlearnt
k ∈(start−δ, start+δ];

16 Update j = j + 1;

17 return {(intdecj , λlearnt
j)};

we denote by lbk = λlearntk − δ and ubk = λlearntk + δ the smallest and largest
possible values of λdec so that λlearntk belongs to the uncertainty set of λdec. In
Algorithm 1, start is the variable which represents the left bound of each inter-
val intdecj . The variable open indicates if intdecj is left-open (open = true) or not

(open = false). If start is known for intdecj , the uncertainty set Λlearnt
j can be

determined as follows:

Λlearnt
j ={λlearntk : λlearntk ∈ [start−δ, start+δ]} if intdecj is left-closed

Λlearnt
j ={λlearntk : λlearntk ∈(start−δ, start+δ]} if intdecj is left-open

Initially, start is set to 0 which is the lowest possible value of λdec such that
the uncertainty range [λdec−δ, λdec+δ] contains λlearnt1 and open = false. Given
start and its uncertainty range [start − δ, start + δ], the first interval intdec1 of

8 Thanh Hong Nguyen and Amulya Yadav

λdec corresponds to the uncertainty set determined as follows:

Λlearnt
1 = {λlearntk ∈ Λlearnt : λlearntk ∈ [start− δ, start+ δ]}

At each iteration j, given the left bound start and the uncertainty set Λlearnt
j

of the interval intdecj , Algorithm 1 determines the right bound of intdecj , the left

bound of the next interval intdecj+1 (by updating start), and the uncertainty set

Λlearnt
j+1 , (lines (6–15)). The correctness of Algorithm 1 is proved in the appendix.

Lemma 2 (Divide-and-conquer). The problem (Pdec
discrete) can be decomposed

into O(K) sub-problems {(Pdec
j)} according to the decomposibility of the decep-

tion space. Each of these sub-problems can be solved in polynomial time.

Indeed, we can now divide the problem (Pdec
discrete) into multiple sub-problems

which correspond to the decomposition of the deception space. Essentially, each
sub-problem optimizes λdec (and λlearnt) over the deception sub-interval intdecj

(and its corresponding uncertainty set Λlearnt
j):

(Pdec
j) : max

λdec∈intdecj

Ua

s.t. Ua ≤ Ua(x(λlearntk), λdec),∀λlearntk ∈ Λlearnt
j

which maximizes the attacker’s worst-case utility w.r.t uncertainty set Λlearnt
j .

Note that the defender strategies x(λlearntk) can be pre-computed for every out-
come λlearntk . Each sub-problem (Pdec

j) has a constant number of constraints,
but still remain non-convex. Our Observation 3 shows that despite of the non-
convexity, the optimal solution for (Pdec

j) is actually straightforward to compute.

Observation 3 The optimal solution of λdec for each sub-problem, Pdec
j , is the

(right) upper limit of the corresponding deception sub-interval intdecj .

This observation is derived based on the fact that the attacker’s utility, Ua(x, λ),
is an increasing function of λ [18]. Therefore, in order to solve (Pdec

discrete), we only
need to iterate over right bounds of intdecj and select the best j such that the

attacker’s worst-case utility (i.e., the objective of (Pdec
j)), is the highest among

all sub-intervals. Since there are O(K) sub-problems, (Pdec
discrete) can be solved

optimally in a polynomial time, concluding our proof for Theorem 1.

4.2 Solution Quality Analysis

We now focus on analyzing the solution quality of our method presented in
Section 4.1 to approximately solve the deception problem (Pdec).

Theorem 2. For any arbitrary ε > 0, there always exists a discretization step
size η > 0 such that the optimal solution of the corresponding (Pdec

discrete) is
ε-optimal for (Pdec).

Title Suppressed Due to Excessive Length 9

Intuitively, let us denote by λdec∗ the optimal solution of (Pdec) and Uaworst-case(λ
dec
∗)

is the corresponding worst-case utility of the attacker under the uncertainty of
learning outcomes in (Pdec). We also denote by λdecdiscrete the optimal solution of
(Pdec

discrete). Then, Theorem 2 states that:

Uaworst-case(λ
dec
∗) ≥ Uaworst-case(λ

dec
discrete) ≥ Uaworst-case(λ

dec
∗)− ε

Heuristic to improve discretization. According to Theorem 2, we can obtain
a high-quality solution for (Pdec) by having a fine discretization of the learning
outcome space with a small step size η. In practice, it is not necessary to have a
fine discretization over the entire learning space right from the begining. Instead,
we can start with a coarse discretization and solve the corresponding (Pdec

discrete)
to obtain a solution of λdecdiscrete. We then refine the discretization only within
the uncertainty range of the current solution, [λdecdiscrete− δ, λdecdiscrete + δ]. We keep
doing that until the uncertainty range of the latest deception solution reaches
the step-size limit which guarantees the ε-optimality. Practically, by doing so,
we will obtain a much smaller discretized learning outcome set (aka. smaller K).
As a result, the computational time for solving (Pdec

discrete) is substantially faster
while the solution quality remains the same.

5 Defender Counter-Deception

In order to counter the attacker’s imitative deception, we propose to find a
counter-deception defense function H : [0, λmax + δ] → X which maps a learnt
parameter λlearnt to a strategy x of the defender. In designing an effective H, we
need to take into account that the attacker will also adapt its deception choice
accordingly, denoted by λdec(H). Essentially, the problem of finding an optimal
defense function which maximizes the defender’s utility against the attacker’s
deception can be abstractly represented as follows:

max
H

Ud(H, λdec(H))

where λdec(H) is the deception choice of the attacker with respect to the defense
function H and Ud is the defender’s utility corresponding to (H, λdec(H)). Find-
ing an optimal H is challenging since the domain [0, λmax+δ] of λlearnt is contin-
uous and there is no explicit closed-form expression of H as a function of λlearnt.
For the sake of our analysis, we divide the entire domain [0, λmax+δ] into a num-
ber of sub-intervals I = {Id1 , Id2 , . . . , IdN} where Id1 = [λdef1 , λdef2], Id2 = (λdef2 , λdef3],
. . . , IdN = (λdefN , λdefN+1] with 0 = λdef1 ≤ λdef2 ≤ · · · ≤ λdefN+1 = λmax + δ, and N
is the number of sub-intervals. We define a defense function with respect to the
interval set: HI : I → X which maps each interval Idn ∈ I to a single defense
strategy xn, i.e., HI(Idn) = xn ∈ X, for all n ≤ N . We denote the set of these
strategies by Xdef = {x1, . . . ,xN}. Intuitively, all λlearnt ∈ Idn will lead to a sin-
gle strategy xn. Our counter-deception problem now becomes finding an optimal
defense function H∗ = (I∗,HI∗

∗) that comprises of (i) an optimal interval set I∗;
and (ii) corresponding defense strategies determined by the defense function HI∗

∗

10 Thanh Hong Nguyen and Amulya Yadav

with respect to I∗, taking into account the attacker’s deception adaptation. Es-
sentially, (I∗,HI∗

∗) is the optimal solution of the following optimization problem:

max
I,HI

Ud(HI, λdec(HI)) (4)

s.t. λdec(HI) ∈ argmax
λdec∈[0,λmax]

min
x∈X(λdec)

Ua(x, λdec) (5)

where λdec(HI) is the maximin deception choice of the attacker. Here, X(λdec) =
{xn : Idn ∩ [λdec − δ, λdec + δ] 6= ∅} is the uncertainty set of the attacker when
playing λdec. This uncertainty set contains all possible defense strategy outcomes
with respect to the deceptive value λdec.

Main Result. So far, we have not explicitly defined the utility objective function,
Ud(HI, λdec(HI)), except that we know this utility depends on the defense func-
tion HI and the attacker’s deception response λdec(HI). Now, since HI maps
each possible learning outcome λlearnt to a defense strategy, we know that if
λlearnt ∈ Idn, then Ud(HI, λdec(HI)) = Ud(xn, λ

dec(HI)), which can be computed
using Equation (3). However, due to the deviation of λlearnt from the attacker’s
deception choice, λdec(HI), different possible learning outcomes λlearnt within
[λdec(HI)−δ, λdec(HI)+δ] may belong to different intervals Idn (which correspond
to different strategies xn), leading to different utility outcomes for the defender.
One may argue that to cope with this deception-learning uncertainty, we can ap-
ply the maximin approach to determine the defender’s worst-case utility if the de-
fender only has the common knowledge that λlearnt ∈ [λdec(HI)−δ, λdec(HI)+δ].
And perhaps, depending on any additional (private) knowledge the defender has
regarding the relation between the attacker’s deception and the actual learning
outcome of the defender, we can incorporate such knowledge into our model and
algorithm to obtain an even better utility outcome for the defender. Interest-
ingly, we show that there is, in fact, a universal optimal defense function for the
defender, H∗, regardless of any additional knowledge that he may have. That is,
the defender obtains the highest utility by following this defense function, and
additional knowledge besides the common knowledge cannot make the defender
do better. Our main result is formally stated in Theorem 3.

Theorem 3. There is a universal optimal defense function, regardless of any
additional information (besides the common knowledge) he has about the relation
between his learning outcome and the deception choice of the attacker. Formally,
let’s consider the following optimization problem:

(Pcounter) : max
x,λ

Ud(x, λ)

s.t. Ua(x, λ) ≥ min
x′∈X

Ua(x′, λmax)

0 ≤ λ ≤ λmax,x ∈ X

Denote by (x∗, λ∗) an optimal solution of (Pcounter), then an optimal solution
of (4), H∗ can be determined as follows:

Title Suppressed Due to Excessive Length 11

– If λ∗=λmax, choose the interval set I∗ = {Id1} with Id1 =[0, λmax+δ] covering
the entire learning space, and function HI∗

∗ (Id1) = x1 where x1 =x∗.

– If λ∗ < λmax, choose the interval set I∗ = {Id1 , Id2} with Id1 = [0, λ∗+ δ],
Id2 = (λ∗+δ, λmax + δ]. In addition, choose the defender strategies x1 = x∗

and x2 ∈ argminx∈X U
a(x, λmax) correspondingly.

The attacker’s optimal deception against this defense function is to mimic λ∗.
As a result, the defender always obtains the highest utility, Ud(x∗, λ∗), while the
attacker receives the maximin utility of Ua(x∗, λ∗).

Corollary 1. When λmax = +∞, the defense function H∗ (specified in Theo-
rem 3) gives the defender a utility which is no less than his Strong Stackelberg
equilbrium (SSE) utility.

The proof of Corollary 1 is straightforward. Since (xsse, λmax = +∞) is a feasible
solution of (Pcounter), the optimal utility of the defender Ud(x∗, λ∗) is thus no
less than Ud(xsse, λmax) (xsse denotes the defender’s SSE strategy).

Now the rest of this section will be devoted to prove Theorem 3. The full proof
of Theorem 3 can be decomposed into three main parts: (i) We first analyze the
attacker deception adapted to the defender’s counter deception; (ii) Based on the
result of the attacker adaptation, we provide theoretical results on computing
the defender optimal defense function given a fixed set of sub-intervals I; and
(iii) finally, we complete the proof of the theorem leveraging the result in (ii).

5.1 Analyzing Attacker Deception Adaptation

In this section, we aim at understanding the behavior of the attacker deception
against HI. Overall, as discussed in the previous section, since the attacker is
uncertain about the actual learning outcome of the defender, the attacker can
attempt to find an optimal deception choice λdec(HI) that maximizes its utility
under the worst case of uncertainty. Essentially, λdec(HI) is an optimal solution
of the following maximin problem:

max
λdec∈[0,λmax]

min
x∈X(λdec)

Ua(x, λdec)

where: X(λdec) = {xn : Idn ∩ [λdec − δ, λdec + δ] 6= ∅} is the uncertainty set of
the attacker with respect to the defender’s sub-intervals I. In this problem, the
uncertainty set X(λdec) depends on λdec that we need to optimize, making this
problem not straightforward to solve.

First, given HI, we show that we can divide the range of λdec into several
intervals, each interval corresponds to the same uncertainty set. This characteris-
tic of the attacker uncertainty set is, in fact, similar to the no-counter-deception
scenario as described in previous section. We propose Algorithm 2 to determine
these intervals of λdec, which works in a similar fashion as Algorithm 1. The
main difference is that in the presence of the defender’s defense function, the

12 Thanh Hong Nguyen and Amulya Yadav

Algorithm 2: Counter-deception — Decomposition of QR parameter
into sub-intervals

1 Input: I = {Id1 , Id2 , . . . , IdN} and Xdef = {x1, . . . ,xN}
2 Initialize attacker interval index j = 1;

3 Initialize start = 0; uncertainty set Xdef
j = {xn : Idn ∩ [start− δ, start+ δ] 6= ∅};

4 while Xdef
j 6= ∅ do

5 Set the max index: nmax
j = maxn{xn ∈ Xdef

j };
6 Set the min index nmin

j = minn{xn ∈ Xdef
j };

7 if nmax
j < k & lbnmax

j +1 ≤ ubnmin
j +1 then

8 Set end = lbnmax
j +1;

9 else Set end = ubnmin
j +1 ;

10 if j = 1 then Set intdecj = [start, end];

11 else Set intdecj = (start, end];
12 Update start = end; j = j + 1;

13 Set Xdef
j = {xn : Idn ∩ (start− δ, start+ δ] 6= ∅};

14 return {intdecj ,Xdef
j }

attacker’s uncertainty set X(λdec) is determined based on whether the uncer-
tainty range of the attacker [λdec − δ, λdec + δ] is overlapped with the defender’s
intervals I = {Idn} or not.

Essentially, similar to Algorithm 1, Algorithm 2 also iteratively divides the
range of λdec into multiple intervals, (with an abuse of notation) denoted by
{intdecj }. Each of these intervals, intdecj , corresponds to the same uncertainty set

of xn, denoted by Xdef
j . In this algorithm, for each interval of the defender Idn,

lbn = λdefn − δ and ubn+1 = λdefn+1 + δ represent the smallest and largest possible
deceptive values of λdec so that Idn ∩ [λdec − δ, λdec + δ] 6= ∅. In addition, nminj

and nmaxj denote the smallest and largest indices of the defender’s strategies

in the set Xdef = {x1,x2, . . . ,xN} that belongs to Xdef
j . Algorithm 2 relies on

Observations 4 and 5. Note that Algorithm 2 does not check if each interval
intdecj of λdec is left-open or not since all intervals of the defender Idn is left-open

(except for n = 1), making all intdecj left-closed (except for j = 1).

Observation 4 Given a deceptive λdec, for any n1 < n2 such that xn1
,xn2

∈
X(λdec), then xn ∈ X(λdec) for any n1 < n < n2.

Observation 5 For any λdec such that lbn < λdec ≤ ubn+1,6 the uncertainty
range of λdec overlaps with the defender’s interval Idn, i.e., Idn∩[λdec−δ, λdec+δ] 6=
∅, or equivalently, xn ∈ X(λ). Otherwise, if λdec ≤ lbn or λdec > ubn+1, then
xn /∈ X(λdec).

Essentially, this algorithm divides the range of λdec into multiple intervals,
(with an abuse of notation) denoted by {intdecj }. Each of these intervals, intdecj ,

6Observation 5 is stated for the general case n > 1 when the defender’s interval Idn
is left-open. When n = 1 with the left bound is included, we have lbn ≤ λdec ≤ ubn+1.

Title Suppressed Due to Excessive Length 13

λ!"#$ = 0 λ%"#$ = 2.4λ&"#$ = 1.4

1 1.8 2

x! x&

Right bounds λ*'
of int '"#(

int!"#(= 0,1
X!"#$ = x!

int&"#(= (1, 1.8]
X&"#$ = x! , x&

int%"#(= (1.8,2]
X%"#$ = x&

Defender’s defense function

Attacker sub-intervals with uncertainty sets

Fig. 2: An example of a defense function with corresponding sub-intervals and un-
certainty sets of the attacker, where λmax = 2.0 and δ = 0.4. The defense function
is determined as: Id1 = [0, 1.4], Id2 = (1.4, 2.4] with corresponding defense strategies
{x1,x2}. Then the deception range of the attacker can be divided into three sub-
intervals: intdec1 = [0, 1], intdec2 = (1, 1.8], intdec3 = (1.8, 2] with corresponding uncer-
tainty sets Xdef

1 = {x1},Xdef
2 = {x1,x2},Xdef

3 = {x2}. For example, if the attacker
plays any λdec ∈ intdec2 , it will lead the defender to play either x1 or x2, depending on
the actual learning outcome of the defender.

corresponds to the same uncertainty set of xn, denoted by Xdef
j . An example of

decomposing the deceptive range of λdec is shown in Figure 2.
We denote by M the number of attacker intervals. Given the division of

the attacker’s deception range {intdecj }, we can divide the problem of attacker

deception into M sub-problems. Each corresponds to a particular intdecj where
j ∈ {1, . . . ,M}, as follows:

(P̄dec
j) : Ua,∗j = max

λdec∈intdecj

min
xn∈Xdef

j

Ua(xn, λ
dec)

Lemma 3. For each sub-problem (P̄dec
j) with respect to the deception sub-interval

intdecj , the attacker optimal deception is to imitate the right-bound of intdecj , de-

noted by λ̄decj .

The proof of Lemma 3 is derived based on the fact that the attacker’s utility
Ua(xn, λ

dec) is increasing in λdec. As a result, the attacker only has to search
over the right bounds, {λ̄decj }, of all intervals {intdecj } to find the best one among
the sub-problems that maximizes the attacker’s worst-case utility. We consider
these bounds λ̄decj to be the deception candidates of the attacker. Let’s assume
jopt is the best deception choice for the attacker among these candidates, that
is, the attacker will mimic the λ̄decjopt . We obtain the following observations about
important properties of the attacker’s optimal deception, which we leverage to
determine an optimal defense function later.

14 Thanh Hong Nguyen and Amulya Yadav

Our following Observation 6 says that any non-optimal deception candidate
for the attacker, λ̄decj 6= λ̄decjopt , such that the max index of the defender strategy in

the corresponding uncertainty set Xdef
j , denoted by nmaxj , satisfies nmaxj ≤ nmaxjopt ,

then the deception candidate λ̄decj is strictly less than λ̄decjopt , or equivalently,

j < jopt. Otherwise, jopt cannot be a best deception response.

Observation 6 For any j 6= jopt such that nmaxj ≤ nmaxjopt , then λ̄decj < λ̄decjopt , or

equivalently, j < jopt.

Note that we have right bounds of attacker intervals, denoted by {λ̄dec1 , . . . , λ̄decM =
λmax}. Our next Observation 7 says that if the max index of the defender strat-
egy nmaxjopt in the uncertainty set Xjopt is equal to the max index of the whole

defense set, N , then λ̄decjopt has to be equal to the highest value of the entire

deception range, that is λ̄decjopt = λ̄M =λmax, or equivalently, jopt=M .

Observation 7 If nmaxjopt = N , then jopt = M .

Remark. According to Observations 6 and 7, we can easily determine which de-
ception choices among the set {λ̄dec1 , . . . , λ̄decM } cannot be an optimal attacker de-
ception, regardless of defense strategies {x1, . . . ,xN}. These non-optimal choices
are determined as follow: the deception choice λ̄j can not be optimal for:

– Any j such that there is a j′ > j with nmaxj′ ≤ nmaxj

– Any j < M such that nmaxj = N

For any other choices λ̄decj , there always exists defense strategies {x1, . . . ,xN}
such that λ̄decj is an optimal attacker deception.

5.2 Finding Optimal Defense Function HI Given Fixed I:
Divide-and-Conquer

Given a set of sub-intervals I, we aim at finding optimal defense function HI
or equivalently, strategies Xdef = {x1,x2, . . . ,xN} corresponding to these sub-
intervals. According to previous analysis on the attacker’s deception adaptation,
since the attacker’s best deception is one of the bounds {λ̄dec1 , . . . , λ̄decM }, we
propose to decompose the problem of finding an optimal defense functionHI into
multiple sub-problems Pcounter

j , each corresponds to a particular best deception

choice for the attacker. In particular, for each sub-problem Pcounter
j , we attempt

to find HI such that λ̄decj is the best response of the attacker. As discussed in the
remark of previous section, we can easily determine which sub-problem Pcounter

j

is not feasible. For any feasible optimal deception candidate jfea, i.e., Pcounter
jfea is

feasible, Pcounter
jfea can be formulated as follows:

(Pcounter
jfea) : max

HI
Ud(HI, λ̄decjfea)

s.t. min
x∈Xdef

jfea

Ua(x, λ̄decjfea) ≥ min
x∈Xdef

j

Ua(x, λ̄decj),∀j

Title Suppressed Due to Excessive Length 15

where Ud(HI, λ̄decjfea) is the defender’s utility when the defender commits to HI

and the attacker plays λ̄decjfea . The constraints in (Pcounter
jfea) guarantee that the

attacker’s worst-case utility for playing λ̄decjfea is better than playing other λ̄decj .

Finally, our Propositions 1 and 2 determine an optimal solution for (Pcounter
jfea).

Proposition 1 (Sub-problem Pcounter
jfea). If nmaxjfea < N , the best defense func-

tion for the defender is determined as follows:

– For all n > nmaxjfea , choose xn = x∗> where x∗> is an optimal solution of the
following optimization problem:

minx∈X U
a(x, λmax)

– For all n ≤ nmaxjfea , choose xn = x∗< where x∗< is the optimal solution of the
following optimization problem:

Ud∗ = maxx∈X Ud(x, λ̄decjfea)

s.t. Ua(x, λ̄decjfea) ≥ U
a(x∗>, λ

max)

By following the above defense function, an optimal deception of the attacker is
to mimic λ̄decjfea , and the defender obtains an utility of Ud∗ .

Proposition 2 (Sub-problem Pcounter
jfea). If nmaxjfea = N , the best counter-

deception of the defender can be determined as follows: for all n, we set: xn = x̂
where x̂ is an optimal solution of

maxx∈X U
d(x, λmax)

By following this defense function, the attacker’s best deception is to mimic λmax

and the defender obtains an utility of Ud(x̂, λmax).

Based on Propositions 1 and 2, we can easily find the optimal counter-
deception of the defender by choosing the solution of the sub-problem that
provides the highest utility for the defender.

5.3 Completing the Proof of Theorem 3

According to Propositions 1 & 2, given an interval set I, the resulting defense
function will only lead the defender to play either {x∗>,x∗<} or {x̂}, whichever
provides a higher utility for the defender. Based on this result, our Theorem 3
then identifies an optimal interval set, and corresponding optimal defense strate-
gies, as we prove below.

First, we will show that if the defender follows the defense function specified
in Theorem 3, then the attacker’s optimal deception is to mimic λ∗. Indeed,
if λ∗ = λmax, then since the defender always plays x∗, the attacker’s optimal
deception is to play λ∗ = λmax to obtain a highest utility Ua(x∗, λmax).

On the other hand, if λ∗ < λmax, we consider two cases:

16 Thanh Hong Nguyen and Amulya Yadav

Case 1, if λmax − 2δ ≤ λ∗ < λmax, then the intervals of the attackers are
intdec1 = [0, λ∗] and intdec2 = (λ∗, λmax]. The corresponding uncertainty sets are
Xdef

1 = {x1} and Xdef
2 = {x1,x2}. In this case, the attacker’s optimal deception

is to mimic λ∗, since:

min
x∈Xdef

1

Ua(x, λ∗) = Ua(x∗, λ∗)

≥ Ua(x2, λ
max) ≥ min

x∈Xdef
2

Ua(x, λmax)

Case 2, if λ∗ < λmax − 2δ, then the corresponding intervals for the attacker
are intdec1 = [0, λ∗], intdec2 = (λ∗, λ∗ + 2δ], and intdec3 = (λ∗ + 2δ, λmax]. These
intervals of the attacker have uncertainty sets Xdef

1 = {x1}, Xdef
2 = {x1,x2},

and Xdef
3 = {x2}, respectively. The attacker’s best deception is thus to mimic

λ∗, since the attacker’s worst-case utility is minx∈Xdef
1
Ua(x, λ∗) = Ua(x∗, λ∗),

and

Ua(x∗, λ∗) ≥ Ua(x2, λ
max) ≥ minx∈X2

Ua(x, λ∗ + 2δ)

Ua(x∗, λ∗) ≥ Ua(x2, λ
max) = minx∈X3

Ua(x, λmax)

Now, since the attacker’s best deception is to mimic λ∗, according to the above
analysis, the uncertainty set is Xdef

1 = {x1 = x∗}, thus the defender will play
x∗ in the end, leading to an utility of Ud(x∗, λ∗). This is the highest possible
utility that the defender can obtain since both optimization problems presented
in Propositions 1 and 2 are special cases of (Pcounter) when we fix the variable
λ = λmax (for Proposition 2) or λ = λ̄jfea (for Proposition 1).

6 Experimental Evaluation

Our experiments are run on a 2.8 GHz Intel Xeon processor with 256 GB RAM.
We use Matlab (https://www.mathworks.com) to solve non-linear programs
and Cplex (https://www.ibm.com/analytics/cplex-optimizer) to solve MILPs in-
volved in the evaluated algorithms. We use a value of λmax = 5 in all our
experiments (except in Figures 3(g)(h)), and discretize the range [0, λmax] using
a step size of 0.2: λ ∈ {0, 0.2, . . . , λmax}. We use the covariance game generator,
GAMUT (http://gamut.stanford/edu) to generate rewards and penalties of players
within the range of [1, 10] (for attacker) and [−10,−1] (for defender). GAMUT
takes as input a covariance value r ∈ [−1, 0] which controls the correlations be-
tween the defender and the attacker’s payoff. Our results are averaged over 50
runs. All our results are statistically significant under bootstrap-t (p = 0.05).

Algorithms. We compare three cases: (i) Non-Dec: the attacker is non decep-
tive and the defender also assumes so. As a result, both play Strong Stackelberg
equilibrium strategies; (ii) Dec-δ: the attacker is deceptive, while the defender
does not handle the attacker’s deception (Section 4). We examine different un-
certainty ranges by varying values of δ; and (iii) Dec-Counter: the attacker is
deceptive while the defender tackle the attacker’s deception (Section 5).

https://www.mathworks.com
https://www.ibm.com/analytics/cplex-optimizer
http://gamut.stanford/edu

Title Suppressed Due to Excessive Length 17

(a) Attacker utility, vary #target (b) Defender utility, vary #target

(c) Att. utility, vary covariance (d) Def. utility, vary covariance

(e) Att. utility, vary interval (f) Def. utility, vary interval

(g) Att. utility, vary λmax (h) Def. utility, vary λmax

Fig. 3: Evaluations on player utilities

18 Thanh Hong Nguyen and Amulya Yadav

Figures 3(a)(b) compare the performance of our algorithms with increasing
number of targets. These figures show that (i) the attacker benefits by playing
deceptively (Dec-0 achieves 61% higher attacker utility than Non-Dec); (ii) the
benefit of deception to the attacker is reduced when the attacker is uncertain
about the defender’s learning outcome. In particular, Dec-0.25 achieves 4% lesser
attacker utility than Dec-0; (iii) the defender suffers a substantial utility loss
due to the attacker’s deception and this utility loss is reduced in the presence of
the attacker’s uncertainty; and finally, (iv) the defender benefits significantly (in
terms of his utility) by employing counter-deception against a deceptive attacker.

In Figures 3(c)(d), we show the performance of our algorithms with varying
r (i.e., covariance) values. In zero-sum games (i.e., r = −1), the attacker has
no incentive to be deceptive [18]. Therefore, we only plot the results of r ∈
[−0.2,−0.8] with a step size of 0.2. This figure shows that when r gets closer
to −1.0 (which implies zero-sum behavior), the attacker’s utility with deception
(i.e., Dec-0 and Dec-0.25) gradually moves closer to its utility with Non-Dec,
reflecting that the attacker has less incentive to play deceptively. Furthermore,
the defender’s average utility in all cases gradually decreases when the covariance
value gets closer to −1.0. This results show that in SSGs, the defender’s utility is
always governed by the adversarial level (i.e., the payoff correlations) between
the players, regardless of whether the attacker is deceptive or not.

Figure 3(e)(f) compare the attacker and defender utilities with varying uncer-
tainty range, i.e., δ values, on 60-target games. These figures show that attacker
utilities decrease linearly with increasing values of δ. On the other hand, de-
fender utilities increase linearly with increasing values of δ. This is reasonable as
increasing δ corresponds to a greater width of the uncertainty interval that the
attacker has to contend with. This increased uncertainty forces the attacker to
play more conservatively, thereby leading to decreased utilities for the attacker
and increased utilities for the defender.

In Figures 3(g)(h), we analyze the impact of varying λmax on the players’
utilities in 60-target games. These figures show that (i) with increasing values
of λmax, the action space of a deceptive attacker increases, hence, the attacker
utility increases as a result (Dec-0, Dec-0.25 in both sub-figures); (ii) When this
λmax is close to zero, the attacker is limited to a less-strategic-attack zone and
thus the defender’s strategies have less influence on how the attacker would
response. The defender thus receives a lower utility when λmax gets close to
zero; and (iii) most importantly, the attacker utility against a counter-deceptive
defender decreases with increasing values of λmax. This result shows that when
the defender plays counter-deception, the attacker can actually gain more benefit
by committing to a more limited deception range.

Finally, we evaluate the runtime performance of our algorithms in Figure 4.
We provide results for resource-to-target ratio L

T = 0.3 and 0.5. This figure shows
that (i) even on 100 target games, Dec-0 finishes in ∼5 minutes. (ii) Due to the
simplicity of the proposed counter-deception algorithm, Counter-Dec finishes in
13 seconds on 100 target games.

Title Suppressed Due to Excessive Length 19

(a) Runtime, ratio = 0.3 (b) Runtime, ratio = 0.5

Fig. 4: Runtime performance

7 Summary

This paper provides a comprehensive analysis of the attacker deception and de-
fender counter-deception under uncertainty. Our algorithms are developed based
on the decomposibility of the attacker’s deception space and the discretization
of the defender’s learning outcome. Our key finding is that the optimal counter-
deception defense solution only depends on the common knowledge of players
about the uncertainty range of the defender’s learning outcome. Finally, our ex-
tensive experiments show the effectiveness of our counter-deception solutions in
handling the attacker’s deception.

Acknowledgement Dr. Yadav was supported in part by ARO Grant No.
W911NF-21-1-0047.

References

1. An, B., Shieh, E., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B.,
Meyer, G.: A deployed quantal response based patrol planning system for the us
coast guard. In Interfaces 43(5), 400–420 (2013)

2. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector ma-
chines. arXiv preprint arXiv:1206.6389 (2012)

3. Carroll, T.E., Grosu, D.: A game theoretic investigation of deception in network
security. Security and Communication Networks 4(10), 1162–1172 (2011)

4. Estornell, A., Das, S., Vorobeychik, Y.: Deception through half-truths. In: AAAI
(2020)

5. Fraunholz, D., Anton, S.D., Lipps, C., Reti, D., Krohmer, D., Pohl, F., Tammen,
M., Schotten, H.D.: Demystifying deception technology: A survey. arXiv preprint
arXiv:1804.06196 (2018)

6. Fugate, S., Ferguson-Walter, K.: Artificial intelligence and game theory mod-
els for defending critical networks with cyber deception 40, 49–62 (Mar 2019).
https://doi.org/10.1609/aimag.v40i1.2849, https://www.aaai.org/ojs/index.php/
aimagazine/article/view/2849

https://doi.org/10.1609/aimag.v40i1.2849
https://doi.org/10.1609/aimag.v40i1.2849
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2849
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2849

20 Thanh Hong Nguyen and Amulya Yadav

7. Gan, J., Xu, H., Guo, Q., Tran-Thanh, L., Rabinovich, Z., Wooldridge, M.: Im-
itative follower deception in stackelberg games. arXiv preprint arXiv:1903.02917
(2019)

8. Gholami, S., Yadav, A., Tran-Thanh, L., Dilkina, B., Tambe, M.: Don’t put all
your strategies in one basket: Playing green security games with imperfect prior
knowledge. In: AAMAS. pp. 395–403. AAMAS (2019)

9. Guo, Q., An, B., Bosansky, B., Kiekintveld, C.: Comparing strategic secrecy and
Stackelberg commitment in security games. In: IJCAI (2017)

10. Han, X., Kheir, N., Balzarotti, D.: Deception techniques in computer security: A
research perspective. ACM Computing Surveys (CSUR) 51(4), 1–36 (2018)

11. Horák, K., Zhu, Q., Bošanskỳ, B.: Manipulating adversary’s belief: A dynamic
game approach to deception by design for proactive network security. In: GameSec.
pp. 273–294. Springer (2017)

12. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.D.: Adversarial
machine learning. In: AISec. pp. 43–58. ACM (2011)

13. Kar, D., Nguyen, T.H., Fang, F., Brown, M., Sinha, A., Tambe, M., Jiang, A.X.:
Trends and applications in stackelberg security games. Handbook of Dynamic
Game Theory pp. 1–47 (2017)

14. Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., Tambe, M.: Computing
optimal randomized resource allocations for massive security games. In: AAMAS.
pp. 689–696. AAMAS (2009)

15. McFadden, D., et al.: Conditional logit analysis of qualitative choice behavior
(1973)

16. McKelvey, R.D., Palfrey, T.R.: Quantal response equilibria for normal form games.
Games and economic behavior 10(1), 6–38 (1995)

17. Nguyen, T.H., Sinha, A., He, H.: Partial adversarial behavior deception in security
games. In: IJCAI (2020)

18. Nguyen, T.H., Vu, N., Yadav, A., Nguyen, U.: Decoding the imitation security
game: Handling attacker imitative behavior deception. In: ECAI (2020)

19. Nguyen, T.H., Wang, Y., Sinha, A., Wellman, M.P.: Deception in finitely repeated
security games. In: AAAI (2019)

20. Nguyen, T.H., Yang, R., Azaria, A., Kraus, S., Tambe, M.: Analyzing the effec-
tiveness of adversary modeling in security games. In: AAAI (2013)

21. Rabinovich, Z., Jiang, A.X., Jain, M., Xu, H.: Information disclosure as a means
to security. In: AAMAS. pp. 645–653 (2015)

22. Sinha, A., Fang, F., An, B., Kiekintveld, C., Tambe, M.: Stackelberg security
games: Looking beyond a decade of success. In: IJCAI. pp. 5494–5501 (2018)

23. Steinhardt, J., Koh, P.W.W., Liang, P.S.: Certified defenses for data poisoning
attacks. In: NeurIPS. pp. 3517–3529 (2017)

24. Tambe, M.: Security and game theory: algorithms, deployed systems, lessons
learned. Cambridge university press (2011)

25. Tong, L., Yu, S., Alfeld, S., et al.: Adversarial regression with multiple learners.
In: ICML. pp. 4946–4954 (2018)

26. Xu, H., Rabinovich, Z., Dughmi, S., Tambe, M.: Exploring information asymmetry
in two-stage security games. In: AAMAS. pp. 1057–1063 (2015)

27. Yang, R., Kiekintveld, C., Ordonez, F., Tambe, M., John, R.: Improving resource
allocation strategy against human adversaries in security games. In: IJCAI (2011)

28. Zhuang, J., Bier, V.M., Alagoz, O.: Modeling secrecy and deception in a multiple-
period attacker–defender signaling game. European Journal of Operational Re-
search 203(2), 409–418 (2010)

Title Suppressed Due to Excessive Length 21

Appendix A. Remaining proofs for Theorem 1

Appendix A.1: Proof of Observation 1

For any λlearnt ∈ Λlearnt
discrete(λ

dec
1) ≡ Λlearnt

discrete(λ
dec
2), we have:

λdec1 − δ ≤ λlearnt ≤ λdec1 + δ

λdec2 − δ ≤ λlearnt ≤ λdec2 + δ

Since λdec ∈ (λdec1 , λdec2), we obtain:

λdec − δ ≤ λlearnt ≤ λdec + δ

which implies λlearnt ∈ Λlearnt
discrete(λ

dec). As a result,

Λlearnt
discrete(λ

dec
1) ≡ Λlearnt

discrete(λ
dec
2) ⊆ Λlearnt

discrete(λ
dec) (∗)

On the other hand, let’s consider a λlearnt ∈ Λlearnt
discrete(λ

dec), or equivalently, λdec−
δ ≤ λlearnt ≤ λdec + δ. We are going to show that this λlearnt ∈ Λlearnt

discrete(λ
dec
1) ≡

Λlearnt
discrete(λ

dec
2) as well. Indeed, let’s assume λlearnt /∈ Λlearnt

discrete(λ
dec
1) ≡ Λlearnt

discrete(λ
dec
2).

It means the following inequalities must hold true:

λdec1 + δ < λlearnt < λdec2 − δ

which means that the uncertainty ranges with respect to λdec1 and λdec2 are not
overlapped, i.e.,

[λdec1 − δ, λdec1 + δ] ∩ [λdec2 − δ, λdec2 + δ] ≡ ∅

or equivalently, Λlearnt
discrete(λ

dec
1)∩Λlearnt

discrete(λ
dec
2) ≡ ∅, which is contradictory. There-

fore, λlearnt ∈ Λlearnt
discrete(λ

dec
1) ≡ Λlearnt

discrete(λ
dec
2), meaning that:

Λlearnt
discrete(λ

dec) ⊆ Λlearnt
discrete(λ

dec
1) ≡ Λlearnt

discrete(λ
dec
2) (∗∗)

The combination of (*) and (**) concludes our proof.

Appendix A.2: Proof of Observation 2

First, although the deception space [0, λmax] is infinite, the total number of
possible learning-outcome uncertainty sets is at most 2K (i.e., the number of
subsets of the discrete learning space Λlearnt

discrete). Therefore, the deception space
can be divided into a finite number of disjoint subsets such that any deception
value λdec within each subset will lead to the same uncertainty set. Moreover,
each of these deception subsets form a sub-interval of [0, λmax], which is a result
of Observation 1.

Now, in order to prove that the number of disjoint sub-intervals is O(K),
we will show that for each learning outcome λlearntk , there are at most two de-
ception sub-intervals such that λlearntk is the smallest learning outcome in the

22 Thanh Hong Nguyen and Amulya Yadav

corresponding learning uncertainty set. Let’s assume there is a deception sub-
interval [λdec1 , λdec2] which leads to an uncertainty set {λlearntk , λlearntk+1 , . . . , λlearntk′ }
for some k′ ≥ k. We will prove that the following inequalities must hold:

2δ

η
− 2 < k′ − k ≤ 2δ

η
(6)

where η is the discretization step size. Indeed, for any λdec ∈ [λdec1 , λdec2], we
have:

λdec − δ ≤ λlearntk ≤ λdec + δ

λdec − δ ≤ λlearntk′ ≤ λdec + δ

λlearntk−1 < λdec − δ and λlearntk′+1 > λdec + δ

Therefore,

λlearntk′ − λlearntk ≤ 2δ =⇒ k′ − k ≤ 2σ

η

λlearntk′+1 − λlearntk−1 > 2δ =⇒ k′ − k > 2σ

η
− 2

which concludes (6). Now, according to (6), for every k, then k′ = k+d 2ση e−2 or

k′ = k + b 2ση c, which means that there are at most two deception sub-intervals

such that λlearntk is the smallest learning outcome in their learning uncertainty
sets.

Appendix A.3: Imitative Behavior Deception: Correctness of
Algorithm 1 for Decomposing Deception Range

Finally, we prove the correctness of Algorithm 1 by presenting Proposition 3,
which shows that for any λdec within each interval intdecj , the corresponding

uncertainty interval [λdec − δ, λdec + δ] covers the same uncertainty set Λlearnt
j .

Proposition 3. Each iteration j of Algorithm 1 returns an interval intdecj such

that each λdec ∈ intdecj leads to the same uncertainty set:

Λlearnt
j = {λlearntkmin

j
, . . . , λlearntkmax

j
}

Proof. At each iteration j, Algorithm 1 considers two cases:

Case 1: kmaxj < K and lbkmax
j +1 ≤ ubkmin

j
. In this case, the interval intdecj is

determined as follows:

intdecj = [start, lbkmax
j +1) if open = false

intdecj = (start, lbkmax
j +1) if open = true

Title Suppressed Due to Excessive Length 23

Note that, since Λlearnt
j is the uncertainty set of start with the smallest and

largest indices of (kminj , kmaxj), we have: lbkmin
j
≤ lbkmax

j
≤ start and ubkmin

j −1 <

start. Therefore, for any λdec ∈ intdecj , we obtain:

lbkmin
j
≤ start ≤ λdec and λdec < lbkmax

j +1 ≤ ubkmin
j

lbkmax
j
≤ start ≤ λdec and λ < ubi ≤ ubkmax

j

λdec < lbkmax
j +1 and λdec ≥ start > ubkmin

j −1

which means λlearnt
kmin
j

and λlearntkmax
j

belongs to the uncertainty set of λdec while

λlearnt
kmin
j −1 and λlearntkmax

j +1 do not. Thus, Λlearnt
j is the uncertainty set of λdec. Since

intdecj is open-right, the left bound of intdecj+1 is start = lbmj+1 and open = false,

and Λlearnt
j+1 is determined accordingly.

Case 2: kmaxj = K or lbkmax
j +1 > ubkmin

j
. In this case, the interval intdecj is

determined as follows:

intdecj = [start, ubkmin
j

] if open = false

intdecj = (start, ubkmin
j

] if open = true

The argument for this case is similar. For the sake of analysis, since kmaxj = K

which is the largest index of λlearnt in the entire set Λlearnt, we set lbkmax
j +1 =∞.

For any λdec ∈ intdecj , we have:

lbkmin
j
≤ start ≤ λdec ≤ ubkmin

j

lbkmax
j
≤ start ≤ λdec ≤ ubkmin

j
≤ ubkmax

j

λdec ≤ ubkmin
j

< lbkmax
j +1 and λdec ≥ start > ubkmin−1

which implies Λlearnt
j is the uncertainty set of λdec. Since intdecj is closed-right,

the left bound of intdecj+1 is start = ubkmin
j

and open = true, concluding our

proof.

Appendix B: Proof of Theorem 2

Let’s denote by λdec∗ the optimal solution of (Pdec). Then the worst-case utility
of the attacker is determined as follows:

Uworst(λdec∗) = min
λlearnt∈[λdec

∗ −δ,λdec
∗ +δ]

Ua(x(λlearnt), λdec∗)

On the other hand, let’s denote by λdecdiscrete the optimal solution of (Pdec
discrete).

Then the discretized worst-case utility of the attacker is determined as follows:

Uworst
discrete(λ

dec
discrete) = min

λlearnt∈Λlearnt
discrete(λ

dec
discrete)

Ua(x(λlearnt), λdecdiscrete)

24 Thanh Hong Nguyen and Amulya Yadav

Note that, Uworst
discrete(λ

dec
discrete) is not the actual worst-case utility of the attacker

for mimicking λdecdiscrete since it is computed based on the discrete uncertainty set,
rather than the original continuous uncertainty set. In fact, the actual attacker
worst-case utility is Uworst(λdecdiscrete). We will show that for any ε > 0, there
exists a discretization step size η such that:

Uworst(λdec∗) ≥ Uworst(λdecdiscrete) ≥ Uworst(λdec∗)− ε (7)

Observe that the first inequality is easily obtained since λdec∗ the optimal solution
of (Pdec). Therefore, we will focus on the second inequality. First, we obtain the
following inequalities:

Uworst(λdec∗) ≤ Uworst
discrete(λ

dec
∗) ≤ Uworst

discrete(λ
dec
discrete)

The first inequality is obtained based on the fact that the discretized uncertainty
set is a subset of the actual continuous uncertainty range Λlearnt

discrete(λ
dec
∗) ⊂ [λdec∗ −

δ, λdec∗ + δ]. The second inequality is derived from the fact that λdecdiscrete is the

optimal solution of (Pdec
discrete). Therefore, in order to obtain the second inequality

of (7), we are going to prove that for any ε > 0, there exists η > 0 such that:

Uworst(λdecdiscrete) + ε ≥ Uworst
discrete(λ

dec
discrete) (8)

Let’s denote by λlearnt∗ the worst-case learning outcome with respect to λdecdiscrete

within the uncertainty range [λdecdiscrete − δ, λdecdiscrete + δ]. That is,

Uworst(λdecdiscrete) = Ua(x(λlearnt∗), λdecdiscrete)

Since Λlearnt
discrete(λ

dec
discrete) is a discretization of [λdecdiscrete−δ, λdecdiscrete+δ], there exist

a λlearntk ∈ Λlearnt
discrete(λ

dec
discrete) such that |λlearntk − λlearnt∗ | ≤ η. Now, according to

the definition of the discretized worst-case utility of the attacker, we have:

Uworst
discrete(λ

dec
discrete) ≤ Ua(x(λlearntk), λdecdiscrete)

Therefore, proving (8) now induces to proving ∃η:

Ua(x(λlearntk), λdecdiscrete)− Ua(x(λlearnt∗), λdecdiscrete) ≤ ε

where |λlearntk − λlearnt∗ | ≤ η. First, according to [17], for any λ, the defender’s
corresponding optimal strategy x(λ) is a differentiable function of λ. Second,
the attacker’s utility Ua(x, λdecdiscrete) is a differentiable function of the defender’s
strategy x for any λdecdiscrete. Therefore, Ua(x(λ), λdecdiscrete) is differentiable (and
thus continuous) at λ. According to the continuity property, for any ε > 0, there
always exists η > 0 such that:

Ua(x(λ), λdecdiscrete)− Ua(x(λlearnt∗), λdecdiscrete) ≤ ε

for all λ such that |λ− λlearnt∗ | ≤ η, concluding our proof.

Title Suppressed Due to Excessive Length 25

Appendix C: Proof of Theorem 3

We first provide a detailed computation and analysis on the attacker’s deception
response and then the optimal defense function HI given a fixed set of intervals
I. We leverages these results to complete the proof of Theorem 3 at the end.

Appendix C.1: Analyzing Attacker Deception Adaptation

Proof of Observation 6 Observation 6 can be proved by contradiction as
follows. Let’s assume if there is j > jopt such that nmaxj ≤ nmaxjopt . According
to Algorithm 2, for any attacker interval indices j > j′, we have the min and
max indices of the defender’s strategies in corresponding uncertainty sets must
satisfy: nminj ≥ nminj′ and nmaxj ≥ nmaxj′ , and they can not be both equal. That

is because the intervals {intdecj } returned by Algorithm 2 are sorted in a strictly
increasing order. Therefore, if there is j > jopt such that nmaxj ≤ nmaxjopt , it means

nminj > nminjopt and nmaxj = nmaxjopt . In other words, the uncertainty set Xdef
j ⊂

Xdef
jopt . Thus, we have the attacker’s optimal worst-case utility with respect to

deception intervals j and jopt must satisfy:

Ua,∗jopt = min
x∈Xdef

jopt

Ua(x, λ̄decjopt)≤ min
x∈Xdef

j

Ua(x, λ̄decjopt)

< min
x∈Xdef

j

Ua(x, λ̄decj)=Ua,∗j

since Ua(x, λ) is a strictly increasing function of λ.7This strict inequality shows
that jopt cannot be an optimal deception for the attacker, concluding our proof
for Observation 6.

Note that we have right bounds of attacker intervals, denoted by {λ̄dec1 , . . . , λ̄decM =
λmax}.

Proof of Observation 7 We also prove this observation using contradiction.
Let’s assume that jopt < M . Again, according to Algorithm 2, for any j > j′, we
have nminj ≥ nminj′ and nmaxj ≥ nmaxj′ , and they can not be both equal. Therefore,

if nmaxjopt = N , then for all j > jopt, we have: nmaxj = N and nminj > nminjopt , which

means Xdef
j ⊂ Xdef

jopt . Therefore, if jopt < M , then we obtain:

Ua,∗jopt = min
x∈Xdef

jopt

Ua(x, λ̄decjopt)≤ min
x∈Xdef

M

Ua(x, λ̄decjopt)

< min
x∈Xdef

M

Ua(x, λ̄decM)=Ua,∗M

7There is a degenerate case in which Ua(x, λ) is constant for all λ, when the defense
strategy x leads to an identical expected utility for the attacker across all targets. To
avoid this case, we can add a small noise to such defense strategy x so that these
attacker expected utilities vary across the targets, while ensuring that this noise only
leads to a small change in the defender’s utility.

26 Thanh Hong Nguyen and Amulya Yadav

which shows that jopt cannot be an optimal deception of the attacker, concluding
the proof of Observation 7.

Appendix C.2: Finding Optimal Defense Function HI Given Fixed I:
Divide-and-Conquer

Proof of Proposition 1 First, we show that the attacker optimal deception
response is to λ̄decjfea . Indeed, we have the uncertainty set Xdef

jfea ≡ {x
∗
<} because

the defender plays xn = x∗< for all n ≤ nmaxjfea . In addition, for all j such that

nmaxj > nmaxjfea , the uncertainty set Xdef
j contains x∗>. Therefore, we have the

attacker worst-case utility satisfying:

Ua,∗j ≤ Ua(x∗>, λ̄
dec
j) ≤ Ua(x∗>, λ

max) ≤ Ua(x∗<, λ̄
dec
jfea) = Ua,∗

jfea

Furthermore, for all j such that nmaxj ≤ nmaxjfea , we have j ≤ jfea according to
Observation 6. Thus, we obtain:

Ua,∗j = Ua(x∗<, λ̄
dec
j) ≤ Ua(x∗<, λ̄jfea) = Ua,∗

jfea

Based on the above defense function and the fact that the attacker will choose
λ̄decjfea , the defender receives an utility of Ud∗ . Next, we prove that this is the best

the defender can obtain by showing that any defense function {x′1, . . . , x′N} such
that jfea is the attacker’s best response will lead to a defender utility less than
Ud∗ . Indeed, since nmaxjfea < N , it means jfea < M or in other words, λ̄decjfea < λ̄M =

λmax. On other hand, since λ̄decjfea is the best choice of the attacker, the following
inequality must hold:

Ua,∗
jfea
≥ Ua,∗M = min

x∈Xdef
M

Ua(x, λmax) ≥ min
x∈X

Ua(x, λmax)

This means that any defense function {x′1, . . . , x′k} such that jfea is the attacker’s
best response has to satisfy the above inequality. As defined, Ud∗ is the highest
utility for the defender among these defense functions that satisfy the above
inequality.

Proof of Proposition 2 First, we observe that given x̂, λ̄jfea is the best re-
sponse of the attacker. Indeed, since jfea = M or equivalently λ̄jfea = λmax

according to Observation 7, we have:

Ua,∗
jfea

= Ua(x̂, λmax) ≥ Ua(x̂, λ̄decj) = Ua,∗j ,∀j

Second, since λ̄jfea = λmax, then for any defense function such that λ̄jfea is the
best deception choice of the attacker, the resulting utility for the defender must
be no more than:

maxx∈Xdef

jfea
Ud(x, λmax) ≤ maxx∈X U

d(x, λmax)

regardless of the learning outcome λlearnt ∈ [λmax− δ, λmax+ δ]. This is because
the defender eventually plays one of the defense strategies in the set Xdef

jfea . The
RHS is the defender’s utility obtained by playing the counter-deception specified
by the proposition.

Title Suppressed Due to Excessive Length 27

Appendix D: Additional Experiment Results

We provide additional set of experiments.

(a) Attacker utility, 80 targets (b) Defender utility, 80 targets

Fig. 5: Player Utilities with Varying Number of Resources

Figure 5 shows the performance of our algorithms as we vary the number of
resources L on 80-target games. This figure shows that the benefits of deception
and counter-deception to the players are observed consistently when varying L.
It shows that (i) the defender (attacker) utilities steadily increase (decrease)
with increasing L; and (ii) the trends observed between the different algorithms
in Figure 5 are observed consistently at different values of L.

In Figure 6, we compare different algorithms with increasing number of tar-
gets when L

T = 0.5. In Figure 7, we compare different algorithms with increasing
number of security resources on 20-target games.

(a) Attacker utility, ratio = 0.5 (b) Defender utility, ratio = 0.5

Fig. 6: Player Utilities with Varying Number of Targets

28 Thanh Hong Nguyen and Amulya Yadav

(a) Attacker utility, 20 targets (b) Defender utility, 20 targets

Fig. 7: Player Utilities with Varying Number of Resources

	The Risk of Attacker Behavioral Learning: Can Attacker Fool Defender under Uncertainty?

