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Abstract. Security games are a defender-attacker game-theoretic model
where the defender determines how to allocate scarce resources to protect
valuable targets against the attacker. A majority of existing work has fo-
cused on the one-shot game setting in which the attacker only attacks
once. However, in many real-world scenarios, the attacker can perform
multiple attacks in a sequential manner and leverage observable effects
of these attacks for better attack decisions in the future. Recent work
shows that in order to provide effective protection over targets, the de-
fender has to take the prospect of sequential attacks into consideration.
The algorithm proposed by existing work to handle sequential attacks,
however, can only scale up to two attacks at most. We extend this line
of work and focus on developing new scalable algorithms for solving the
zero-sum variant of security games. We formulate security games with se-
quential attacks as a one-sided partially observable stochastic games. We
show that the uncertainty about the state in the game can be modeled
compactly and we can use variants of heuristic search value iteration al-
gorithm for solving these games. We give two variants of the algorithm –
an exact one and a heuristic formulation where the resource reallocation
possibilities of the defender are simplified. We experimentally compare
these two variants of the algorithm and show that the heuristic variant is
typically capable of finding high-quality strategies while scaling to larger
scenarios compared to the exact variant.

Keywords: Security games · Sequential attacks · Partially observable
stochastic games · Zero-sum games.
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1 Introduction

Defender-attacker security games are a well-known class of resource allocation
games where a defender has to protect a set of targets against an attacker. The
defender chooses how to allocate his limited resources to these targets while the
attacker chooses which target(s) to attack. In practice, the one-shot security
game setting was used in several successful applications, in which the attacker
is assumed to attack only once [5, 13, 8, 6, 1, 9]. However, in many real-world
security domains, the attacks might occur sequentially – the attacker can choose
to attack targets in a sequence while observing the results of executed attacks.
Performing a sequential attack is beneficial for the attacker due to discovered
knowledge (by attacking a target, the attacker can partially discover the current
allocation of the defending units). Only recently, a new model of security games
with sequential attacks (SGSA) has been introduced [7] showing that it is indeed
necessary for the defender to be prepared for the sequential attacks.

In SGSA, both players choose their actions simultaneously over several rounds
— each round corresponds to a simple security game (in which the defender
allocates the resources to the targets and the attacker chooses one target to
attack). Afterwards, the outcome of the actions is determined — if the attacked
target has been unprotected (protected, respectively), the attack is successful
(unsuccessful). The game then enters into the next round while assuming that
the attacked target is no longer available for protection/attack. Moreover, if the
attack was unsuccessful, the defending unit that was present at the target cannot
be reallocated to protect other targets. The initial work [7] introduced several
variants of SGSA and showed that it is indeed better for the attacker to attack in
sequence. Therefore, the defender must take the possibility of sequential attacks
into consideration and provided an algorithm for computing Strong Stackelberg
equilibrium for selected variants. However, the general algorithms for solving
SGSA are missing. The existing algorithms for computing a Strong Stackelberg
equilibrium for SGSA are restricted to two rounds only (the attacker can perform
two attacks) if the defender is able to reallocate the units and it is not clear
whether a generalization to multiple rounds is possible.

In this work, we attempt to address this computation limitation of the pre-
vious work, with the following main contributions. First, we leverage recent
advancement in solving sub-classes of zero-sum partially observable stochastic
games (POSGs) in which one player has perfect information and the other player
has partial information, termed one-sided POSGs (OS-POSGs) [4, 3]. Algorithms for
solving OS-POSGs are based on a heuristic search value iteration (HSVI) algorithm
and are capable of handling very long horizons. We show that zero-sum SGSA

can be formulated as a OS-POSGs, thus allowing us to use the existing algorithms
of solving OS-POSGs. Second, we develop a new compact representation for SGSA
to avoid the exploration of an exponential number of states (due to exponen-
tially many possible subsets of protected targets) involved in the computation
of the original HSVI algorithm. While the idea behind using the compact repre-
sentation in HSVI has been introduced for a lateral-movement game in computer
networks [2, 3], the technical realization of this idea in the domain of security
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games is non-trivial and novel. Third, in order to further improve the scalability,
we introduce a heuristic variant of the game where we introduce a mild restric-
tion for the defending units — each target can be in one stage protected only
by one unit, and this allocation of units is determined heuristically. While this
heuristic partitioning of targets among the defending units can negatively af-
fect the quality of defending strategies, our experimental evaluation shows that
with an increasing number of targets, the quality of strategies is very close to
the exact formulation. Moreover, the heuristic variant scales to larger scenarios.
Finally, we conduct extensive experiments to evaluate proposed methods. We
show that (1) ignoring the sequential aspect and solving each round separately
results in strategies with poor quality and that (2) our methods can solve larger
SGSA with multiple rounds (which the existing algorithm cannot handle) while
maintaining high-quality strategies for the players in the game.

2 Technical Background

In this section, we first provide the basic definitions for one-sided partially ob-
servable stochastic games (OS-POSGs) and describe the ideas behind the heuristic
search value iteration (HSVI) algorithm. We then formally define security games
with sequential attacks (SGSAs).

2.1 One-sided Partially Observable Stochastic Games (OS-POSG)

OS-POSG [4] is an imperfect-information two-player zero-sum infinite-horizon
game with perfect recall, formally defined as a tuple G = 〈S,A1, A2, O, τ, ρ〉.
The game evolves in rounds, where in each round a stage game is played. At
each stage, the game is in one of the states s ∈ S and players simultaneously
pick their actions a1 ∈ A1 and a2 ∈ A2. The initial state of the game is drawn
from a probability distribution b0 ∈ ∆(S) over the set of states S, which is
treated as a parameter of the game and termed the initial belief. The one-sided
nature of the game results in the fact that while player 2 can observe the game
perfectly (i.e., his only uncertainty is the action a1 player 1 decided to take in
the current stage), player 1 lacks detailed information about the course of the
game (i.e., he is uncertain not only about the action a2 for the current stage but
also about the current state of the game).

The choice of actions determines the outcomes for the current stage: player 1
gets an observation o ∈ O and the game transitions to a state s′ ∈ S with
transition probability τ(o, s′ | s, a1, a2), where s is the current state of the game.
Furthermore, player 1 gets a reward ρ(s, a1, a2) for this transition, and player 2
receives −ρ(s, a1, a2) (the rewards are not directly observable by player 1). Note
that the next stage of the game s′ is a result of joint action (a1, a2) and actions of
player 2 (who has perfect information) directly affects the observations received
by player 1 and thus his belief as well. The rewards are discounted over time
with discount factor γ, 0 < γ < 1.
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Fig. 1: HSVI local update in the belief b [11]

2.2 Heuristic Search Value Iteration (HSVI)

State of the art method for solving OS-POSGs [4] is a modification of the HSVI

algorithm for Partially Observable Markov Decision Processes [10, 12] that com-
bines heuristic search techniques with piecewise linear convex value function
representations. The goal of HSVI is to approximate the optimal value function
V ∗ : ∆(S) → R that maps each belief point to a value of the game (should the
players follow optimal strategies) using a pair of value functions V (lower bound
on V ∗) and V (upper bound on V ∗) – see Figure 1. HSVI refines these bounds by
solving a sequence of stage games. In each of these stage games, the algorithm
searches for the optimal strategies of both players (i.e., π1 ∈ ∆(A1) for player 1
and π2(s) ∈ ∆(A2) for player 2) while assuming that the play in the subsequent
stages yields values represented by value functions V or V , respectively. When
moving to the next stage in sequence, the stage with maximum excess approxi-
mation error between corresponding upper and lower bound weighted by reach
probability is selected. The key advantage of this approach is that in practice,
we do not need to solve the whole game tree but only a smaller portion of it.
Furthermore, the algorithm uses two approximations on the optimal value func-
tion V ∗ (V and V ). By further refining, these approximations are converging to
the optimal value and the margin by which the approximated solution is worse
than the optimal one has guaranteed bounds (unlike in other value iteration
methods).3

The lower bound V (blue line in Figure 1) on V ∗ is represented by commonly
used vector representation as a finite set Γ of linear functions αi : ∆(S) → R.
Where the value at a belief state b is the maximum projection of b onto the set
Γ . The value of V (b) is point-wise maximum over this set

V (b) = max
α∈Γ

(α · b)

These linear functions are termed alpha vectors and represent expected outcomes
of strategies found by the algorithm (black lines in the bottom part of Figure 1).

3 For theoretical results and proofs refer to [11].
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Since the HSVI algorithm relies on the local updates (i.e., updating bounds
for specific belief point) and improving bounds in the neighborhood of the local
update (as shown in Figure 1 local update results not only in improving bounds
in particular belief point but also in its neighborhood), the upper bound cannot
be represented by a vector set. Therefore, the upper bound V on V ∗ is expressed
using a set Υ = {(b(i), y(i)) | 1 ≤ i ≤ |Υ |} of belief/value points (b(i), y(i)) (dots
in the upper part of Figure 1). The lower convex hull of this set of points is then
used to obtain the value of V (b) (red dashed line in Figure 1).

V (b) = min
λ∈R|Υ |≥0

 ∑
1≤i≤|Υ |

λiy
(i) | 1Tλ = 1,

∑
1≤i≤|Υ |

λib
(i) = b


Finally, HSVI local updates are performed by adding a new vector (for the lower
bound) or a point (for the upper bound) to the current sets Γ and Υ , respectively.

Compact representation HSVI The dimension of the value function V ∗ de-
pends on the number of states, which can be potentially very large. Therefore
an abstraction scheme was proposed [3]. This abstraction scheme reduces the
dimensionality of the problem by creating a simplified representation of the be-
liefs over the state space. This means that each belief b ∈ ∆(S) in the game is
associated with a characteristic vector χ(b) = A · b (for some matrix A ∈ Rk×|S|
where k � |S|). The characteristic vector corresponding to the initial belief b0

is denoted as χ0. It was proved that value function V s computed using compact
representation is valid lower bound on the solution of the original game (value
function V ∗) – [3, Theorem 1]. And also that the value function V s is convex
– [3, Theorem 2]. Compact representation HSVI was shown to outperform the
current state of the art algorithms for solving large OS-POSGs [2, 3] in terms of
scalability with only negligible loss in quality. In this work, we aim to modify
this method for a different domain of games and achieve similar results.

2.3 Security Games with Sequential Attacks

Security games with sequential attacks (SGSA) [7] are an extension to the classical
Stackelberg security games (SSG) model. The defender has to perpetually defend
a set of targets T using a limited number of resources R. The attacker is able to
surveil the defender’s strategy and adjust his attack based on the surveillance.
An action of the defender is deploying his limited set of resources Rs to protect
targets from T s in each game state s ∈ S. Similarly, an action of an attacker
represents attacking one of the targets from T s in each game state s ∈ S. The
mixed strategy of the defender in each state s ∈ S then corresponds to a prob-
ability distribution over pure strategies in that state. Finally, each target has
associated a set of payoff values that define the utilities for both players. Since
we restrict to the zero-sum case, we assume that the payoff values correspond to
the perspective of the attacker receiving in case of a successful or failed attack,
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respectively. SGSAs further extend this model by incorporating sequential attacks
allowing an attacker to attack multiple times during one game.

The SGSA dynamic works as follows. Initially, the resources of the defender
are randomly allocated to targets according to a mixed strategy of the defender
in the initial stage. During the execution time, the defender samples a specific al-
location of resources from his mixed strategy. The attacker is aware of defender’s
mixed strategy, but he lacks the information which targets are protected at the
execution time. By attacking targets sequentially, the attacker is able to obtain
additional information about a state of the game through observations from
previous attacks. Based on the observation, the attacker can update his belief
about the strategy of the defender and decide on targets to attack next that
would benefit the attacker the most. After each attack, the game moves to the
next stage and the defender decides whether to move security resources to any
other target or not (by sampling from his mixed strategy for that particular
stage of the game).

This paper focuses on solving SGSAs in the resource-movement setting un-
der the following assumptions. First, we assume that the attacker can carry out
K > 1 rounds of attacks and attack one target per round. Furthermore, the
attacker can discover whether target ti was protected after attacking that par-
ticular target. Note that this observation reveals only protection status for target
ti and the attacker is still unaware of the current protection status of remaining
targets. The defender has to move security resources among targets in response
to each attack, and there is a constant reallocation cost c ≥ 0 for moving a re-
source from one target to another one4. Further, we assume that when a target
ti is attacked, the damage caused by the attack (if any) to ti is already done.
Therefore, that target will not be considered in future rounds. In addition, if
there is a security resource protecting the attacked target, the resource has to
resolve that attack. Thus the defender can no longer use that resource for future
defense.

3 Using OS-POSGs for Sequential Attacks

In this section, we first represent our SGSA modeled game as OS-POSG. Then
we present an HSVI-inspired algorithm for solving such games and discuss two
variants of it — an exact one and a simplified heuristic formulation.

3.1 Representing SGSA as OS-POSG

Since the attacker can attack multiple times in SGSA, the game itself is divided
into several rounds (stage games). Each of these stage games is equivalent to a
state of the game we are trying to solve forming a set of states S. These states
are described by a set of remaining security resources R, set of remaining targets

4 Note that this can be generalized even further so that costs correspond to, for ex-
ample, distances between the targets in a graph.
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T , the number of remaining attacks K and initial allocation of security resources
χ (based on the final allocation in the previous state). As mentioned above, in
SGSA the defender has perfect information about the current situation in the
game (current state of the game) and is only uncertain about the attack that
will be performed. On the other hand, the attacker has only partial information
since he knows only the set of remaining targets and the number of remaining
resources. Therefore we can easily represent SGSA as OS-POSG. The defender
from SGSA corresponds to the perfect-info player in OS-POSG (player 2 in the
definition) and the attacker corresponds to the imperfect-info player (player 1
in the definition). Observation sent to the attacker contains information about
whether there was a security resource on the attacked target or not. Reward
function ρ returns utility of attack based on whether it succeeded or not plus
the cost for reallocating security resources (if the reallocation cost c > 0). Finally,
transition function τ determines the set of remaining resources R′ and targets
T ′ and initial allocation χ′ for state s′ based on taken actions. Each state s ∈ S
has its own specific value function V s (note that this value function is equal to
the value function of a subgame rooted in the state s) with corresponding upper
(V

s
) and lower (V s) bound.

The initial allocation χ consists of a set of marginal distributions over targets—
one for each resource r ∈ R—stating what is the probability that resource r is
protecting target i. As the following example demonstrates, we cannot use ag-
gregated marginal coverage ignoring the resources. In this case, the transition
function τ could not uniquely define the next state of the game – the rules
of SGSA require that we can identify which resource was protecting a target in
case of an unsuccessful attack (that resource is removed for next stages and the
allocation of other resources has to be rescaled appropriately).

Example: Let’s consider instance of SGSA presented in Figure 2. This in-
stance corresponds to stage game with 2 security resources and 4 targets and
possible transitions to future stage games after target t1 is attacked. Note that
the final allocations in the root game are represented by marginal probabilities
xr per resource r. In this representation, we can easily determine the initial al-
location in future stage after attacker being caught either by resource r1 or r2
(the initial allocation is normalized distribution consisting of probabilities xr[i]
that are not crossed out). Let’s assume that we will use marginal probabilities
over targets (x[i] =

∑
r∈R x

r[i]; ∀i ∈ T ) instead. In such a case, we will be still
able to compute coverage of targets that will ensure the same immediate reward
in first stage game as marginal probabilities per resource representation. After
successful defense of a target i, security resource r protecting i is removed from
the game and all contributions of r to marginal probabilities over targets must
be deleted. However, when representing initial allocations by marginal probabili-
ties over targets, we do not know the exact contributions of individual resources.
Therefore, we cannot compute the exact initial allocation for sub-games after
catching the attacker. To handle this issue, we have to use marginal probabili-
ties per resource.
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Fig. 2: Example of SGSA

3.2 HSVI-Inspired Algorithm

Our definition of SGSA uses a compact representation of states and uncertainty.
Our algorithm (the pseudocode is shown in Algorithm 1) is based on the HSVI

algorithm for compactly-represented lateral-movement game in computer net-
works [2, 3]. While the overall schema of the algorithm is similar and follows the
steps of the original HSVI as described in Section 2.2, the main technical differ-
ence is in the algorithms for solving stage games and thus updating the lower
and upper bound functions (described in Sections 3.3 and 3.4).

Besides this, there are two minor changes to the structure of the algorithm
itself. One of the differences is that SGSA is finite horizon game (the number of
rounds is limited by the number of attacks K) while the OS-POSG is infinite hori-
zon thus we can omit discount factor γ. Another difference between Algorithm
1 and HSVI for abstracted OS-POSGs is that we do not explore only state s′max

with maximum weighted gap p(s′max) ∗ (V
s′max(χ′) − V s

′
max(χ′) but instead we

explore each possible state s′ for which holds p(s′)∗ (V
s′

(χ′)−V s
′
(χ′) > 0. This

decision is based on the experimental evaluation, where we achieved significantly
better runtime when exploring all possible states with a non-zero weighted gap.

The algorithm (Algorithm 1) works as follows. First, for each state s ∈ S
we initialize bounds V

s
and V s (line 1) to valid piecewise linear and convex

lower and upper bound on V s. During the initialization phase, we initialize
sets Γ and Υ for each state of the game. Every set Γ is initialized by one
linear function representing the value of corresponding game state assuming
that reallocation cost c = 0 and in the future states the defender will always
catch the attacker on such a target from the remaining ones where the attacker
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has the highest penalty for being caught. Similarly, every set Υ is initialized by
points representing all possible pure strategies of the defender in that particular
state and value achieved when playing according to that strategy assuming that
all resources have to be reallocated, and in the future states, the defender will
never catch the attacker while the attacker always attacks the most valuable
target from the set of remaining targets. After the initialization, we perform a
sequence of trials (lines 3-5) from initial characteristic vector χ0 until the desired
precision ε > 0 (determined on line 2) is reached.

In each of the trials, we first compute the optimal optimistic strategy of
player 2 (line 7) and update sets Γ and Υ based on the solutions of V s(χ) and
V
s
(χ) (line 8). Next, we iterate over each pair of action a1 of player 1 and

observation o leading to next state s′ with a non-zero weighted gap (lines 9-12).

For each of these states we update Γ ′ and Υ ′ based on the solutions of V s
′
(χ′)

and V
s′

(χ′) (line 13). If the gap V
s′

(χ′)− V s
′
(χ′) is greater than desired ε, we

recurse to the characteristic vector χ′ (lines 14- 15). Finally, the update of sets
Γ and Υ is done by adding a new alpha vector or point to the corresponding set.

1 Initialization

2 Set ε = (V
s0

(χ0)− V s0(χ0)) ∗ 10−2

3 while V
s0

(χ0)− V s0(χ0) > ε do
4 Explore(s0, χ0, ε)

5 Update Γ and Υ based on the solutions of V s0(χ0) and V
s0

(χ0)

6 procedure Explore(s, χ, ε)
7 (b, π2)← optimal belief and strategy of defender in V s(χ)

8 Update Γ and Υ based on the solutions of V s(χ) and V
s
(χ)

9 for (a1, o) ∈ A1 ×O do
10 s′, χ′ ← τ(χ, a1, π2, o)
11 Determine reach probability p(s′) of state s′

12 if p(s′) ∗ (V
s′

(, χ′)− V s′(χ′) > 0 then

13 Update Γ ′ and Υ ′ based on the solutions of V s′(χ′) and V
s′

(χ′)

14 if V
s′

(χ′)− V s′(χ′) > ε then
15 Explore(s′, χ′, ε)

Algorithm 1: HSVI inspired algorithm for SGSA

As mentioned previously, one of the key differences in our HSVI-inspired al-
gorithm for solving SGSAs compared with the original HSVI is in the computation
of lower bound V and upper bound V , which is domain dependent. We propose
two variants of HSVI inspired algorithm for solving our SGSAs. The difference
between them is in the way how they approach solution (i.e., estimation of V
and V ) of stage games (i.e., the assumed set of available actions of the defender
in each stage game). The first one is exact and assumes the whole action space
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consisting of all possible joint actions. The second one is a simplified heuristic
formulation and reduces the size of the action space by assuming that each re-
source has its own set of assigned targets that can be covered by that particular
resource and these sets are mutually disjoint. Therefore, it is ensured that no
target can be covered by more than one resource and we do not need to use joint
actions and can use separate reallocation actions for each individual resource.
The different action sets used by these variants result in a different construction
of linear programs used for solving stage games as well. We describe these two
variants in the following.

3.3 Exact Variant of the Algorithm

As we mentioned above, the marginal probabilities of covering targets are not
enough and we need probability for each target being covered by particular
resource. Therefore we have to consider all possible joint reallocation actions
(i.e., all possible combinations of reallocating each resource from all possible
starting positions to every possible end position5). This means that we have to
deal with extremely large action space with size exponential in the number of
resources R (the size of the action space is T 2∗R). The huge action spaces result
in extremely large linear programs for computing game values.

Initializing lower bound and upper bound. The presented linear program
is general for an arbitrary number of resources R. For the sake of simplicity, we
show the linear program for lower bound initialization of a game with R = 2:

min V s (1a)

s.t.
∑
i∈N

xr[i] = 1 ∀r ∈ R (1b)∑
i,j

m[i, k, j, k] = 0 ∀k ∈ T (1c)

∑
j,k,l

m[i, k, j, l] = χ1[i] ∀i ∈ T (1d)

∑
i,k,l

m[i, k, j, l] = χ2[j] ∀j ∈ T (1e)

∑
i,j,l

m[i, k, j, l] = x1[k] ∀k ∈ T (1f)

∑
i,j,k

m[i, k, j, l] = x2[l] ∀l ∈ T (1g)

x−[i] =
∑
j,k∈T

∑
l,n∈N\i

m[j, l, k, n] ∀i ∈ T (1h)

5 Note that only reallocation actions resulting in situations where no target is covered
by more than one resource are assumed.
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x−[i] ∗ u[i] +
∑
r∈R

xr[i] ∗ p[i] ≤ V s ∀i ∈ T (1i)

m[i, j, k, l] ≥ 0 ∀i, j, k, l ∈ T (1j)

In the above linear program, the defender is looking for a new allocation of 2
security resources in stage game without considering future stages and realloca-
tion. The probability of executing a joint reallocation action is expressed using
the variable m, where the value of m[i, k, j, l] corresponds to the probability of
the first resource moving from target i to target k AND the second resource
moving from target j to target l. We have to ensure that probabilities m of joint
actions cannot exceed the initial allocation χr of each resource r (constraints
(1d), (1e)) and sums to the final marginal probabilities xr per resource r ∈ R
(constraints (1f), (1g)). The final marginal probabilities xr over targets T per
resource r ∈ R must sum to 1 (constraint (1b)). We also need to ensure that
one target cannot be covered by more than 1 resource at a time (constraint
(1c)). Now, in order to correctly identify the initial allocation in possibly subse-
quent stages of the game, we need conditional probabilities in case the attacker
attacks a target i that would be protected by some resource or unprotected,
respectively. The probability that no resource protects target i is represented
by variable x−[i]. Finally, constraints (1i) represent the best response of the at-
tacker to the defender’s strategy and ensure that the defender will minimize the
reward received by the attacker.

Updating lower bound and upper bound. During HSVI inspired computa-
tion, we need to solve linear programs for lower and upper bound and based on
the solutions of these programs update set of alpha vectors Γ and set of points Υ
respectively. The linear programs for computing value of lower and upper bound
look almost the same as for the initialization. The only difference is that these
linear programs will take into account future stages and reallocation cost.

First, we add constraints defining the reallocation costs for all actions:

C[k, l,m, n] = 2 ∗ c ∀k,m ∈ R,∀l ∈ R \ k, ∀n ∈ R \m (2a)

C[k, l,m,m] = c ∀k,m ∈ R,∀l ∈ R \ k (2b)

C[k, k,m, n] = c ∀k,m ∈ R,∀n ∈ R \m (2c)

C[k, k,m, n] = 0 ∀k,m ∈ R (2d)

C =
∑

i,j,k,l∈T

m[i, j, k, l] ∗ C[i, j, k, l] (2e)

Where constraints (2a) - (2d) ensure that the reallocation cost C for each
joint action corresponds to the number of resources reallocated by that joint
action. Variable C represents a reallocation cost of defenders mixed strategy.

Second, we must add constraints for values propagating from future stage
games. In the stage game with 2 resources, there are three possible next stages
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reachable after an attack on target i is performed. The defender either did not
catch the attacker or the attacker was caught by either resource r1 or r2.

We need two components to correctly compute the values of future stage
games: (1) alpha vectors representing the value function of each particular sub-
game and (2) initial allocation of security resources in those sub-games. Note
that the future initial allocations must correspond to the final allocation in the
current stage game and that the future initial allocations are already weighted by
probabilities of reaching corresponding sub-games (initial allocation of individual
resources in a sub-game sums to the reach probability of that sub-game). For
the sub-game reachable when the attacker was not caught on target i, we will
use set of alpha vectors A−[i] (stands for set Γ in lower bound linear program
and for the lower convex hull of set Υ in upper bound linear program) and initial
allocation b−[i] which consist of initial allocation b1−[i] of resource r1 and initial
allocation b2−[i] of resource r2 — constraints (3a) and (3b). When the attacker
was caught on target i we will use set of alpha vector A+[i] (corresponding to
set Γ or lower convex hull of set Υ respectively). As initial allocation we will
either use b1+[i] (when caught by r1) or b2+[i] (when caught by r2) — constraints
(3e) and (3f).

b1−[att] = [
∑

j,k∈T,l∈T\att

m[j, i, k, l];∀i ∈ R \ att] ∀att ∈ T (3a)

b2−[att] = [
∑

j,k∈T,l∈T\att

m[j, l, k, i];∀i ∈ R \ att] ∀att ∈ T (3b)

b−[i] = [b1−[i], b2−[i]] ∀i ∈ T (3c)∑
α∈A−[i]

α ∗ b−[i] ≤ V −[i] ∀i ∈ T (3d)

b1+[i] = [
∑
j,k∈T

m[j, i, k, l];∀l ∈ T \ i] ∀i ∈ T ; (3e)

b2+[i] = [
∑
j,k∈T

m[j, l, k, i];∀l ∈ T \ i] ∀i ∈ T (3f)

∑
α∈A+[i]

α ∗ b1+[i] ≤ V+,1[i] ∀i ∈ T (3g)

∑
α∈A+[i]

α ∗ b2+[i] ≤ V+,2[i] ∀i ∈ T (3h)

Constraint (3d) stands for expected future value if no resource is present at
target i. Constraints (3g) and (3h) represent expected future values if resource
r1 or r2 is protecting target i.

Finally, we need to modify constraints (1i) to take into account reallocation
cost and values of future states

x−[i] ∗ u[i] + V−[i] +
∑
r∈R

(xr[i] ∗ p[i] + V+,r[i]) + C ≤ V s (4)
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3.4 Heuristic Variant of the Algorithm

To tackle the issue with large action space needed for the exact variant of our
algorithm, we devised a simplified heuristic formulation of stage games we need
to solve. The heuristic formulation assumes that each resource has its own set of
assigned targets that can be covered by that particular resource and these sets
are mutually disjoint. Such distribution ensures that every target can be covered
by only one resource and therefore we can have separate reallocation actions
for each resource r. This means that the size of the action space is significantly
reduced since it is no longer exponential but linear.

Initializing lower bound and upper bound. The smaller number of actions
in the game results in less variables in the linear program and easier construction
of the linear program as well. In general, the linear program for initialization of
lower bound looks as follows:

min V s (5a)

s.t.
∑
i,j∈T

mr[i, j] = 1 ∀r ∈ R (5b)

∑
j∈T

mr[j, i] = xr[i] ∀r ∈ R,∀i ∈ T (5c)

∑
j∈Tr

mr[i, j] = χr[i] ∀i ∈ T (5d)

∑
j∈Tr\i

xr[j] ∗ u[i] + xr[i] ∗ p[i] ≤ V s ∀i ∈ T, r ∈ R;Tr 3 i (5e)

mr[i, j] ≥ 0 ∀i, j ∈ T (5f)

Where mr[i, j] stands for the probability of executing a reallocation action of
resource r from target i to target j. As in the linear program in the exact variant
of algorithm, we have to ensure that the probabilities of reallocation actions mr

of resource r sums to 1 (constraints (5b)) and do not exceed the initial allocation
χr (constraints (5d)) and sums to final marginal probabilities xr per resource
r (constraints (5c)). Finally, we represent best response of the attacker by the
constraints (5e).

Updating lower bound and upper bound. The modifications needed to
obtain linear programs for computing lower and upper bound are similar to the
ones used for the exact variant. Since actions in the heuristic variant correspond
to the reallocation of only one resource (unlike the joint actions in the exact
variant that correspond to the reallocation of multiple resources), we do not
need to specifically define reallocation costs for actions. Thus first step is to add
constraints for values of future states, which can be represented as follows:



14 P. Tomášek et al.

br−[i] = [
∑
k∈T

mr[k, j]− λr−[i, j];∀j ∈ Tr] ∀i ∈ T, ∀r ∈ R (6a)∑
j∈T

λr−[i, j] =
∑
r′∈R

xr[i] ∀i ∈ T, ∀r ∈ R (6b)

b−[i] = [br−[i];∀r ∈ R] ∀i ∈ T (6c)∑
α∈A−[i]

α ∗ b−[i] ≤ V −[i] ∀i ∈ T (6d)

br+[i] = [
∑
k∈T

mr[k, j]− λr+[i, j];∀j ∈ Tr] ∀i ∈ T, ∀r ∈ R (6e)∑
j∈T

λr+[i, j] =
∑
j∈Tr\i

xr[j] ∀i ∈ T, ∀r ∈ R (6f)

b+[i] = [br+[i];∀r ∈ R ∧ i /∈ Tr] ∀i ∈ T (6g)∑
α∈A+[i]

α ∗ b+[i] ≤ V+,r[i] ∀i ∈ T, r ∈ R;Tr 3 i (6h)

λr−[i, j] >= 0 ∀r ∈ R,∀i, j ∈ T (6i)

λr+[i, j] >= 0 ∀r ∈ R,∀i, j ∈ T (6j)

Since we are not using joint actions anymore, the initial allocation for reached
sub-game conditioned by final allocation in the current game can be easily ob-
tained. However, it will not be automatically weighted by reach probability (ini-
tial allocation of individual resources will not sum to the reach probability of
that stage game) like in the exact variant. To achieve that we allow the defender
to modify the initial allocation of the followup stage game. Therefore we intro-
duce slack variables λ− and λ+ that are used by the defender to decrease initial
allocations of individual resources and make it sum to reach probability of that
stage game. Value of slack variable λr−[i, j] represents how much the defender re-
duced initial allocation of resource r on target j if target i was attacked and the
attacker was not caught. Similarly, the value of slack variable λr+[i, j] represent
how much the defender reduced initial allocation of resource r on target j if tar-
get i was attacked and the attacker was caught. Constraints (6a) (equivalent to
constraints (3a) and (3b)) and (6e) (equivalent to constraints (3e) and (3f)) se-
lect the initial allocations of individual resources for sub-games while constraints
(6b) and (6f) ensure that selected initial allocations will remain non-negative.
Constraints (6d) and (6h) represent expected future values after successful at-
tack and after attacker being caught, respectively (equivalent to constraints (3d)
and constraints (3g) and (3h), respectively).

Finally, just like in the case of exact variant, we need to modify (5e) in similar
way as (1i), resulting in the following constraint:

∑
j∈Tr\i

xr[j] ∗u[i] +V−[i] +xr[i] ∗ p[i] +V+,r[i] +
∑

l∈R,m,n∈T

ml[m,n] ∗ c ≤ V s (7)
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4 Experimental Evaluation

In this section we present experimental evaluation of proposed variants of our
algorithm introduced in Sections 3.3 and 3.4. We compare these variants based
on their runtime and solution quality.

4.1 Experiments Setting

The evaluation has been performed on sets of randomly generated games with
varying parameters – the number of targets T , number of resources R and num-
ber of attacks K. Each of these games has randomly generated rewards of the
attacker for successful attacks on targets (uniformly taken from interval [0, 6]),
attacker’s penalties from being caught on individual targets (uniformly taken
from interval [−6, 0]), reallocation cost (uniformly taken from interval [0, 1]) and
initial allocation (i.e., χ0). In the heuristic variant of our algorithm, targets were
uniformly distributed to individual resources in descending order of attacker’s
utility for a successful attack.

All computational results have been obtained on computers equipped with
Intel Xeon Scalable Gold 6146 processors and 32GB of available RAM while
limiting the runtime to 2 hours. We used CPLEX 12.9 to solve linear programs.
The solution approaches were required to find an ε-optimal solution where ε is

set to 1% of the error (V
s0

(χ0)−V s
0

(χ0)) after the initialization phase described
in Section 3.2 is completed. If the algorithm failed to reach this level of precision
within 2 hours, we report such instance as unsolved. The results are based on
50 randomly generated games for each parameter set.

In order to compare the quality of computed defense strategies across multiple
instances of generated games, we (1) evaluate the exploitability of the strategies
of the defender by computing a best response for the attacker (since we are
restricted to zero-sum games) and we (2) normalize the differences between the
expected outcomes against the best-responding attacker to obtain comparable
relative differences across various instances of generated games. Similarly to
setting the target error ε, we use the initial size of the interval between the
upper and the lower bound for the initial belief as the normalization factor.

4.2 Comparison with State of the Art

To the best of our knowledge, right now there is no clear state of the art solution
approach to compare with. Comparing to the methods proposed in [7] is not
possible due to the different assumed setting. We focus on solving zero-sum
SGSAs with reallocations costs without limiting the number of attacks. On the
other hand, previous work focused on solution of general-sum SGSAs without
reallocation cost with limiting the number of attacks K = 2 [7].

The solution approach closest to the state of the art is solving the game as
separate SSGs. This method scales much better than other proposed methods;
however, it significantly falls behind in the quality of the solution. As we can
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Fig. 3: Difference of best response values produced by heuristic algorithm and
separate SSG approach compared to non-heuristic algorithm.

observe in Figure 3, solution quality of separate SSGs approach (compared to
the solution found by the exact variant of our algorithm) becomes significantly
worse with an increased size of the game. This is due to the fact that each stage
game is solved separately without taking into account future stages. This means
that we can solve each stage optimally in the sense of separate games. However,
since solution in previous time step directly affects solution in the current one,
these solutions are not optimal from the global point of view (e.g., the defender
cannot control reach probabilities of individual stage games).

On the other hand, for the simplified version of our algorithm holds the
opposite, the difference in solution quality (compared to the solution found by
the exact variant of our algorithm) decreases with an increased size of the game.
Therefore we focus solely on analysis of HSVI solution approach.

4.3 Algorithm Scalability

First we focused on the scalability of proposed variants in the size of the game -
number of targets T , number of resources R and number of attacks K (Figure 4).
In Figure 4, we use two y-axes. The left y-axis represents the runtime (seconds)
in a logarithm scale (upper part of the figure). The right y-axis presents the
percentage of unsolved games (bottom part of the figure).

Figure 4a depicts the scalability in the number of targets T . We can observe
that with a fixed small number of resources R and attacks K both variants scale
quite well up to the T = 10 solving nearly 100% of instances for each game size.
With further increasing number of targets, the percentage of unsolved instances
becomes higher, especially for the exact variant.

In Figure 4b, we present the scalability in the number of resources R. The
exact approach was able to solve only the smallest game instances with R = 2.
On the other hand, the heuristic variant was capable of finishing all computations
within 2 hours and achieved reasonable runtime across all sizes of game instances.
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Fig. 4: Scalability in different parameters affecting the size of the game (a) num-
ber of targets T, (b) number of resources R, (c) number of attacks K and (d)
number of targets T and resources R with a fixed number of attacks K. Aver-
ages based on 50 instances for each parameter set. Confidence intervals mark
the standard error. The reported runtimes include only instances solved by the
algorithm variants. The percentage of instances where the algorithm variants
failed to terminate within 2 hours are reported separately.

Figure 4c shows the scalability in number of attacks K. Again, we can observe
that the exact variant struggles when it comes to solving larger games resulting
this time in no instances solved. The heuristic approach keeps its performance
and solves all instances in the given time limit.

Finally, in Figure 4d, we present scalability for fixed number of attacks K = 2
and increasing number of targets T and resources R with fixed ratio T : R. These
results support what we were able to observe in all previous scalability experi-
ments. The exact variant can easily solve smaller games with runtimes not very
different from those achieved by the simplified one. However, with the increasing
game size, the solution speed rapidly degrades. This behaviour is closely con-
nected to the number of actions considered by these variants. The exact one
has to use joint-actions which results in T 2∗R actions in the problem. On the
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Fig. 5: Difference between computed upper bound value and best response value
of the corresponding strategy depending on different parameters affecting size
of the game (a) number of targets T, (b) number of resources R, (c) number of
attacks K and (d) number of targets T and resources R with a fixed number of
attacks K. Averages based on 50 instances for each parameter set. The reported
differences include only instances where best response value was worse than
upper bound value. The percentage of instances where the best response value
was better than upper bound value is reported separately.

other hand, the simplified heuristic variant assumes that targets are exclusively
assigned to individual resources for cover (i.e. each resource has assigned a list of
targets that can be covered by this resource and these sets are mutually disjoint).
Thus the heuristic approach can work with separate reallocation actions for each
resource, resulting in T 2 ∗R actions. The number of actions directly affects the
size of a linear program and therefore the memory and time requirements for
solving it.

4.4 Solution Quality

In this section, we focus on the solution quality of our proposed approaches.
First, we compare the exact version of our algorithm with its heuristic variant.
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We observe that the solution quality of the simplified heuristic approach highly
depends on the size of the game, and the bigger the game is the closer the heuris-
tic best response gets to the exact one (Figure 3). The worse values achieved by
the heuristic approach are due to the exclusive target assignment used in the
heuristic.

The following example demonstrates the key limitation of the heuristic ap-
proach and the reason for not good quality of the strategies found by the heuristic
variant in games with small number of targets (see the difference for T = 4 in
Figure 3 that is 0.373 on average). Without loss of generality, let’s assume we
want to solve a game with T = 3, R = 2, attacker’s rewards for attacking non-
covered target u = [3, 3, 3] and no penalties for the attacker when being caught
or reallocation cost. In the exact variant, we are able to achieve the game value
of 1 since it is possible to cover all three targets with uniform probability 2

3 . On
the other hand, in the heuristic approach two targets will be assigned to one
resource and one target to the other resource. Because of this, we are no longer
able to achieve the same coverage as in the exact approach and the best we can
do is to cover that single-assigned target with probability 1 and the remaining
two targets (those assigned to the same resource) with uniform probability 1

2
resulting in the game value of 1.5. The actual difference in expected outcomes
between the optimal strategy and the heuristic strategy can be even higher if the
rewards of the attacker for a successful attack are higher or if the reallocation
costs are considered. However, with the increasing number of targets T (or the
number of resources R), the impact of this limitation decreases (to 0.201 for
T = 10).

Since we cannot compute optimal strategies using the exact variant for larger
instances, we evaluate the robustness of strategies computed by the heuristic
variant of our algorithm as the difference between the computed upper bound
value and the best response value of the corresponding strategy (normalized by
initial gaps – Figure 5). In this figure, we use two y-axes. The left one represents
the difference between the upper bound and best response values (upper part of
the figure) and the right one presents the percentage of games in which the best
response value was strictly better than the computed upper bound value (bottom
part of the figure). As Figure 5 shows, the heuristic algorithm was capable of
retaining its properties across all instances and keep the average exploitability
of computed strategies below 5%.

5 Conclusion

In this work, we study the problem of sequential attacks in security games.
We introduce a new formulation of zero-sum security games that consider such
sequential attacks, and we use the formalism of one-sided partially observable
stochastic games. This allows us to use existing algorithms developed for this
class of games. We exploit compact representation of uncertainty and design a
heuristic variant of the problem that, for larger games, achieves very similar
quality of strategies compared to the exact formulation, while scaling to greater
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depths and the number of resources. Our paper opens a new possible direction
for studying security games with sequential attacks. Key components of the algo-
rithm can be improved to achieve even better scalability. The second important
direction is a modification of the algorithm to support also general-sum security
games and computation of Strong Stackelberg equilibria.
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