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Abstract. Many real-world security problems exhibit the challenge of
sequential attacks (i.e., the attacker carries out multiple attacks in a
sequential manner) on important targets. Security agencies have to dy-
namically allocate limited security resources to the targets in response
to these attacks, upon receiving real-time observations regarding them.
This paper focuses on tackling sequential attacks using Stackelberg se-
curity games (SSGs), a well-known class of leader-follower games, which
have been applied for solving many real-world security problems. Previ-
ous work on SSGs mainly considers a myopic attacker who attacks one
or multiple targets simultaneously against each defense strategy. This
paper introduces a new sequential-attack game model (built upon the
Stackelberg game model), which incorporates real-time observations, the
behavior of sequential attacks, and strategic plans of non-myopic play-
ers. Based on the new game model, we propose practical game-theoretic
algorithms for computing an equilibrium in different game settings. Our
new algorithms exploit intrinsic properties of the equilibrium to derive
compact representations of both game state history and strategy spaces
of players (which are exponential in number in the original represen-
tations). Finally, our computational experiments quantify benefits and
losses to the attacker and defender in the presence of sequential attacks.

1 Introduction

In many real-world security domains, security agencies often have to protect
important targets such as critical infrastructure from sequential attacks carried
out by human attackers, given information about these attacks is revealed over
time. In fact, an attacker can exploit sequential nature of attacks by setting-
up first a decoy attack to attract the attention, following by a more severe
attack. Such sophisticated attacks could mislead security agencies to allocate
a majority of security resources to handle attacks that have happened, leaving
other important targets less protected and thus vulnerable to subsequent attacks.
This raises an important question of how to effectively assign limited security
resources among targets in response to sequential attacks, considering real-time
observations regarding these attacks.
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We propose to use a Stackelberg security game model (SSG) to represent these
sequential-attack security scenarios. SSGs have been widely used to model the
strategic interaction between the defender and attacker in security domains [1,
3,10,13,15]. In standard SSGs, the attacker is assumed to be a myopic player
who only attacks once by choosing a single target (or simultaneously choosing
a subset of targets [8]) against a strategy of the defender. In the sequential
attack scenario, the attacker, however, is a non-myopic player who considers all
future possibilities when deciding on each attack. The attacker can update its
belief about the security level at each target after each attack and adapt its next
attacks accordingly by leveraging the attacker’s prior knowledge of the defender’s
strategy and partial real-time observations of the resources of the defender.

Our work focuses on addressing the challenge of sequential attacks in security
games, with the following main contributions. First, we introduce a new security
game model to represent the security problems with sequential attacks. This new
model incorporates real-time observations, the behavior of sequential attacks,
and strategic plans of players. In the model, the non-myopic attacker carries
out multiple attacks in a sequential manner. The attacker strategically adapts
its actions based on real-time (partial) observations of defense activities. The
defender, on the other hand, has a full observation of previous game states
(i.e., which targets were attacked and/or protected) and determines an effective
strategic movements of security resources among targets accordingly.

Second, we propose new practical game-theoretic algorithms for computing
an equilibrium in two game settings with two rounds of attacks, sorted by the
defender’s capability of moving security resources after each attack. (i) In the
no-resource-movement setting, the defender does not move resources when the
attacker performs its attacks. This scenario reflects the worst-case situation in
which the defender is unable to respond as quickly as attacks happen. (ii) In
the resource-movement setting, the defender can quickly move resources among
all targets after each attack. The main computational challenge of finding an
equilibrium in these game settings comes from an exponential number of state
histories and strategies of players used in the optimization formulation. Our algo-
rithms address this challenge by exploiting intrinsic properties of the equilibrium
to derive compact representations of both state histories and strategies.

Finally, we conduct extensive experiments in various game settings to evalu-
ate our proposed algorithm to handle sequential attacks. Our results show that
the defender and attacker receive significant loss and benefit respectively if the
defender does not address sequential attacks. By taking into account sequential
attacks, such loss and benefit is reduced drastically.

2 Background

Stackelberg security games (SSGs) refer to a class of leader-follower games. In
standard SSGs, there is a set of important targets N = {1,2,..., N}. A defender
has to allocate a limited number of security resources K < N to protect these
targets. A pure strategy of the defender is an allocation of these resources over
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the targets, denoted by s, where each resource protects exactly one target. We
denote by S the set of all these pure strategies. In this work, we consider no
scheduling constraint on the defender’s resource allocations and all resources
are homogeneous and indistinguishable to the players. A mixed strategy of the
defender is a randomization over all pure strategies, denoted by x = {x(s)}
where z(s) is the probability the defender plays s. We denote by X = {x :
Y sx(s) =1,0 < x(s) < 1} the set of all mixed strategy of the defender. On the
other hand, there is an attacker who is aware of the defender’s mixed strategy
and aim at attacking one or multiple targets simultaneously in response.

When the attacker attacks a target ¢ that is protected by the defender, the
attacker receives a penalty P® while the defender obtains a reward of R¢. Con-
versely, the attacker gets a reward of Ry > P{ and the defender receives a
penalty of P¢ < R¢. We denote by S(i) = {s € S : i € s} which consists of all
pure defense strategies that cover target ¢. The defender and attacker’s expected
utility at ¢ is computed respectively as follows:

U'(x,i) = [ZSGS@ x(s)| (R} — P!) + P
Ut(x,19) = [Zsesw ()] (P — RY) + R}

In this work, we call standard SSGs as simultaneous-attack SSGs (i.e., siSSGs)
to distinguish from our games with sequential attacks. Denote by L < T the
number of targets the attacker can attack. Then a simultaneous-attack strategy
of the attacker, denoted by ag;, is a subset of L targets. Given a mixed strategy
of the defender x, if the attacker plays ag;, then the attacker and defender’s
expected utility for playing (x,as;) is computed as follows:

U (X; asi) = Ziea“ U (Xv Z)

[]d(){7 asi) = Zieaﬁ Ud(x, 7/)
A pair of strategies (x%,, a%,;) of players form a simultaneous-attack Strong Stack-
elberg Equilibrium (siSSE) if and only if:

x*, = argmax, U%(x,a%;(x))

aj;(x) = argmax, . U“(x,ay)

Our work uses siSSE as a baseline to compare with our algorithms for tackling
sequential attacks. The comparison results are presented in Section 7.

3 Related Work

Security games [7, 14] are a well-known class of resource allocation games where
the defender allocates scarce resources to protect selected targets. There are
many variants of security games, however, none of them can be used to solve
the sequential security game proposed in this paper. The main distinguishing
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characteristic is a combination of (1) attacker’s ability to attack multiple targets
and (2) the ability of the attacker (and the defender) to execute their plans
sequentially while observing and reacting to the strategy of the opponent.

There are several works that consider scenarios where the attacker can attack
multiple targets (defined in this paper as simultaneous-attack $SGs). In the first
work, Korzhyk et al. [8] show that computing an SSE in such simultanecous-attack
setting is NP-hard, however, their main goal is to design a polynomial-time for
finding a Nash equilibrium. The authors, however, do not study the sequential
case. Among the follow-up works, the goal of the research is typically allowing
more complex scenarios (e.g., allowing dependency among the targets that is
not necessarily additive [18]). In theory, one could use such generalized security
games where the attacker can attack multiple targets even for modeling the
sequential scenario, however, at the cost of an exponential increase in the number
of strategies compared to our approach (this is similar to using a normal-form
representation in order to solve a sequential game).

On the other hand, in several variants of security games, the players are
executing sequential actions. However, the sequential actions are often performed
by the defender and not by the attacker. This is the case for applications of green
security games [4, 12] or applications against urban crime [19, 5. In these models,
the defender moves sequentially, however, the defender is not able to observe and
condition the chosen actions based on the actions of the attacker. This subclass
of sequential games has been later generalized for other than security games
and domain independent algorithms were provided for the zero-sum case [2, 11].
This is in contrast with our game model where the defender is aware that certain
target was attacked in the first step and depending on which target was attacked,
the defender can choose different strategy for the next time step.

Finally, security games with sequential attacks can be modeled as general
extensive-form games. While computing an SSE in an extensive-form game of
this class (with imperfect information) is NP-hard [9], there are several domain-
independent algorithms for computing an SSE in extensive-form games that can
be, in theory, used for solving security games with sequential attacks [2,16,
17,6]). However, extensive-form games do not allow compact representations of
strategies and, moreover, all existing algorithms compute solution for strategies
with perfect memory. Hence even in a small game with five resources and 10
targets, the defender has 252 possibilities and the game with only two possible
attack steps has more than 6 - 10° states. This size corresponds to maximal
sizes of games solvable by existing state-of-the-art algorithms for computing
a Stackelberg equilibrium in extensive-form games. Contrary, since our novel
algorithm is specifically tailored for security games, we are able to achieve much
better scalability and we are able to find solutions for more than 20 targets.

4 Sequential-Attack Game Model

Our sequential-attack SSG (i.e., seSSG) model is built upon the standard SSG
model. Initially, the defender randomly allocates security resources to targets
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according to a mixed strategy (as defined in siSSGs). At the execution time,
the defender employs a pure strategy which is sampled from that strategy. The
attacker is aware of the mixed strategy of the defender but does not know which
targets the defender is protecting at the execution time. In our game, we assume
that when the attacker attacks a target 4, it can discover if the defender is
covering that target or not. Nevertheless, the attacker is still unaware of the
current protection status at other targets. By attacking targets sequentially, the
attacker is able to explore which targets are being protected by the defender.
Based on observations from previous attacks, the attacker can update its belief
about the defender’s strategy and then decide on targets to attack next that
would benefit the attacker the most. In this work, we study the attack scenario
in which the attacker can carry out L > 1 rounds of attacks and attack one target
at each round. The defender has to move security resources among targets in
response to such sequential attacks. We assume that when a target is attacked,
the damage caused by the attack (if any) to the target is already done. Thus,
this target will not be considered in future attack rounds. In addition, if there is
a security resource at the attacked target, the resource has to resolve that attack
and thus the defender can no longer use that resource for future defense.

4.1 Players’ strategies

State and observation history. At each attack round [ € {1,2,..., L}, we
denote by of = {si,i1,S2,42,...,81-1,4;—1} the state history of the game. In
particular, s;; is the deployment of security resources and 4; is the attacked
target at round I’ < [. The defender knows of while the attacker only has partial
observations of the game states. The attacker’s observation history is denoted
by of = {(i1,c(i1)), (32, c(i2)), ..., (41-1, c(i1—1)) } where i, is the target attacked
at round !’ and c(iy) € {0,1} represents if the defender is protecting iy (i.e.,
c(ip) = 1) or not (i.e., c(iyr) = 0). At round 1 specifically, of = () and of = 0.

Ezxample: As an example, consider a security game with three targets, two de-
fender resources, and two attack rounds. A possible state history at round [ = 2
is o4 = {(1,2),2} in which the defender protects targets s; = (1,2) and the at-
tacker attacks target i; = 2 at round 1. The corresponding observation history
of the attacker is 0§ = {(2,¢(2) = 1)} in which the attacker attacks target i; = 2
and the defender protects that target (i.e., c(i1) = 1) at round 1.

Defender strategy. At each round [, given a state history 07, the defender
(re-)distributes active security resources (i.e., resources at targets which have
not been attacked) to the targets according to some constraints on resource
movements. In the previous example of the 3-target games, in the state history
od = {(1,2),2}, the defender was protecting target i; = 2 when the attacker
attacks that target at round 1. Therefore, at round I = 2, the only remain-
ing active security resource of the defender is located at target 1. Suppose that
the defender is able to move that security resource to target 3 at round 2, the
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defender now has to choose either keep that resource at target 1 or move the
resource to target 3. We denote by Sl(old) the set of all possible feasible deploy-
ments of security resources at round [ given the state history old. A behavior
strategy of the defender at of, denoted by x; = {z(s; | o)}, is a probability
distribution over S;(of) in which x;(s; | of) is the probability the defender plays
the deployment s; at round [ given the state history of.

For example, in the 3-target game, given of = {(1,2),2}, there are two
feasible deployments at round I = 2: s, = (1) and s; = (3). An example of a
behavior strategy of the defender is to protect target 1 and 3 with a probability
of 0.6 and 0.4, respectively. At round I, the defender executes a deployment s;
which is randomly drawn from the strategy x;. At round 1 specifically, x; € X
is equivalent to a mixed strategy of the defender in the corresponding siSSG.

Attacker strategy. (Stackelberg assumption) We assume the attacker is aware
of the defender’s behavior strategies, i.e., the probability of each resource deploy-
ment of the defender given a state history 0?, but not the actual deployments
s;. The attacker decides to attack a target i; based on its observation history of.

Bayesian update. At each round [ € {1,2,..., L}, given an observation history
o}, the attacker can update its belief regarding the defender’s strategy using
Bayesian update, formulated as follows:

d d
B(si|of) = Zold Blof | of )zi(si | o)
B(of | of) = 0 if of and of are not consistent
B(of | of) o P(o) = P(o 1, s1-1,i1-1) = x1-1(s;_1 | of_1)P(0f ), otherwise

where B(s; | of) and SB(of | of) are the updated belief of the attacker. In
particular, 8(s; | of) is the probability the defender plays s; at round ! and
B(of | of) is the probability the state history is of given of. Finally, of and
of are consistent if they share the same attack sequence (i1,42,...,4-1) and
ij—1 € s1-1 if ¢(4;—1) =1 and 4;_1 ¢ s;_1, otherwise. Based on the belief update
B(s; | of), the attacker will choose next target to attack accordingly.

4.2 Players’ utility

Suppose that the defender plays x5 = {z;(s; | of)} (which consists of all be-
havior strategies of the defender at all of state histories) and the attacker plays
ase = {i(of)} (which consist of all choices of targets to attack at all of ob-
servation histories of the attacker), then players’ utility at each round can be
computed using backward induction as follows:*

At round L, given an observation history o}, the attacker’s total expected
utility for attacking a target iz (0% ) (shorten by iz) is computed as follows:

Uinlor) = [Y2, |, BGulop)]PL +[Y . Blsilob)] Y,

4 Sometimes we omit of and of when the context is clear.

Sp:i €ESL
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On the other hand, given a state history o¢, the defender’s total expected utility

when the attacker attacks a target iz, (0¢) is computed as follows:

Uir(of)) = > zr(sp|of)]RE, + [

zp(sp|of)| P

Sl €ESL SL:Z'LQSL

where ir,(0¢) = ir(0%) with the attacker’s observation history o% is consistent

with the state history o%.
At round ! < L, given an observation history of, attacker’s total expected
utility for attacking a target ¢;(of") (shorten by 4;) is computed as follows:

U(u(of)) = [Zsz:i:&slﬁ(sl |0?)] [Pﬁ + Ua(il+1(0?7 (il7 c(ir) = 1)))]
[Zsl:i@slﬂ(sl ‘07)] [sz + Ua(il-‘rl(ofv (il’ C(il) = O)))]

_|_

which comprises of (i) the immediate expected utility for current round and
(ii) future expected utility as a result of the current attack. On the other hand,
given a state history of with a positive probability, the defender’s total expected
utility when the attacker attacks a target i;(of) is computed as follows:

Uttiof) = [ 32, et oD RE + (3, o
+ 3 wilsi | of)U i (of si.in(of)))

d d
SRS L (Sl |ol )] Pil

where i;(of) = i;(of) with the observation history of the attacker of is consistent
with the state history ofl.
Finally, players’ total expected utility for playing (xse,as.) is determined as:®

Ud(xseaase) = Ud(il)
UCL(Xseaase) = Ua(il)

4.3 Sequential-attack SSE

A pair of strategies of players (x%, = {z}(s; | o)}, aZ.(x*) = {if (o#)}) forms a
sequential-attack SSE (seSSE) if and only if:

X:e = argmax Ud(xse, a:e (XSG))

Xse

al, (xse) = argmax U% (Xse, Ase ).
Ase

In this paper, we study seSSGs with the focus on computing an seSSE of the
game in two game settings, sorted by the defender’s capability of moving security
resources after each attack. (i) In the resource-movement setting, the defender
can move security resource from a target to any other target after each attack.
This setting captures the situation in which the defender has a full capability

% For the sake of presentation, we will omit @ (i.e., iy = i;(0)) from all contexts.
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of re-allocating resources in response to every attack. (i) In the no-resource-
movement setting, the defender does not move resources when attacks happens.
This setting reflects the worst security scenario in which the defender is unable
to react (by moving resources) as quickly as attacks happening.

Analyzing and finding an seSSE in general is computationally expensive
which involves exponentially many strategies of both the attacker and the de-
fender, as well as exponentially many state histories. Therefore, in this paper, we
focus on developing efficient game-theoretic algorithms to compute an seSSE in
these game settings in which the attacker attacks two targets sequentially, i.e.,
L = 2. In fact, as we shown later, even in this 2-round game scenario, the search
space is still exponential. We provide efficient algorithms to compute an seSSE,
by (i) exploiting underlying characteristics of seSSGs to compactly represent
spaces of state histories and strategies of players; and (ii) applying optimization
techniques such as cutting plane to scale up the computation of an seSSE.

5 The Resource-Movement Setting

In the resource movement game setting with two (sequential) attacks, the de-
fender has to determine: (i) how to allocate resources before any attacks happens;
and (ii) how to move resources in response to the first attack.

5.1 Compact representation

Solving the 2-round seSSE is computationally expensive since it involves an
exponential number of resource allocations and movements of the defender. In
fact, the exponentially many resource allocations at first round also leads to
an exponential number of state histories at second round. In the following, we
introduce an equivalent compact representation of the players’ strategies and
state histories, leveraging the resource-movement property. We first present a
characteristic of the seSSE in Theorem 1.

Theorem 1. In the 2-round seSSGs with resource movements, the defender’s
strategy at the second round in the seSSE can be compactly represented such that
the compact representation only depends on which target is attacked at the first
round and whether the defender is protecting that target or not.

Proof. Consider the seSSE of the game (x7,,a%.). According to the definition of
the seSSE in Section 4.3, given the players’ strategy at the first round ({7 (s1)},})
in the seSSE, the defender’s strategy at the second round is the optimal solution
of the following optimization problem:

max D @i(s1) Y wa(se [ s1,4]) V4 se,d5(if, c(i]) = 1) (1)

s1:1] €81 S2

+max Z mT(S1)Z$2(52 | s1,i7) V% (s2, 75 (45, c(i}) = 0)) (2)

s1: ¢Sy S2
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which maximizes the defender’s expected utility at second round. The term
Vd(sy,i3(i%, c(if) = 1)) is equal to the defender’s reward at target i5(i%, c(i}) =
1) if the deployment of defender resources so covers that target. Otherwise, it is
equal to the defender’s penalty at the target. The first optimization component
in (1) can be equivalently represented as follows:

. i (s o e ex e
Z 1(s1) max Z #)/332(52|Slvl1)Vd(S2,22(2170@1):1))

*
ik r7\S
s1:1] €81 $2,81:1] €81 25/1-1165'1 1( 1)

Also, the attacker’s second attack i3(if, c(if) = 1) is an optimal solution of:

5, e, 7o) max Bs1 |5, e(i1) = Daa(sa | 51,7V (55,72)
L S1:1] €81

ioFi} S2,81:1] €81

which maximizes the attacker’s expected utility at second round. The term
Ve (sa,i2) is equal to the attacker’s reward at iy if the target is not covered
by the defender’s deployment s;. Otherwise, it is equal to the attacker’s penalty
at that target. The attacker’s updated belief is computed using Bayesian update:
. T (s1 -
Blst |if,e(i) = 1) = <) pie e

Zs’l iy Ees) ‘Tik (Sl) ’

We introduce the following new variables:

*
i1,1 zl(sl) ok
yilse) =) e —=ma(se | s1,17), Vse
S1:07€81 Zs’lzi’l‘esll 7 (sh)
Since the defender can move resource from one target to any other targets with-
out any constraint, any values of y1:1 = {y%1+1(s5)} such that:

>y l(se) = 1,4 (s2) € [0,1], Vs

is equivalent to a strategy of the defender {z2(s2 | s1,4})} at second round (i.e.,
we can simply assign zs(se | s1,i%) = y'i'!(sy) for all sy). Therefore, for the
rest of this section, we can consider y'i'! = {y"1'}(s5)} as a strategy of the
defender at second round given the attacker attacks target ] at first round and
the defender is covering that target. The first optimization component in (1) is
now equivalent to the following optimization problem:

Inaxy,-;«‘l ZSQ yi1,1(52)vd(823 Z;(ZT,C(ZT) = 1))

s.b #3(67, o(i}) = 1) = argmax;, ;e Sy (s2) V" (s2, i2)

s2
>yl (s2) =1yt (s2) € [0,1]
S2

which results in a siSSE of a s1SSG which consists of (i) a target set N\ {47 }; (ii)
K — 1 security resources, and (iii) one attack. Similarly, we can also show that
the second optimization component in (2) corresponds to a siSSE of the similar
game but with K security resources. These siSSEs only depends on which target
is attacked and if the defender protects that target or not at first round. O
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Based on Theorem 1, each strategy of the defender can be now compactly repre-
sented as having two components: (i) {z1(s1)} where z;(s;) is the probability the
defender plays s; € S before any attacks; and (ii) ({y*'(s2)}; {y"(s2)}) where
y*1(s2) is the probability the defender plays sy € SK~1(—i) if the first attack is
towards target ¢ and the defender is protecting that target. The set S¥—1(—)
is the set of subsets of K — 1 targets (there are K — 1 resources left) excluding
target i. In addition y*%(sy) is the probability the defender plays sy € S (—i) if
the first attack is towards target ¢ and while the defender is not protecting this
target (the defender allocates K resources to targets excluding target 7).

Note that the current compact representation of the defender’s strategies
still involves all possible deployments of the defender’s security resources at
each round, of which number is exponential. We then provide Proposition 1 (its
proof is in the Online appendix A)® showing that the defender strategies at each
round are equivalent to compact marginal coverage probabilities at every target.

Proposition 1. In the sequential-attack game with resource movements, the de-
fender’s strategies can be compactly represented as follows:

Tj = ZSl $1(S1),Zj zj = K,Vj
il il il _ g S,
DDA CYD DR e SRV
/.0 3 0 S,
y; = Zsz le(SQ)vzj?éi y; - K,V%] 7& ?

where x; s the marginal probability the defender protects target j before any
attack happens. In addition, y;1 and y;-’o are the marginal probabilities the de-
fender protects target j # i after the attacker attacked target i while the defender
was protecting and was not protecting that target, respectively.

5.2 Mixed integer linear program (MILP) representation

According to Theorem 1, given the attacked target i at round 1, the player’s
equilibrium strategies in round 2 is equivalent to an siSSE of a siSSG, which
consists of (i) a target set N\ {i7}; (ii) K defender resources (if the defender is
not protecting ¢} in the original seSSG) or K — 1 resources (otherwise); and (iii)
one attack. This siSSE can be computed in advance. Therefore, we introduce
the following MILP to compute the seSSE of the 2-round seSSG based on these
pre-computed siSSEs and the compact representation described in Proposition 1:

max v

s.t.v < fi(Rg - Pid) + Pid + (1 - xi)UgiSSE(ia 0) + insdiSSE(iv 1)+ (1= hy)M, Vi
r > xi(P = RY) + Ry + (1 — 23)Ugigee(4,0) + 2;Ugigeg (4, 1), Vi
r<ai(P = RY) 4+ R + (1 — 2:)Ugisep(i, 0) + @iUgssge (i, 1) + (1 — hi) M, Vi
> hi=1,h; €{0,1}

5 Online appendix: https://www.dropbox.com/s/hjyjabfg69llyn3/Appendix.pdf?dl=0
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where U gg:(7,0) and Ul gez(, 1) are the defender’s utilities in the siSSEs of the
resulting siSSGs after the attacker attacks ¢ while the defender is not protecting
and protecting the target, respectively. Similarly, U%¢sz(7,0) and U 5ee (4, 1) are
the attacker’s equilibrium utilities in the resulting siSSEs. In addition, v is the
defender’s total expected utility which we aim to maximize and r is the attacker’s
total expected utility. The binary variable h; represent if the attacker attacks
target ¢ (h; = 1) or not (h; = 0) at the first round.

6 The No-Resource-Movement Setting

In this section, we study the problem in which the defender does not move re-
sources when the attacker performs its attacks. This setting reflects the response-
delayed security scenario in which the defender is unable to react (by moving
resources) as quickly as attacks happening. In this scenario, the defender’s goal
is to optimize his randomization over resource allocations before such sequen-
tial attacks happen. Therefore, we use the same notation x = {z(s)} as in the
simultaneous-attack games to represent the defender’s mixed strategy. An attack
strategy of the attack is denoted by as. which is defined the same as in the un-

*

constrained resource movement setting. The seSSE is still denoted by (x%,.,ak,.).

6.1 Equilibrium analysis

We first provide Theorem 2 showing the benefit and loss of the attacker and
defender for playing sequentially instead of simultaneously in zero-sum games.

Theorem 2. In zero-sum games, the attacker obtains a higher utility while the
defender gets a lower utility from sequential attacks than from simultaneous at-
tacks. In particular, we have:

U(
Ue(

* d * * *

a:e(x e)) < U (Xsi’ si(Xsi)) (3)
ag. (X)) = U (x5, a5(x5) (4)

Proof. (i) First, given any defense strategy x, the attacker always obtains a

higher total expected utility for playing sequentially than simultaneously. In-

deed, we denote the simultaneous-attack best response a¥; = (i*, j*). The corre-

sponding expected utility of the attacker is U%(x,i*) + U*(x, j*). On the other

hand, finding a sequential-attack best response is determined as follows:

*
XS€7
*

XS

e’

max U%(x,as.) > U%(x,1") + U%(x,j").

Ase
Essentially, the attacker’s simultaneous-attack best response (i*, j*) corresponds
to a feasible sequential-attack response in which the attacker attacks i* at first
attack and then attacks j* at second attack regardless of the attack result of the
first attack. Therefore, U*(x%,,a% (x%,)) > U%(x%,, ak,(x%,)).
(ii) In addition, based on the definition of the siSSE, we have the defender’s
utility U?(x%,,a%;(x5,)) < Ud(x:,a%;(x%)). This inequality is equivalent to

Ue(x%.,ak;(xk.)) > U*(x};,a%;(x%;)) (according to the zero-sum property).

se’ s19
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Based on (i) and (ii), we have U®(x},,a} (x%.)) > U*(x};,a%;(xk;)). Since
this game is zero-sum, we obtain: U%(x*,, a% (x7,)) < Ud(x%;, a%,(x%;)). O

s1) s

Computing an seSSE is computationally expensive due to an exponential
number of pure strategies of the defender. In the following, we present our MILP
formulation to exactly compute an seSSE. We then provide a scalable algorithm
which is based on the compact representation and cutting-plane based method
to overcome the computation challenge. We denote by S(i) and S(—i) the sets of
pure strategies of the defender which cover and do not cover target i, respectively.
We denote by S(i,j) the set of pure strategies which cover both (z, 7).

6.2 Equilibrium computation: MILP formulation

We first present Lemma 1, showing the linearity relationship between the players’
total expected utility and the defender’s mixed strategies. This result serves as
a basis to develop an MILP to exactly compute an seSSE.

Lemma 1. Given an attack strategy ase, both the attacker and defender’s total
expected utility is a linear function of the defender’s mized strategy x.

Proof. Based on the computation of the players’ utility described in Section 4,
we can represent the attacker’s total expected utility as follows:

Ut(x,as) = [ZSES(il) x(s)} (P —Rj )+ Rj, (5)

+[ D> =@ Y. B linelin) = V(P 1)~ Ry ) T R )
seS(i1) s€S(i1,i2(i1,1))

+[ Y 2] > B(s | i1, c(in) = 0) (P i, 0y = Riyir.0)) + Bl iy 0))
sES(—1i1) s€S(—11,i2(41,0))

where the attacker’s updated belief is computed using the Bayesian update:

z(s)
Zs’ES(il) J}(S/) ,

The updated belief, 5(s | i1,c(i1) = 0), is computed similarly. Therefore, the
attacker’s total expected utility can be formulated as follows:

Uttc,ase) = [ 3 g, 2O PR+, (6)

+ [ Z w(s)](‘Pii(il,l)_R(ilQ(il,l)) + [ Z x(s)]R%(il,l)

s€S(i1,i2(41,1)) s€S(i1)

+[ Y 28] Bhe o)t DL #(8)] R0
s€S(—i1,iz(i1,0)) SES(—i1)

ﬁ(S | il,C(il) = 1) = if s e S(Zl)

which is a linear function of x. Finally, we apply the same computation process
to show that the defender’s total expected utility is also linear in x. O
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In the seSSE, our goal is to find an optimal strategy for the defender that
maximizes the defender’s total expected utility. Based on Lemma 1, this problem
can be represented as an MILP, formulated as follows:

max v s.t. (7)

X8

USUd(xvase> +(3_hl_qjl_q2)M7VZ7é]7k (8)

r>U%X,as),Vi # j, k 9)

TSUa(X7ase) +(3_hi_q]1‘_Q2)MaVi7éjvk (10)

> hi=1,h; € {0,1} (11)
7

> 4= a=14qq {01} (12)

hitq) <1,hi+q} <1. (13)

where ag. is defined as i1 = i, i2(i1,1) = j and i2(i1,0) = k (i.e., the attacker
will attack target j at round 2 if the defender protects target ¢ at round 1 and
attack target k, otherwise). We first introduce three binary variables: (i) h; =1
if the attacker attacks target i at first round and h; = 0, otherwise; (ii) q? =1if
the attacker attacks target j at second round given the defender is not protecting
the attacked target at first round and ¢} = 0, otherwise; and (iii) ¢; € {0,1}
given the defender is protecting the attacked target at first round. In the MILP,
v and r are the defender and attacker’s total expected utility. Constraint (8)
determines the defender’s utility given a best response of the attacker (when
h; =1, qjl- =1,¢? = 1). Constraints (9-10) ensure that 7 is the attacker’s utility
with respect to the attacker’s best response (when h; = 1,¢; = 1,¢0 = 1).
Constraints (11-12) imply the attacker attacks one target at each round. Finally
constraint (13) imposes that if the attacker already attacks a target ¢, it will
not attack ¢ again. Finally, M is a large constant which ensures that associated
constraints are effective only when h; = 1,¢; = 1,4) = 1.

While the MILP provide an exact seSSE, it has limited scalability due to
an exponential number of pure strategies of the defender in S. Therefore, we
introduce a new efficient algorithm to overcome this computation issue.

6.3 Equilibrium computation: scalable algorithm

Our new algorithm comprises of two ideas: (i) compact representation and (ii) a
cutting-plane method. For the first idea, we provide a relazed compact represen-
tation of the defender’s mixed strategies. This compact representation may not
be equivalent to a feasible mixed strategy. Yet, the number of compact defense
strategies is significantly small (i.e., O(|N|?)) compared to the original repre-
sentation with the number of strategies is (%) For the second idea, we apply
the cutting-plane method to gradually refine the compact strategy space. This
iterative process stops when the optimal strategy of the defender found in the
refined compact space is feasible in the original space, which means an optimal
mixed strategy of the defender is found.
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Compact representation. We propose the following compact representation:

Tig = Zses(i,j) z(s)

where x; ; represents the probability the defender protects both target ¢ and j
simultaneously. There is the following resource constraint associated with {z; ;}:

Zi Zj;ﬁi T = 2 X Zi<j Tij = K x (K — 1) (14)

For each pair (4,j), the probability x(s) where s € S(i,j) is counted once in

computing z; ;. For each pure strategy s of the defender, there are w

pairs of targets from s. Therefore, x(s) is counted w times in computing

Zi<_j x; ;. As a result, we obtain Eq. 14.
Based on this compact representation, we can compute the players’ total
expected utility shown in Lemma 1 accordingly. In particular,

1
ZsES(i) z(s) = K—1 Z#i Lig (15)
1
ZSES(—i) (s) =1~ ZSES(i) z(s)=1- -1 Zj# Tij (16)
1
ZsES(—iJ)x(S):Zsesmx(s>_xi’j:(K1 Zk#f‘fﬁk) —ziy o (17)

We now can use {z; ;} instead of {z(s)} to solve (7-13). However, {z; ;} satisfy-
ing the aforementioned constraints is generally not equivalent to a feasible mixed
strategy of the defender in the original strategy space. For example, let’s consider
a security game with 4 targets {1, 2, 3,4} and 3 defender resources. There are four
pure strategies of the defender {(1,2,3),(1,2,4),(1,3,4),(2,3,4)}. A possible
compact strategy is (z1.2;%1,3;1,.4;%2,3;T2.4;%34) = (1.0;1.0;0.0;0.0;1.0;0.0).
According to this compact strategy, the defender will protect target 1 with a
probability of % = 1.0 and target 2 with a probability of % =
1.0. This implies that the defender only plays either (1,2,3) or (1,2,4). Thus,

1.0 = 13 = 7123 + T134 = T123

1.0 = x24 = T124 + T234 = T124

and as a result, x123 + T124 + T134 + T234 > 2.0 which is infeasible since the
probabilities of playing defense pure strategies must sum up to 1.0.

Therefore, we propose to use the cutting plane method (explained below) to
gradually refine the solution space of {z; ;} in solving the MILP (7-13).

Cutting plane method. At a high level, we solve the MILP (7-13) with
a set of additional linear constraints on {z;;}. These constraints impose the
feasible value domain of {z;;}, which are determined iteratively through the
cutting plane method. Initially, we solve (7-13) without any constraint on {z; ;}
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and obtain a (possibly infeasible) solution {Z;;}. We then apply the cutting
plane method to find the plane (deep cut) which separates the feasible domain
of {z; ;} and the (infeasible) point {Z; ;}. As a result, we obtain a new linear
constraint which refines the solution space of {z; ;}. We solve the MILP again
with the additional constraint. This process will continue until we reach an
optimal mixed strategy for the defender. More specifically, given an outcome of
{Z; ;}, we consider the following feasibility problem

min{x(s)} Zdij (18)
i.j

s.t. dij > .”Z'Z"j — ZSES(i i !L'(S)7V’i 75] (19)

dij > Zses(i i z(S) — Zij, Vi # J (20)

3 g ¥(8)=1,2(s) > 0,¥s €8 (21)

which finds the feasible mixed strategy closest to the compact strategy {z; ;}.
The term ), ; d; ; represents the l-norm distance between {z(s)} and {z;;}
which we aim to minimize. Denote by (d*, {z*(s)}) the optimal solution of (18-
21), we obtain the following proposition, determining if {Z; ;} is feasible or not.

Proposition 2. If d* = 0, the compact solution {Z(i,j)} returns an optimal
defense mized strategy. If d* > 0, {Z; ;} is not feasible.

Let’s consider the dual problem of (18-21):

max Zi# Tij(yij — Zi) + A (22)
R . <

s.t. Zi)jes Yij ZW‘ES zij + A <0,Vs (23)

Yij +2ij S 1L,ViF ] (24)

yij7 Zij Z O (25)

We denote by {yz’»kj7 Zip A*} the dual optimal solution. Proposition 3 provides a
cutting plane (i.e., a linear constraint) which refines the compact solution space.

Proposition 3. Given an infeasible {Z;;}, the cutting plane Zi# zij (Y5 —
2;;) + A" =0 separates {Z;;} from the mized strategy space of the defender:

1. Zi;éj i‘ij(y:j — 27*]) + A* > 0.
2. Z#j zij (Y5 — 255) + A" <0,V feasible {z;;}.

Proof. Since {Z;;} is infeasible, then }, ; xi;(yij — 2i5) + A > 0 for all feasible
{yij, zij, A} of the dual program. Therefore, we have -, xi;(y;; — 2;) + A" > 0.

For all feasible {x;;}, the optimal objective of the dual program with respect
to {zi; }, denoted by {y;;, z;, '}, must be equal to zero. Thus, we obtain:

Doini i (U —25) A A <30 (Y —2i5) + A =0, O
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Based on Proposition 3, the new linear constraint to add to the problem (7-13)
is Z#j 25 (y;; — #7;) + A" <0, which refine the search space for compact strate-
gies {x;;}. We now aim at solving (22-25) to find the cutting plane. This dual
program involves an exponential number of constraints since there is an expo-
nential number of pure strategies for the defender (Constraint 23). Therefore,
we propose to use the incremental constraint generation approach (i.e., column
generation). That is, we solve the relaxed dual program with respect to a small
subset of mixed defense strategy in S. We then gradually add new constraints
until we obtain the optimal solution (i.e., no violated constraint is found). The
main part of this approach is to find a maximally violated constraint given the
current optimal solution {y;;, 2;;, A\*} of the relaxed (22-25). This problem is
equivalent to finding a pure strategy s € S such that >, ;o 7 =37, jcs 255 A"
is maximum. Intuitively, we want to find s such that the constraint (23) is vio-
lated the most, which can be represented as the following MILP:

max Z” Yishi; — Zij zijhi; + A
s.t. hij S hi,hj

h; 6{0,1},Zihi:K

where h; is a binary variable which indicates if s covers target ¢ (h; = 0) or not
(h; = 1) and h; ; is a binary variable which indicates if s covers both ¢ and j.

7 Experimental Evaluation

We evaluate the solution quality and runtime of our algorithms on games gen-
erated using GAMUT?. All our experiments were run on a 2.8GHz Intel Xeon E5-
2680v2 processor with 256GB of RAM, using CPLEX 12.8 for solving LP/MILPs.
We set the covariance value r € [0.0,1.0] in GAMUT with step size A = 0.2 to
control the correlation of attacker and defender payoffs. All results are averaged
over 120 instances (20 games per covariance value). All comparison results with
our algorithms are statistically significant under bootstrap-t (o = 0.05).

Algorithms and Baselines We show simulation results for two algorithms:
(i) sequential attacks with resource movement (or URM); and (ii) sequential attacks
with no resource movement (or NRM). In addition, we use siSSE as a baseline in
order to show that the defender can suffer arbitrary losses if he does not take
into account sequential attacks in his resource allocation problem. We test all
our algorithms and the baseline against a sequential move attacker.

Figures la and 1b show solution qualities (i.e., expected game utilities) in the
resource-movement setting for the defender and attacker (respectively), whereas
Figures 2a, 3a and 2b, 3b show the same solution qualities in the no-resource-
movement setting. The x-axis in Figures 1 and 2 shows increasing number of
targets. The x-axis in Figure 3 shows increasing number of resources. The y-axis
in all these figures show the expected utility for defender and attacker.

" See http://gamut.stanford.edu/.
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Fig. 1: Difference in the utility of the players with increasing number of targets
in the resource-movement setting.
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Fig. 2: Difference in the utility of the players with increasing number of targets
in the no-resource-movement setting.

Scaling up Number of Targets Figures la and 2a show that against se-
quential attacks, the expected defender utility achieved by our algorithms (i.e.,
URM and NRM) is significantly higher than that achieved by siSSE in both resource-
movement and no-resource-movement settings. On the other hand, Figures 1b
and 2b show that the attacker achieves significantly lower utility with our algo-
rithms as compared to siSSE. This shows the importance of taking into account
sequential attacks in the defender’s optimization problem, and shows that our
algorithms are able to successfully outperform the baseline.

Scaling up Number of Resources Next, we show how the solution quality
of our algorithms varies with increasing number of resources. The number of
targets is set to 10. Figures 3a and 3b show that in the no-resource-movement
setting, the defender solution quality increases with increasing number of security
resources, whereas the attacker solution quality decreases.

Runtime Results Figures 4a and 4b shows the runtime of our algorithms
with increasing number of targets and resources (respectively). The x-axis shows
increasing number of targets (resources), and the y-axis shows the runtime (in
seconds). These figures show that our NRM algorithm runs significantly slower
than our URM. This makes sense since the NRM algorithm needs to solve multiple
MILPs and LPs to find cutting planes until it reaches the optimal solution,
which is time consuming compared to the URM algorithm. As expected, the siSSE
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Fig. 3: Difference in the utility of the players with increasing number of resources
in the no-resource movement setting.
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Fig. 5: The impact of cutting planes on solution quality and runtime performance
in the no-resource-movement setting

algorithm runs quicker than both our algorithms, but as shown in Figures 1, 2
and 3, it performs significantly worse than our algorithms in terms of solution
quality. This establishes the superiority of our algorithms performance over the
state-of-the-art baseline in tackling sequential attacks.

Finally, we analyze the impact of limiting the maximum number of cutting
planes that the NRM algorithm can generate on its runtime and solution quality.
Figure 5a and 5b show the variation in solution quality and runtime (respec-
tively) of the NRM algorithm with increasing limits on the number of cutting
planes that can be added to the MILP. The number of targets is fixed to 10.
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The x-axis shows increasing number of cutting planes and the y-axis shows the
solution quality (and runtime). These figures show that beyond three cutting
planes, the solution quality of NRM shows diminishing returns with higher val-
ues of cutting planes, whereas the running time of the algorithm increases at a
roughly linear rate with increasing number of cutting planes. This suggests that
in practice, NRM can be run by setting a limit on the number of cutting planes,
beyond which there are only marginal increases in the solution quality.

8 Summary

This paper studies the security problem in which the attacker can attack multiple
targets in a sequential manner. In this paper, we introduce a new sequential-
attack game model (built upon the Stackelberg game model), which incorporates
real-time observations, the behavior of sequential attacks, and strategic plans
of non-myopic players. We then propose practical game-theoretic algorithms for
computing an equilibrium in different game settings. Our new algorithms exploit
intrinsic properties of the equilibrium to derive compact representations of both
state history and strategy spaces of players (which are exponential in number in
the original representations). Finally, our computational experiments show that
the defender and attacker receive significant loss and benefit respectively if the
defender does not address sequential attacks. By taking into account sequential
attacks, such loss and benefit is reduced drastically.

Acknowledgment This work was supported in part by by the Czech Science
Foundation (no. 19-24384Y).

References

1. Basilico, N., Gatti, N., Amigoni, F.: Leader-follower strategies for robotic patrolling
in environments with arbitrary topologies. In: AAMAS. pp. 57-64 (2009)

2. Bosansky, B., Cermadk, J.: Sequence-Form Algorithm for Computing Stackelberg
Equilibria in Extensive-Form Games. In: AAAI Conference on Artificial Intelli-
gence (2015)

3. Fang, F., Nguyen, T.H., Pickles, R., Lam, W.Y., Clements, G.R., An, B., Singh, A.,
Tambe, M., Lemieux, A.: Deploying PAWS: Field optimization of the protection
assistant for wildlife security. In: IAAT (2016)

4. Fang, F., Stone, P., Tambe, M.: When Security Games Go Green: Designing De-
fender Strategies to Prevent Poaching and Illegal Fishing. In: In Proceedings of
24th International Joint Conference on Artificial Intelligence (IJCAI) (2015)

5. Jiang, A.X., Yin, Z., Zhang, C., Tambe, M., Kraus, S.: Game-theoretic Randomiza-
tion for Security Patrolling with Dynamic Execution Uncertainty. In: Proceedings
of 12th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). pp. 207-214 (2013)

6. Karwowski, J., Madziuk, J.: Stackelberg Equilibrium Approximation in General-
Sum Extensive-Form Games with Double-Oracle Sampling Method. In: Proc. of
the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019). pp. 2045-2047 (2019)



20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Thanh H. Nguyen, Amulya Yadav, Branislav Bosansky, Yu Liang

Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordénez, F., Tambe, M.:
Computing optimal randomized resource allocations for massive secu-
rity games. In: Proceedings of the 8th International Conference on
Autonomous Agents and Multiagent Systems. pp. 689-696 (2009),
http://portal.acm.org/citation.cfm?id=1558013.1558108

Korzhyk, D., Conitzer, V., Parr, R.: Security Games with Multiple Attacker Re-
sources. In: IJCAT (2011)

Letchford, J., Conitzer, V.. Computing optimal strategies to commit
to in extensive-form games. In: Proceedings of the 11th ACM con-
ference on Electronic commerce. pp. 83-92. ACM, New York, NY,
USA  (2010).  https://doi.org/http://doi.acm.org/10.1145/1807342.1807354,
http://doi.acm.org/10.1145/1807342.1807354

Letchford, J., Vorobeychik, Y.: Computing randomized security strategies in net-
worked domains. Applied Adversarial Reasoning and Risk Modeling 11, 06 (2011)
Lisy, V., Davis, T., Bowling, M.: Counterfactual Regret Minimization in Sequential
Security Games. In: Proceedings of AAAI Conference on Artificial Intelligence
(2016)

Nguyen, T.H., Sinha, A., Gholami, S., Plumptre, A., Joppa, L., Tambe,
M., Driciru, M., Wanyama, F., Rwetsiba, A., Critchlow, R., Beale, C.M.:
CAPTURE: A New Predictive Anti-Poaching Tool for Wildlife Protec-
tion. In: Proceedings of the 2016 International Conference on Autonomous
Agents and Multiagent Systems. pp. 767-775. AAMAS, Richland, SC (2016),
http://dl.acm.org/citation.cfm?id=2937029.2937037

Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B.,
Meyer, G.: PROTECT: A deployed game theoretic system to protect the ports of
the United States. In: AAMAS (2012)

Sinha, A., Fang, F., An, B., Kiekintveld, C., Tambe, M.: Stackelberg security
games: Looking beyond a decade of success. In: IJCAL pp. 5494-5501 (2018)
Tambe, M. (ed.): Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned. Cambridge University Press (2011)

Cermék, J., Bosansky, B., Durkota, K., Lisy, V., Kiekintveld, C.: Using Correlated
Strategies for Computing Stackelberg Equilibria in Extensive-Form Games. In:
Proceedings of AAAI Conference on Artificial Intelligence. pp. 439-445 (2016)
Cerny, J., Bosansky, B., Kiekintveld, C.: Incremental Strategy Generation for
Stackelberg Equilibria in Extensive-Form Games. In: Proceedings of ACM Con-
ference on Economics and Computation (EC). pp. 151-168 (2018)

Wang, S., Liu, F., Shroff, N.: Non-Additive Security Games. In: Proceedings of the
Thirty-First AAATI Conference on Artificial Intelligence (AAAI-17). pp. 728-735
(2017)

Yin, Z., Jiang, A.X., Johnson, M.P., Tambe, M., Kiekintveld, C., Leyton-Brown,
K., Sandholm, T., Sullivan, J.P.: TRUSTS: Scheduling Randomized Patrols for
Fare Inspection in Transit Systems. In: Proceedings of 24th Conference on Inno-
vative Applications of Artificial Intelligence (IAATI) (2012)



