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Abstract. Cyber-criminals can distribute malware to control computers on a net-
worked system and leverage these compromised computers to perform their ma-
licious activities inside the network. Botnet-detection mechanisms, based on a
detailed analysis of network traffic characteristics, provide a basis for defense
against botnet attacks. We formulate the botnet defense problem as a zero-sum
Stackelberg security game, allocating detection resources to deter botnet attacks
taking into account the strategic response of cyber-criminals. We model two
different botnet data-exfiltration scenarios, representing exfiltration on single or
multiple paths. Based on the game model, we propose algorithms to compute an
optimal detection resource allocation strategy with respect to these formulations.
Our algorithms employ the double-oracle method to deal with the exponential
action spaces for attacker and defender. Furthermore, we provide greedy heuris-
tics to approximately compute an equilibrium of these botnet defense games. Fi-
nally, we conduct experiments based on both synthetic and real-world network
topologies to demonstrate advantages of our game-theoretic solution compared
to previously proposed defense policies.

1 Introduction

Cyber-criminals intent on denial-of-service, spam dissemination, data theft, or other
information security breaches often pursue their attacks with botnets: collections of
compromised computers (bots) subject to their control [14, 23, 30, 31, 33]. In 2014
testimony, the US Federal Bureau of Investigation cited over $9 billion of US losses
and $110 billion losses globally due to botnet activities [7]. The estimated 500 million
computers infected globally each year by botnet activities amounts to 18 victims per
second.

The threat of botnets has drawn significant attention from network security re-
searchers [1, 5, 6, 10, 11, 12, 13, 32]. Much existing work focuses on detection mecha-
nisms to identify compromised computers based on network traffic characteristics. For
example, BotSniffer [13] searches for spatial-temporal patterns in network traffic char-
acteristic of coordinated botnet behavior. Given some underlying detection capability,
the defender faces the problem of how to effectively deploy its detection resources
against potential botnet attacks. For example, Venkatesan et al. consider the problem
of allocating a limited number of localized detection resources on a network in order
to maximally disrupt data exfiltration attacks, where the botnet aims to transfer stolen
information out of the network [38]. Their first solution allocated resources statically,
which could effectively disrupt one-time attacks but is vulnerable to adaptive attackers.



They extended this method to randomize detector placement dynamically to improve
robustness against adaptation [37]. In a related work, Mc Carthy et al. address the addi-
tional challenge of imperfect botnet detection [20].

Our work extends these prior efforts by formulating the botnet defense problem as
a Stackelberg security game, thus accounting for the strategic response of attackers to
deployed defenses. In our botnet defense game, the defender attempts to protect data
within a computer network by allocating detection resources (detectors). The attacker
compromises computers in the network to steal data, and attempts to exfiltrate the stolen
data by transferring it outside the defender’s network. We consider two formulations of
data exfiltration: (i) uni-exfiltration, where the source bot routes the stolen data along
a single path designated by the attacker; and (ii) broad-exfiltration, where each bot
propagates the received stolen data to all other bots in the network.

We propose algorithms to compute defense strategies for these data exfiltration
formulations: ORANI (Optimal Resource Allocation for uNi-exfiltration Interception)
and ORABI (Optimal Resource Allocation for Broad-exfiltration Interception). Both
ORANI and ORABI employ the double-oracle method [21] to control exploration of
the exponential strategy spaces available to attacker and defender. Our main algorith-
mic contributions lie in defining mixed-integer linear programs (MILPs) for the de-
fender and attacker’s best-response oracles. In addition, we introduce greedy heuristics
to approximately implement these oracles. Finally, we conduct experiments based on
both synthetic and real-world network topologies to evaluate solution quality as well as
runtime performance of our game-theoretic algorithms, demonstrating significant im-
provements over previous defense strategies.

2 Related Work

Prior studies of botnet security tend to focus on designing botnet detection mechanisms
[1,5,6,10, 11, 12, 13, 32] or advanced botnet designs against these detection mecha-
nisms [29, 39]. Some studies provide empirical and statistical analysis on related cyber-
security implications such as the role of Internet service providers in botnet mitigation
[35] or contagion in cyber attacks [2].

Recent work has introduced game-theoretic models and corresponding defense so-
lutions for various botnet detection and prevention problems [4, 17, 27, 28]. In these
models, cyber criminals intrude by compromising computers in a network. Users or
owners of computers in the network defend by patching or replacing their computers
based on alerts of potential security threats.

Stackelberg security games have been successfully applied to many real-world phys-
ical security problems [3, 9, 19, 26, 34]. Jain et al. address a problem in urban network
security partially analogous to uni-exfiltration, as the attacker follows a single path to
attack its best target in an urban road network [15]. Vanék et al. tackle a problem of
malicious packet prevention, where the attacker determines which entry point to ac-
cess a network to attack a specific target assuming the corresponding traversing path is
fixed [36]. In our botnet defense problem, cyber-criminals decide not only which com-
puters to compromise but also create an overlay network over these bots to exfiltrate



data from multiple targets in the network. The additional complexity of considering the
exfiltration plan leads to a distinct and difficult security problem.

3 Game Model: Uni-Exfiltration

Our game model for uni-exfiltration is built on the botnet model introduced by Venkate-
san et al. [38]. Let G = (V, E) represent a computer network where the set of nodes
V comprises network elements such as routers and end hosts, and edges in E connect
these nodes. We denote by V€ a set of mission-critical nodes in the network which
contain sensitive data. Data exchange is governed by a routing algorithm fixed by the
network system. For each pair of nodes (u, v), we denote by P(u, v) the routing path
between u and v. In our experiments, we assume that routing is via the shortest path.

We model the botnet defense problem as a Stackelberg security game (SSG) [16]. In
such a game, the defender commits to a mixed (randomized) strategy to allocate limited
security resources to protect important targets. The attacker then optimally chooses tar-
gets with respect to the distribution of defender allocations. In our context, the defender
is the security controller of a computer network, with limited detection resources. The
defender attempts to deploy its detectors in the most effective way to impede the attack
chosen in response.

The attacker in the botnet exfiltration game is a cyber-criminal who attempts to steal
sensitive network data. Compromising a mission-critical node ¢ € V¢ enables the at-
tacker to steal data owned by c. Compromising other nodes in the network helps the
attacker to relay the stolen data to a server S® outside the network, which he controls.
The attacker specifies a sequence of compromised nodes (bots) to relay stolen data.
Routing between consecutive bots in the sequence follows fixed paths out of the at-
tacker’s control. We call this chain of ordered bots and nodes on routing paths between
consecutive bots an exfiltration path, denoted by (¢, S%).

Definition 1 (Exfiltration Prevention). Given a network G = (V,E) and a set of
mission-critical nodes V€, data exfiltration from ¢ € V¢ is prevented by the defender
iff there is a detector on the exfiltration path 7(c, S®).

Though the attacker’s remote server S is located outside the network, we assume the
defender is aware of which nodes in the network can relay data to S“.

In our Stackelberg game model, the defender moves first by allocating detection
resources, and the attacker responds with a plan for compromise and exfiltration to
evade detection. The defender placement of detectors is randomized, so any attack plan
succeeds with some probability.

Definition 2 (Strategy Space). The strategy spaces of the players are as follows:
Defender: The defender has K¢ < | V| detection resources available for deploy-
ment on network nodes. We denote by D = {D; | D; C V,|D;| < K%} the set of all
pure defense strategies of the defender. Let x = {x;} be a mixed strategy of the defender
where x; € [0, 1] is the probability that the defender plays D;, and )", x; = 1.
Attacker: The attacker can compromise up to K < |V| nodes. We denote by A =
{A; = (B;,IL;) | B; € V,|Bj| < K II; = {m;(c,$%) | ¢ € B; N V°}} the set



of all pure strategies of the attacker. Each pure strategy A ; consists of: (i) B;: a set of
compromised nodes; and (ii) I1;: a set of exfiltration paths over B;.

Mission-critical nodes

Attacker’s
remote server

Fig. 1. An example scenario of the botnet exfiltration game. There are four mission-critical nodes,
V° =1{0,1,2,3}. If K* = 4, then a possible pure strategy of the attacker A ; can be: (i) a set of
compromised nodes B; = {0, 2,5, 7}; and (ii) a set of exfiltration paths II; = {m;(0),7;(2)}
to exfiltrate data from stealing bots 0 and 2 to the attacker’s server S®. These exfiltration paths
7;(0) = P(0,5) UP(5,5%) and 7;(2) = P(2,7) U P(7,5%) relay stolen data via relaying
bots 5 and 7 respectively, where P(0,5) = (0 - 4 — 5), P(5,5%) = (5 —» 8 — §9),
P(2,7)=(2—6—T7)and P(7,5%) = (7 — 9 — S?) are routing paths fixed by the network
system. Suppose K¢ = 1. If the defender allocates its one detector to node 9, the attacker fails at
exfiltrating data from node 2 since 9 € 7;(2) but succeeds from node 0 since 9 ¢ 7;(0).

A simple scenario of the botnet defense game is shown in Figure 1. The model
specification is completed by defining the payoff structure, which we take to be zero-
sum.

Definition 3 (Game Payoff). Each mission-critical node ¢ € V€ is associated with a
value, r(c) > 0, representing the importance of data stored at that node. Successfully
exfiltrating data from c yields the attacker a payoff r(c), and the defender receives a
payoff —r(c). For prevented exfiltrations, both players receive zero.

Note that the maximum achievable payoff for a defender is zero, obtained by preventing
all exfiltration attempts. In general terms, let U%(D;, A ;) denote the payoff to the at-
tacker if the defender plays D; and the attacker plays A ;. Since the game is zero-sum,
the defender payoff U¢(D;, A;) = —U%D;, A;). The payoff can be decomposed



across mission-critical nodes,
U*(Dy, Aj) = > r(e)hc), (1)
ceVe

where h(c) indicates whether the attacker successfully exfiltrates the data of the mission-
critical node ¢ € V€. This is determined as follows:

h(c):{l ifc € Bjand D; N 7;(c, $%) = 0 o

0 otherwise.
The expected utility for the attacker when the defender plays mixed-strategy x is
U'(x,Aj) =Y aU"(Di, Ay),

which is negated to obtain the expected defender payoff U?(x, A ;). A defender mixed
strategy that maximizes U%(x, A ;) given the attacker plays a best response and breaks
ties in favor of the defender constitutes a Strong Stackelberg Equilibrium (SSE) of the
game.

4 ORANI: An Algorithm for Uni-Exfiltration Games

In zero-sum games, the first mover’s SSE strategy is also a maximin strategy [18].
Therefore, finding an optimal mixed defense strategy can be formulated as follows:

maxXy Ujf 3)
st. UL <UYx,Aj), V) 4)
Y omi=1,2>0, Vi 5)

where U? is the defender’s utility for playing mixed strategy x when the attacker best-
responds. Constraint (4) ensures the attacker chooses an optimal action against x, that is,
U? = min; U4(x,A;) = max; U%(x, A;). Solving (3-5) is computationally expen-
sive due to the exponential number of pure strategies of the defender and the attacker.
To overcome this computational challenge, ORANI applies the double-oracle method
[15, 21]. Algorithm 1 presents a sketch of ORANI.

ORANI starts by solving a maximin sub-game of (3-5) by considering only small
seed subsets D and A of pure strategies for the defender and attacker (Line 3). Solving
this sub-game yields a solution (x*,a*) with respect to the strategy subsets. ORANI
iteratively adds new best pure strategies D, and A, to the current strategy sets D and
A (Lines 4-6). These strategies D, and A, are chosen by the oracles to maximize
the defender and attacker utility, respectively, against the current (in iteration) coun-
terpart solution strategies a* and x*. This iterative process continues until the solution
converges: when no new pure strategy can be added to improve the defender and the
attacker’s utilities. At convergence, the latest solution (x*,a*) an equilibrium of the
game [21]. Following this general methodology, the specific contribution of ORANI is
in defining MILPs representing the attacker and the defender oracle problems in botnet
exfiltration games.



Algorithm 1: ORANI Algorithm Overview

1 Initialize the sets of pure strategies: A = {A;} and D = {D;} for some j and 7;
2 repeat

3 (x*,a") = MaximinCore(D, A);

4 D, = DefenderOracle(a®);

5 A, = AttackerOracle(x™);
6
7

A=AU{A,},,D=DU{D,}
until converge;

4.1 ORANI Attacker Oracle

The attacker oracle returns a pure strategy for the attacker maximizing utility against
a given defender mixed strategy x*. Below, we present a MILP exactly representing
the attacker oracle and show that the problem is NP-hard. We then provide a greedy
heuristic to approximately solve the attacker oracle problem.

MILP Representation We parameterize each pure strategy of the attacker as follows:

1. bot variables z = {z, | w € V}, indicate whether the attacker compromises
node w (z,, = 1) or not (z,, = 0), and

2. bot-chain variables q = {g.(u,v) | ¢ € V%, u € V,v € VU{S}\ {c,u}},
represent exfiltration paths.

For each stealing bot ¢, {g.(u,v)} represents the bot chain to exfiltrate data from c to
5. Note that the bot-chain variables employ compromised nodes only. This means that
gc(u,v) = 0 for all (¢, u,v) such that z. = 0 or z,, = 0 or z, = 0. Conversely, when
Ze = 2y = 2y = 1, g.(u,v) = 1iff (u,v) are consecutive bots in the bot chain for c.
This entails that the exfiltration path 7(c, S®) includes the routing path P (u, v).

Given the attacker’s pure strategy (z,q), we introduce data-exfiltration variables
h = {h;(c)} to describe the outcome of the attack. For stealing bot ¢ € V¢ with z. = 1,
h;(c) indicates whether the attacker successfully exfiltrates from ¢ when the defender
plays D; € D. Specifically, h;(c) = 0 if D; includes a detector on the exfiltration path
from node ¢ to S®. Otherwise, h;(c) = 1. The attacker utility can be computed based
onh = {h;(c)},

U'(x*, (zq) = Y zi Y r(c)hi(o).

D;eD ceVe

The optimization problem for the attacker can now be formulated as a MILP (6-15).
Variables z and h are constrained to be binary. Constraints (7-9) enforce that there is
only a single exfiltration path from each mission-critical node ¢ € V¢ to S® if node
c is compromised (z. = 1). In particular, when z. = 1, constraint (7) indicates that
there is a single out-exfiltration path from node ¢ and constraint (8) imposes that there
is only a single in-exfiltration path to the attacker’s server S®. Otherwise, when c is not
compromised (z. = 0), there is no exfiltration path from c. Constraint (9) ensures, for
each ¢ € V¢, that the total number of in-exfiltration paths to any node v equals the total



number of out-exfiltration paths from that node. Constraints (10) and (11) guarantee that
exfiltration paths are determined using compromised nodes only (i.e., if either z,, = 0
or z, = 0, then ¢.(u,v) = 0). Constraint (12) ensures that the number of compro-
mised nodes does not exceed the attacker’s resource limit, K. Finally, constraint (13)
enforces h;(c) = 0 when P(u,v) N D; # 0 for some pair of consecutive bots (u,v)
on the exfiltration path from ¢ (i.e., such that ¢.(u,v) = 1). Constraint (14) ensures
hi(c) = 0 when c is not compromised.

max U“(x", (z,q)) (©6)
z,q,h
s.t. Z ge(c,u) = 2., Ve € V€ @)
ueVU{Se}\{c}

Z qe(u, 8*) = z.,Vec € V° (8)
ueV

Z qe(u,v) = Z gc(v,w),Ye € V€ v € V\ {c} 9)
uweV\{v} weVU{Se}\{v,c}
qe(u,v) < z,,Ve € VS u € Voo € VU{S*}\ {c,u} (10)
ge(u,v) < 2,,YVe € Ve u € Vo € V\ {c,u} (11)
D 2w K%z, €{0,1},Yw e V (12)
weV

hi(e) <1—gc(u,v),Ye e VS, u e V,uv € VU{S*}\ {u,c}, and (13)
VD, € D such that P(u,v) N D; # ()

hi(c) < z.,Ye € V¢, D, € D (14)
ge(u,v) € [0,1], hi(c) € {0,1}, Ve, u, v, (15)

Theorem 1. A solution to MILP (6-15) is an optimal pure strategy for the attacker
against defender mixed strategy x*.

Proof. Given a solution of (6-15), consider each mission-critical node ¢ € V¢ such
that h;(c) = 1 for some i. This means that the attacker successfully exfiltrates data
from c given defender pure strategy D;. There must exist a positive exfiltration path,
7t (e), from ¢ to S®. That is q.(u, v) > 0 for all consecutive bots (u,v) on 7" (c). This
conclusion results from the attacker strategy constraints in (7-9). Then an optimal pure
strategy for the attacker consists of: (i) the set of compromised nodes u with z,, = 1;
and (ii) the set of positive exfiltration paths {7 (c)} for any ¢ which satisfies h;(c) = 1
with some i.

Solving this MILP may take exponential time. In fact, the problem is NP-hard.
Proposition 1. The attacker oracle problem for data uni-exfiltration is NP-hard.

The proof is presented in Online Appendix B.! We introduce a greedy heuristic to ap-
proximately solve the problem.

' Link: http://hdl.handle.net/2027.42/137970



Attacker Greedy Heuristic Our greedy heuristic iteratively adds nodes to compro-
mise until the resource limit K¢ is reached. At each iteration, given the current set of
compromised nodes B¢ (which is initially empty), the greedy heuristic selects among
uncompromised nodes u € V \ B€ the best next node for the attacker to compromise.
A key step of the algorithm is to determine optimal exfiltration paths given the compro-
mised set B® U {u} and the defender strategy x*.

Overall, the problem of finding an optimal set of exfiltration paths for the attacker
given a set of compromised nodes B U {u} and the defender’s strategy x* can be
represented as a MILP which is a simplification of (6—15). In this MILP simplification,
the bot variables z = {z,,} are no longer needed. Furthermore, the bot-chain and data-
exfiltration variables can be limited to the current set of compromised nodes B¢ U
{u}, rather than the whole node set V. As a result, the total number of variables and
constraints involved is reduced significantly.

4.2 ORANI Defender Oracle

The defender oracle attempts to find a new pure defense strategy which maximizes
the defender utility against the current mixed attack strategy a* = {a;f} returned
by MaximinCore. Here, a} is the probability that the attacker follows A; such that
>_jaj = 1,aj € [0,1]. We first present a MILP to exactly solve this defender oracle
problem and then show that the problem is NP-hard.

MILP Representation. We parameterize each pure strategy of the defender using de-
tection variables z = {z,,} where w € V. In particular, z,, = 1 if the defender deploys
a detector on node w. Otherwise, z,, = 0. In addition, given that the attacker plays A ;
and the defender plays z, we introduce data-exfiltration variables h = {h;(c)} where
¢ € V° N By, implying whether the attacker successfully exfiltrates the data of ¢ (i.e.,
hj(c) = 1) or not (h;(c) = 0). Given that the attacker plays a* and the defender plays
z, the defender’s utility can be now computed based on h as follows:

Ulz,a®)=— Y a5 D r(e)hs(e) (16)

AjEA  cEVeNB;

The problem of finding an optimal pure defense strategy which maximizes the de-
fender’s utility against the attacker’s strategy a* can be now formulated as the following
MILP (17-20).

max Ud(z,a") 17
sthi(e)>1— > 2z, Vce Ve NB,,Vj (18)
wem;(c,5%)
> < K? (19)
weV
zw € {0,1}, hj(c) € [0,1], Yw € V,c € VS NB;,Vj (20)

In (17-20), only z = {z,} are required to be binary. Constraint (18) ensures that
hj(c) = 1 when the attacker successfully exfiltrates from an stealing bot ¢ € VS N B;



(i.e., the defender does not deploy a detector on the exfiltration path of that bot: z,, =
0 for all w € (¢, S*)). On the other hand, since the MILP attempts to maximize the
defender’s utility (Equation 16) which is a monotonically decreasing function of h;(c),
then any MILP solver will automatically force h;(c) = 0 if possible given the bound
constraint (20). Constraint (19) guarantees that the number of detection resources de-
ployed does not exceed the limit K¢,

Finally, Proposition 2 shows the complexity of the defender oracle problem. Its
proof is in Online Appendix C.

Proposition 2. The defender oracle problem corresponding to data uni-exfiltration is
NP-hard.

Defender Greedy Heuristic. We introduce a greedy heuristic to approximately solve
the defender oracle problem in polynomial time. Given the attacker’s mixed strategy a*
and an initially empty set of monitored nodes D€, the greedy heuristic iteratively adds
the next best node to monitor to the set D€ until |D¢| = K¢. At each iteration, given the
current set of monitored nodes D€, the greedy heuristic searches over all unmonitored
nodes u € V \ D€ to find the best next node to monitor such that the defender’s utility
is maximized. Computing the defender’s utility given a set of monitored nodes and
the attacker’s strategy a* is possible in polynomial time (Equations 1 and 2), thus our
defender greedy heuristic runs in polynomial time.

5 Data Broad-Exfiltration

In the botnet defense game model with respect to uni-exfiltration (Section 3), for each
stealing bot, the attacker is assumed to only select a single exfiltration path from that
bot to exfiltrate data. In this section, we study the botnet defense game model with
respect to the alternative data broad-exfiltration. In particular, for every stealing bot, the
attacker is able to broadcast the data stolen by this bot to all other compromised nodes
via corresponding routing paths. Once receiving the stolen data, each compromised
node continues to broadcast the data to all other compromised nodes, and so on. The
game model for broad-exfiltration is motivated by the botnet models studied by Rossow
et al. [25]. Overall, there is a higher chance that the attacker can successfully exfiltrate
network data with broad-exfiltration compared to uni-exfiltration. In the following, we
briefly describe the botnet defense game model with data broad-exfiltration and the
corresponding algorithm, ORABI, to compute an optimal mixed defense strategy.

5.1 Game Model

In the botnet defense game model with data broad-exfiltration, the strategy space of
the defender remains the same as shown in Section 3. On the other hand, since the
attacker now can broadcast the data, we can abstractly represent each pure strategy
of the attacker as a set of compromised nodes A; = B; only. Given a pair of pure
strategies (D;, B;), we need to determine payoffs the players receive. Note that in the
case of broad-exfiltration, given (D;, B j), the attacker succeeds in exfiltrating the stolen
data from a stealing bot if there is an exfiltration path among all the possible exfiltration
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paths over the compromised set B; from this bot to S which is not blocked by D;.
Therefore, the players receive a payoff computed as in (1) where the binary indicator
h(c) for each mission-critical node ¢ € V¢ is now determined as:

1 if3eceB; & Im;(c, S)
hic) = s.t. D;Nmj(e, S*) =0

0 otherwise

In fact, when players plays (D;, B;), we can determine if there is an exfiltration path
from a stealing bot ¢ € B; N V¢ which is not blocked by D; by using depth or breath-
first search over the compromised set B, which runs in polynomial time. We next aim
at computing an SSE of the botnet defense games with data broad-exfiltration. Based
upon the double oracle methodology, we introduce a new algorithm, ORABI, which
consists of new MILPs to exactly solve the resulting attacker and the defender’s oracle
problems. We also provide greedy heuristics to approximately solve these oracle prob-
lems in polynomial time. In the following, we briefly explain our MILPs in ORABI.

5.2 ORABI Attacker Oracle

MILP Representation. In solving the attacker oracle problem with respect to data
broad-exfiltration, we can extend the MILP (6-15) for data uni-exfiltration as follows.
First, each pure strategy of the attacker is now parameterized using only bot variables
z = {z,} for w € V. Second, although bot-chain variables {g.(u,v)} are not parts
of the attacker’s pure strategies anymore, we extend these variables q = {g; (u,v)}
for each pure strategy of the defender D;. For each mission-critical node ¢ € V¢ and
for each D; € D, {¢; (u,v)} will determine if there is an exfiltration path which
successfully exfiltrates stolen data from c given the attacker’s pure strategy z. Third,
the path-exfiltration constraints in (7—11) and the data-exfiltration constraint in (13) are
extended accordingly. Finally, the data-exfiltration and all other constraints and the ob-
jective are kept unchanged. Given the extended bot-chain variables q = {g; (u,v)}
and corresponding extended constraints, the resulting extension of (6—15) will search
over all possible exfiltration paths with respect to the attacker’s strategy z to find ex-
filtration paths which are not blocked by each D; € D. Thus, the extended MILP of
(6-15) returns an optimal set of compromised nodes u with z,, = 1 for the attacker.

Finally, the attacker oracle problem with broad-exfiltration is NP-hard (Proposi-
tion 3 with proof is in the Online Appendix D). The resulting MILP involves a larger
number of variables and constraints compared to the uni-exfiltration case due to the
extension of bot-chain variables q = {g¢; .(u,v)} with respect to the defender’s pure
strategies {D; }. In the following, we apply the greedy approach for solving the attacker
oracle problem in polynomial time.

Proposition 3. The attacker oracle problem corresponding to data broad-exfiltration
is NP-hard.

Attacker Greedy Heuristic. The attacker greedy heuristic with respect to data broad-
exfiltration is similar to the uni-exfiltration case. Nevertheless, given a mixed defense
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strategy x* and a set of compromised nodes B€ U {u}, we no longer need to find an
optimal set of exfiltration paths as in the uni-exfiltration case. As shown in Section 5.1,
we can compute the players’ utility given x* and B¢ U {u} in polynomial time using
depth or breadth-first search.

In addition to this heuristic, we propose a modification of the greedy approach
which iteratively adds multiple new pure strategies as follows. Instead of starting the
greedy search with an initial empty compromised set B¢ = (), we create |V¢| different
compromised sets B¢, each consists of a mission-critical node ¢ € V¢ as a compro-
mised seed node. Then for each initial compromised set B¢ with one seed node, we run
the greedy search. As a result, we obtain |V ¢| different compromised sets or pure strate-
gies for the attacker. In other words, we add |V €| new pure strategies for the attacker at
each iteration. We call this modified greedy approach as greedy-multi heuristic. Intu-
itively, by adding multiple new pure strategies, we expect ORABI with the greedy-multi
heuristic for solving the attacker oracle problem would potentially converge to a solu-
tion close to the optimal one. Indeed, our experimental results confirm our conjecture.

5.3 ORABI Defender Oracle

MILP Representation. Although we can also extend the MILP (17-20) for uni-exfiltration
to represent the defender oracle problem with broad-exfiltration, solving this extended
MILP is impractical. Specifically, in the constraint (18) of the MILP (17-20), we need to
iterate over all exfiltration paths to find if the defender’s pure strategy z can block these
exfiltration paths or not. Since each pure strategy of the attacker with uni-exfiltration
only consists of a small set of exfiltration paths, it is straightforward to iterate over
these exfiltration paths. On the other hand, in the broad-exfiltration case, given a pure
strategy of the attacker which is now a set of compromised nodes, there is an exponen-
tial number of exfiltration paths over these nodes to relay the stolen data. Iterating over
all these exfiltration paths is thus impractical.

Given this computational challenge, ORABI introduces a new MILP to solve the
defender oracle problem. First, we continue to use defection variables z = {z,} to
represent a pure strategy of the defender in which z,, = 1 if the defender deploys a
detector on node w. Otherwise, z,, = 0. Second, for each pure strategy of the attacker
B, and the defender’s pure strategy z, we introduce relaying variables 1 = {l,(u,v)}
where u, v € B; are two compromised nodes, indicating whether the attacker can suc-
cessfully relay data via the routing path P (u, v). Specifically, the attacker successfully
relays data from u to v (i.e., [;(u,v) = 1) if the defender does not deploy a detector
on the routing path P(u, v). Otherwise, [;(u,v) = 0. Third, we introduce variables
s = {s§(w)} where c € V¢ N B; and w € B;. By an abuse of variable name, we
also call these new variables as data-exfiltration variables. In particular, for each stolen
bot c € VN B; and w € By, s§(w) indicates if the attacker successfully exfiltrates
data of ¢ to the compromised node w (s§(w) = 1) or not (s§(w) = 0). In other words,
s$(w) = 1 only when there is an exfiltration path from the stealing bot c € V° N B; to

J
the compromised node w which is not blocked by the defender. Given s, the defender’s
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utility is computed as follows:
Ulz,a®) ==Y al Y s5(S)r(c) 1)
B, cEVeNB;

where s5(S®) = 1indicates that the attacker successfully exfiltrates data of ¢ € V°NB;
to 5. Otherwise, s5(S%) = 0. We now can formulate the defender oracle problem as
the following MILP:

max Ul(z,a*) (22)

s.t. li(u,v) > 1 — Z Zw, Yu,v € Bj,u # v,Vj 23)
weP (u,v)

s5(w) > s§(w') + 1;(w', w) — 1, 24)
Ve e VENBj,w e B U{S*}\ {c},w' € Bj,w # w,Vj
si(c)>1—2,Ye € B; NV Vj (25)
Z 2w < K% 2, € {0,1},Yw eV (26)
weV
Lj(u,v), s5(w) € [0,1],Yc € V€, u,v,w € Bj,u # v,Vj 27

which maximizes the defender’s utility in Equation 21. Constraint (23) ensures that
the attacker can successfully relay data from compromised node w to compromised
node v ({;(u,v) = 1) if there is no detector of the defender on the routing path, i.e.,
2w = 0,Yw € P(u,v). Constraint (24) guarantees that if the defender does not block
the routing path P(w’, w) (i.e., {;(w’,w) = 1), node w receives data broadcasted by
node w’ (i.e., s§(w) > s§(w")). Furthermore, constraint (25) implies that if the defender
does not deploy a detector on a stealing bot ¢ € B; N'V<, then the attacker can steal the
data of c. In other words, sj(c) = 1if z. = 0O for all ¢ € B; N V¢, Finally, constraint
(26) imposes the requirement of detection resource limit for the defender.

In our MILP (22-27), only the detection variables z = {z,,} are required to be
binary. The relaying variables and the data-exfiltration variables will be forced to be
equal to one by constraints (23-25) if the attacker can successfully exfiltrate the data.
Otherwise, since the defender utility in (21) is monotonically decreasing with respect
to the data-exfiltration variables, (22—27) will force these variables to be zero whenever
possible. Thus, all the variables are either zero or one in the optimal solution of (22—
27). Finally, the defender oracle problem with respect to broad-exfiltration is NP-hard
(Proposition 4 with proof is in the Online Appendix E).

Proposition 4. The defender oracle problem corresponding to data broad-exfiltration
is NP-hard.

Defender Greedy Heuristic. We also apply the greedy approach to solve the defender
oracle problem in polynomial time. The idea is similar to the attacker greedy heuristic.

6 Experiments

We evaluate both solution quality and runtime performance of our algorithms compared
with previously proposed defense policies. We conduct experiments based on two dif-
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Fig. 2. Uni-Exfiltration: Random scale-free graphs

ferent datasets: (i) synthetic network topology — we use JGraphT [22], a free Java
graph library, to randomly generate scale-free graphs since many real-world network
topologies exhibit the power-law property [8]; and (ii) real-world network topology —
we derive different network topologies from the Rocket-fuel dataset [24]. Each data
point in our results is averaged over 50 different samples of network topologies.

6.1 Synthetic Network Topology

Data Uni-Exfiltration We compare six different algorithms: (i) ORANI — both ex-
act oracles; (ii) ORANI-AttG — exact defender oracle and greedy attacker oracle;
(iii) ORANI-G - both greedy oracles; (iv&v) CWP & ECWP — heuristics proposed
in [37] to generate a mixed defense strategy based on the centrality values of nodes
in the network; and (vi) Uniform — generating a uniformly-mixed defense strategy. We
consider CWP, ECWP, and Uniform as the three baseline algorithms.
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In the first four experiments (Figures 2(a),(b),(c),(d)), we examine solution quality
of the algorithms with varying number of nodes, of defender resources, of attacker re-
sources, and of mission-critical nodes respectively. In Figures 2(a),(b),(c),(d), the x-axis
is the number of nodes, of defender resources, of attacker resources, and of mission-
critical nodes in each graph respectively. In the later three figures, the number of nodes
is 30. The y-axis is the averaged expected utility of the defender obtained by the evalu-
ated algorithms. The data value associated with each mission-critical node is generated
uniformly at random within [0, 1]. Intuitively, the higher averaged expected utility an al-
gorithm gets, the better the solution quality of the algorithm is. Figures 2(a), (b), (c), (d)
show that all of our algorithms, ORANI, ORANI-AttG, ORANI-G defeat the base-
line algorithms in obtaining a much higher utility for the defender. Moreover, when
the number of defender resources increases, the defender’s expected utility on average
increases quickly and reaches the defender’s highest utility of zero with just five de-
fender resources. On the other hand, when the number of attacker resources increases,
there is only a small decrease in the defender’s expected utility on average. Finally, both
ORANI-AttG and ORANI-G obtain a lower average utility of the defender compared
to ORANI as expected. Yet, we show that the greedy heuristics help in significantly
reducing the time of solving the double oracle problem.

In our fifth experiment (Figure 2(e)), we examine the convergence of the double or-
acle used in ORANI. The x-axis is the number of iterations of adding new strategies for
both players until convergence. In addition, the y-axis is the average of the defender’s
expected utility at each iteration with respect to the defender oracle, the attacker oracle,
and the Maximin core. The number of nodes in the graph is set to 40. Figure 2(e) shows
that ORANI converges quickly, i.e., after approximately 25 iterations. This result im-
plies that there is only a small set of pure strategies of players involved in the game
equilibrium despite an exponential number of strategies in total. In addition, ORANI
can find this set of pure strategies after a small number of iterations.

In our sixth experiment (Figure 2(f)), we investigate runtime performance. In Fig-
ure 2(f), the x-axis is the number of nodes in the graphs and the y-axis is the runtime on
average in hundreds of seconds. As expected, the runtime of ORANI grows exponen-
tially when | V| increases. In addition, by using the greedy heuristics, ORANI-AttG
and ORANI-G run significantly faster than ORANI. For example, ORANI reaches
1333 seconds on average when |V| = 35 while ORANI-AttG and ORANI-G reach
1266 and 990 seconds respectively when | V| = 140.

Data Broad-Exfiltration In the case of data broad-exfiltration, we compare eight al-
gorithms: i) ORABI - both exact oracles; ii) ORABI-AttG — exact defender oracle and
greedy attacker oracle; iii) ORABI-G — both greedy oracles; iv) ORABI-AttG-Mul
— exact defender oracle and greedy-multi attacker oracle; v) ORABI-G-Mul — both
greedy-multi oracles; and vi, vii, viii) CWP, ECWP, and Uniform. Our experiment set-
tings for broad-exfiltration are similar to uni-exfiltration. In the following, we only high-
light some key findings.

First, our experimental result on solution quality is shown in Figure 3(a). Fig-
ure 3(a) shows that all of our five evaluated algorithms, ORABI, ORABI-AttG-Mul,
ORABI-G-Mul, ORABI-AttG, and ORABI-G obtain a much higher averaged ex-
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Fig. 3. Broad-Exfiltration: Random scale-free graphs

pected utility for the defender compared to the baseline algorithms. Furthermore, by
adding multple new strategies at each iteration, both our algorithms ORABI-AttG-Mul
and ORABI-G-Mul perform approximately as well as ORABI while outperforming
ORABI-AttG, and ORABI-G.

Furthermore, in the experimental result on runtime performance (Figure 3(b)), our
algorithms with greedy heuristics can scale up to large graphs. For example, when
|V| = 1000, the runtime of ORABI-AttG-Mul, ORABI-G-Mul, ORABI-AttG, and
ORABI-G reaches 89, 20, 71, and 2 seconds respectively. We conclude that ORABI is
the best algorithm for small graphs while ORABI-AttG-Mul and ORABI-G-Mul are
proper choices for large-scale graphs.

Finally, we investigate the benefit to the attacker from broad-exfiltration compared
to uni-exfiltration. We run ORANI and ORABI on the same set of 50 scale-free graph
samples generated by uniformly at random with 20, 30, 40 nodes in each graph re-
spectively. Among all the samples, there are only 58%, 72%, and 52% of the 20-node,
30-node, and 40-node graphs respectively for which the attacker obtains a strictly higher
utility by using broad-exfiltration. This result shows that the attacker does not always
benefit from broad-exfiltration. Indeed, despite broad-exfiltration, the data exchange be-
tween any pairs of compromised nodes must follow fixed routing paths specified by the
network system, thus constraining the data exfiltration possibilities.

6.2 Real-world Network Topology

Our third set of experiments is conducted on real-world network topologies from the
Rocket-fuel dataset [24]. Overall, the dataset provides router-level topologies of 10 dif-
ferent ISP networks: Telstra, Sprintlink, Ebone, Verio, Tiscali, Level3, Exodus, VSNL,
Abovenet, and AT&T. In this set of experiments, we mainly focus on evaluating the so-
lution quality of our algorithms compared with the three baseline algorithms. For each
of our experiments, we randomly sample fifty 40-node sub-graphs from every network
topology using random walk. In addition, we assume that all external routers located
outside the ISP can potentially route data to the attacker’s server. Each data point in
our experimental results is averaged over 50 different graph samples. The defender’s
averaged expected utility obtained by the evaluated algorithms is shown in Figures 4&5
with respect to data uni-exfiltration and broad-exfiltration respectively.
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Dataset | ORANI o:t’:g" ORANI-G | CWP ECWP | Uniform
Telstra -0.42 -0.44 -0.45 -1.9 -1.94 -2.38
Sprintlink | -0.43 -0.45 -0.45 -1.84 -1.89 -2.36
Ebone -0.72 -0.73 -0.73 -1.71 -1.75 -2.32
Verio -0.47 -0.47 -0.47 -1.84 -1.84 -2.25
Tiscali -0.59 -0.62 -0.61 -1.97 -1.97 -2.2
Level3 -0.63 -0.64 -0.65 -1.85 -1.89 -2.25
Exodus -0.68 -0.68 -0.68 -1.44 -1.47 -2.34
VSNL -0.67 -0.68 -0.68 -1.69 -1.78 -2.3
Abovenet | -0.62 -0.64 -0.62 -1.77 -1.77 -2.3
AT&T -0.31 -0.32 -0.33 -1.91 -1.96 -2.3
Fig. 4. Uni-Exfiltration: Defender’s average utility
Dataset | ORABI Aﬁg’fﬂ;lo"x'l'& omg" ORABI-G| CWP | ECWP |Uniform
Telstra | -0.41 | -0.41 | -0.41 | -0.41 | -042 | -1.72 | -1.78 | -2.27
Sprintlink -0.41 | -0.41 | -0.41 | -0.43 | -0.42 | -1.72 | -1.78 | -2.21
Ebone | -0.71 | -0.71 | -0.71 | -0.72 | -0.73 | -1.58 | -1.66 | -2.32
Verio | -0.47 | -0.47 | -0.47 | -0.5 -05 | -1.81 | -1.85 | -2.26
Tiscali | -0.51 | -0.51 | -0.51 | -0.56 | -0.56 | -1.88 | -1.95 | -2.2
Level3 | -0.67 | -0.67 | -0.67 | -0.69 | -0.68 | -1.99 | -2.03 | -2.37
Exodus | -0.74 | -0.74 | -0.74 | -0.75 | -0.75 | -1.58 | -1.63 | -2.37
vsNL | -0.73 | -0.73 | -0.73 | -0.73 | -0.73 | -1.67 | -1.76 | -2.38
Abovenet -0.67 | -0.67 | -0.68 | -0.69 | -0.68 | -1.81 | -1.88 | -2.41
AT&T | -0.34 | -0.34 | -0.34 | -0.35 | -0.38 | -1.88 | -1.94 | -2.28

Fig. 5. Broad-Exfiltration: Defender’s average utility
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Figures 4 and 5 show that all of our algorithms obtain higher defender expected util-
ity than the three baseline algorithms. Further, the greedy algorithms—ORANI-AttG,
ORANI-G, and ORABI-AttG, ORABI-G—are shown to consistently perform well
on all the ISP network topologies compared to the optimal ones—ORANI and ORABI
respectively. In particular, the average expected defender utility obtained by ORANI-G
is only ~ 3% lower than ORANI on average over the 10 network topologies.

7 Summary

Many computer networks have suffered from botnet data exfiltration attacks, leading
to a significant research emphasis on botnet defense. Our Stackelberg game model
for the botnet defense problem accounts for the strategic response of cyber-criminals
to deployed defenses. We propose two double-oracle based algorithms, ORANI and
ORABI, to compute optimal defense strategies with respect to data uni-exfiltration and
broad-exfiltration formulations, respectively. We also provide greedy heuristics to ap-
proximate the defender and the attacker best-response oracles. We conduct experiments
based on both random scale-free graphs and 10 real-world ISP network topologies,
demonstrating advantages of our game-theoretic solution compared to previous strate-
gies.
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