
Combining Graph Contraction and Strategy Generation
for Green Security Games

Anjon Basak1 Fei Fang2 Thanh Hong Nguyen2 and Christopher Kiekintveld1

1 abasak@miners.utep.edu, cdkiekintveld@utep.edu
University of Texas at El Paso,

500 W University Ave, El Paso, TX 79902
2 feifang@usc.edu, thanhhng@usc.edu

University of Southern California, 941 Bloom Walk, SAL 300
Los Angeles, CA, 90089

Abstract. Many real-world security problems can be modeled using Stackelberg
security games (SSG), which model the interactions between a defender and at-
tacker. Green security games focus on environmental crime, such as preventing
poaching, illegal logging, or detecting pollution. A common problem in green
security games is to optimize patrolling strategies for a large physical area such
as a national park or other protected area. Patrolling strategies can be modeled as
paths in a graph that represents the physical terrain. However, having a detailed
graph to represent possible movements in a very large area typically results in an
intractable computational problem due to the extremely large number of potential
paths. While a variety of algorithmic approaches have been explored in the liter-
ature to solve security games based on large graphs, the size of games that can
be solved is still quite limited. Here, we introduce abstraction methods for solv-
ing large graph-based security games and integrate these methods with strategy
generation techniques. We demonstrate empirically that the combination of these
methods results in dramatic improvements in solution time with modest impact
on solution quality.

Keywords: security, green security, abstraction, contraction, game theory

1 Introduction

We face many complex security threats with the need to protect people, infrastructure,
computer systems, and natural resources from criminal and terrorist activity. A com-
mon challenge in these security domains is making the best use of limited resources
to improve security against intelligent, motivated attackers. The area of green security
focuses on problems related to protecting wildlife and natural resources against illegal
exploitation, such as poaching and illegal logging. Resource limitations are particularly
acute in fighting many types of environmental crime, due to a combination of limited
budgets and massive areas that need surveillance and protection. For example, it is
common for small numbers of rangers, local police, and volunteers to patrol protected
national parks that may cover thousands of square miles of rugged terrain [22].

Work on green security games [7, 11] has proposed formulating the problem of find-
ing optimal patrols to prevent environmental crime as a Stackelberg security game [25].
In these games, the defender (e.g., park ranger service) must decide on a randomized
strategy for patrolling the protected area, limited by the geographic constraints and the
number of available resources. The attacker (e.g., poacher) selects an area of the park
to attack based on the intended target and knowledge of the typical patrolling strategy
(e.g., from previous observations and experience). Green security games are used to
find randomized patrolling strategies that maximize environmental protection given the
resources available.

Green security games typically model the movement constraints for the defender pa-
trols using a graph representing the physical terrain. Unfortunately, this leads to a major
computational challenge because the number of possible paths for the defender grows
exponentially with the size of the graph. Enumerating all possible combinations of paths
for multiple resources makes the problem even more intractable [29, 35]. Several algo-
rithms have been proposed in the literature to solve these games more efficiently [24,
28]. Most of these rely on incremental strategy generation (known as double oracle
algorithms, or column/constraint generation) to solve an integer programming formula-
tion of the problem without enumerating the full strategy space. The most recent appli-
cation called PAWS [10] approaches the scalability issue by incorporating cutting plane
and column generation techniques.

Here, we take a new approach that combines strategy generation methods with au-
tomated game abstraction methods based on graph contraction. The idea of using auto-
mated abstraction has been very successful in solving other types of very large games,
such as computer poker [16, 17, 19, 20, 40]. The basic idea of our game abstraction is
motivated by graph contraction techniques used to speed up pathfinding and other com-
putations on graphs. When we apply graph contraction to a green security game, it
dramatically reduces the strategy space for the defender, leading to lower solving time.
To improve scalability even further we integrate graph contraction with strategy gen-
eration to create a new class of algorithms capable of solving very large green secu-
rity games. We evaluate our new algorithms on graph-based security games motivated
by the problems encountered in green security domains, including some based on real
world data sets. The experiments show that we can dramatically improve solution times
by using abstraction in combination with strategy generation, leading to high-quality
approximations within seconds even for graphs with a thousand nodes.

2 Related Work

The first approach to compute security resource allocations was to find a random-
ized strategy after enumerating all possible resource allocations [29], which is used
by the Los Angeles Airport Police in an application called ARMOR [30]. A more com-
pact form of security game representation was used [25] to develop a faster algorithm
(IRIS [35]), which is used for scheduling by the Federal Marshal Service (FAMS).
ASPEN [24] was introduced to deal with the exponential size of games with complex
scheduling constraints by using a branch-and-price approach. Most recently, to tackle
more massive games an approach based on cutting planes was introduced [38] to make

the solution space more manageable. Game theoretic algorithms are also used to secure
ports [32] and trains [39]. Recently, successful deployment of game theoretic applica-
tions motivated researchers to use game theory in green security domains [7, 21, 37].
This led to new game model called GSG [11]. Assumptions about the attacker being
able to fully observe the defender strategy can be unrealistic in some cases, so partial
observability and bounded rationality have been introduced to make the attacker model
better fit the practice. Defender payoff uncertainty has also been addressed with these
issues in an algorithm called ARROW [28]. Despite the models and algorithms intro-
duced, how to handle the large strategy space in GSGs remains a challenge. In this
paper, we introduce abstraction techniques to address this problem. Many abstraction
techniques have been developed for extensive form games with uncertainty including
both lossy [31] and lossless [18] abstraction. There has been some work which gives
bounds on the error introduced by abstraction [26]. There are also imperfect recall ab-
stractions that consider hierarchical abstraction [8] and Earth mover’s distance [13].

Graph contraction techniques [14] have been used to achieve fast routing in road
networks, where contraction acts as a pre-processing step. This method has been im-
proved using fast bidirectional Dijkstra searches [34, 15]. A time-dependent contrac-
tion algorithm has also been introduced for time-dependent road networks [5]. Graph
contraction has also been used in imperfect information security games with infinite
horizon where the area is patrolled by a single robot [4]. In this paper, we leverage
insights from graph contraction to handle the large strategy space in GSGs. Another
recent closely related work [23] uses cut-based graph contraction and also column gen-
eration approach for restricting the strategy space, but for a different type of security
model based on checkpoint placement for urban networks.

3 Domain Motivation

Illegal activities such as poaching pose a major threat to biodiversity across all types of
habitats, and many species such as rhinos and tigers. A report [1] from the Wildlife Con-
servation Society (WCS) on May 2015 stated that the elephant population in Mozam-
bique has shrunk from 20, 000 to 10, 300 over the last five years. Elephants were re-
cently added to the IUCN Red List [2]. Marine species also face danger due to illegal
fishing and overfishing, causing harm to the people of coastal areas who depend on
fishing for both sustenance and livelihood. According to World Wide Fund for Nature
(WWF), the global estimated financial loss due to illegal fishing is $23.5 billion [3]. Or-
ganizations like WCS are studying strategies for combating environmental crime that
include patrols of both land and sea habitats to detect and deter poaching. PAWS [10] is
a new application based on green security games that helps to design patrolling strate-
gies to protect wildlife in threatened areas. The area of interest is divided into grid cells
that capture information about the terrain, animal density, etc. Each grid cell is a poten-
tial target for the poachers. The patroller plans a route to protect the targets along a path.
However, if the grid cell is too large (e.g., 1km by 1km) or the terrain is complex, it is
very difficult for the patroller to patrol even a single grid cell without any detailed path
provided in the cell. Therefore, a fine-grained discretization is often required, leading to
a large number of targets and a exponential number of patrol routes that existing solvers

cannot handle. PAWS handles this problem by pre-defining a limited set of routes based
on domain knowledge of features like ridgelines and streams, which can be found based
on elevation changes. We also observe that in many green security domains, there is a
high variance in the importance of the targets. For example, Figure 1(a) shows the mean
number of elephants in each area of a grid representing the Queen Elizabeth National
Park in Uganda [12]. There are many cells that have no animal count at all, and if
there is minimal activity it is very inefficient to consider these areas as targets to patrol
(or poach). This motivates our abstraction-based approach to make it computationally
feasible to directly analyze high-fidelity maps for green security without preprocessing.

(a) Mean numbers of
elephants/0.16km2 in Queen
Elizabeth National Park, Uganda

(b) A graph representation of a grid-based GSG
(a patrolling path is shown in red).

Fig. 1. Domain example and game model.

4 Game Model and Basic Solution Technique

A typical green security game (GSG) model is specified by dividing a protected wildlife
area into grid based cells, as shown in Figure 1(a). Each cell is considered a potential
target ti where an attacker could attempt a poaching action. We transform this grid-
based representation into a graph as shown in Figure 1(b). Each node represents a target
ti.

Definition 1. A GSG Graph is a graph G = (V,E) where each node ti ∈ V is associ-
ated with a patrolling distance sti and each edge eij ∈ E is associated with a traveling
distance d(i, j). There exists a base node B ∈ V . A feasible patrolling path is a se-
quence of consecutive nodes that starts and ends with B, with a total distance that does
not exceed the distance limit dmax.

For example, in Figure 1(b), st1 = 100m. This means that to protect target t1, the
patroller needs to patrol for a distance 100m within target t1. d(2, 3) = 1km indicates

the distance from target t2 to t3. The defender patrols to protect every target on the
patrolling path. Therefore, the total distance of a path is the sum of patrolling and travel
distance. Typically the patrol starts in a base station and ends in the same base station.
For example, a patrolling path is shown in Figure 1(b) where the patrol starts at t0 and
traverses through targets t1 → t6 → t9 → t4 and ends back in target t0.

The defender has a limited number of resources R, each of which can be assigned
to at most one patrolling path that covers a set of targets t ∈ T . So the defender’s pure
strategies are the set of joint patrolling paths Jm ∈ J . Each joint patrolling path Jm
assigns each resource to a specific path. We denote a patrolling path by pk and the base
target by tb. The length of pk is constrained by dmax.

We use a matrix P = PJmt = (0, 1)
n to represent the mapping between joint

patrolling paths and the targets covered by these paths, where PJmt represents whether
target t is covered by the joint patrolling path Jm. We define the defender’s mixed
strategy x as a probability distribution over the joint patrolling paths J where xm is the
probability of patrolling a joint patrolling path Jm. The coverage probability for each
target is ct =

∑
Jm

PJmtxm.
If target t is protected then the defender receives reward U c

d(t) when the attacker
attacks target t, otherwise a penalty Uu

d (t) is given. The attacker receives reward Uu
a (t)

if the attack is on an area where the defender is not patrolling, or penalty U c
a(t) if

the attack is executed in a patrolled area. These values can be based on the density
of the animals in the area attacked, as a proxy for the expected losses due to poaching
activities. We focus on the zero-sum game case where U c

d(t) = U c
a(t) = 0 and Uu

d (t) =
−Uu

a (t). In the rest of the paper, we also refer to Uu
a (t) as the utility of target t.

We use the Stackelberg model for GSG. In this model, the patroller, who acts as
defender, moves first and the adversary observes the defender’s mixed strategy and
chooses a strategy afterwards. The defender tries to protect targets T = t1, t2, ..., tn
from the attackers by allocating R resources. The attacker attacks one of the T targets.
We focus on the case where the attacker is perfectly rational and compute the Strong
Stackelberg Equilibrium (SSE) [27, 6, 36], where the defender selects a mixed strategy
(in this case a probability distribution x over joint patrolling paths Jm), assuming that
the adversary will be able to observe the defender’s strategy and will choose a best
response, breaking ties in favor of the defender. Given a defender’s mixed strategy x
and the corresponding coverage vector c, the expected payoff for the attacker is

Ua(c, t) = max
t∈T

{(1− ct)U
u
a (t)} (1)

It is possible to solve this problem by enumerating all feasible joint patrolling
paths [24]. In the case of zero-sum games, the optimal patrolling strategy for the de-
fender can be determined by solving the following linear program (LP).

min
x,k

k (2)

(1− Px)Uu
a ≤ k (3)∑

i
xi ≤ 1 (4)

x ≥ 0 (5)

Equation 2 represents the objective function, which minimizes the expected payoff for
the attacker, or equivalently, maximizes the expected payoff for the defender. Con-
straint 4 makes sure that the probability distribution over the joint patrolling paths does
not exceed one. The solution of the LP is a probability distribution x over the joint
patrolling paths J , and this is the strategy the defender commits to. The attacker will
choose the target with highest expected utility, as shown in Constraints 3. This formula-
tion does not scale well to large games due to the exponential number of possible joint
paths as the graph grows larger.

5 Solving GSG with Abstraction

Our approach combines the key ideas in double oracle methods and graph contraction.
There are often relatively few important targets in a GSG. For example, the key regions
of high animal density are relatively few, and many areas have low density, as shown in
Figure 1(a). This suggests that many targets in the game can be removed to simplify the
analysis while retaining the important features of the game.

We describe our approach in three stages. First, we describe our method for con-
tracting a graph by removing nodes and calculating a new set of edges to connect these
nodes that retains the shortest path information. This contracted graph can be solved
using any existing algorithm for GSG; as a baseline, we use the LP on the full set of
paths. Second, we describe a single-oracle approach for finding the set of targets that
must be included in the contracted game. This method restricts the set of targets to
a small set of the highest-valued targets, and iteratively adds in additional targets as
needed. Finally, we describe the double-oracle algorithm. This uses the same structure
as the single oracle, but instead of solving each restricted game optimally, we restrict
the defender’s strategy space and use heuristic oracles to iteratively generate paths to
add to the restricted game.

5.1 Graph Contraction

We first describe how we construct an abstracted (simplified) graph for a restricted set
of target nodes. Essentially, we remove all of the nodes except the restricted set, and
then add additional edges to make sure the shortest paths are preserved.

Many graph contraction procedures used in pathfinding remove nodes one by one,
but we use a contraction procedure that removes the nodes in one step. Suppose we have
decided to remove the set of nodes Tu ∈ T . We find all the neighbors of set Tu, denoted
as V . Next we try to find the shortest paths between each pair of nodes (vi, vj) ∈ V
that traverse through nodes Tu where vi and vj are not adjacent. We use Floyd-Warshall
algorithm [9] to find the shortest paths for all the nodes in V using only nodes Tu. If
the length of the shortest path does not exceed dmax, we add an edge (vi, vj) in the
contracted graph, with distance equals the length of the shortest path.

Theorem 1. The contraction process described in Algorithm 1 preserves the shortest
paths for any pair of nodes that are not removed in the original graph. Formally, given
a graph G = (T,E) and a subset of nodes Tu, Algorithm 1 provides a contracted

(a) Unnecessary nodes 5, 6, 9 (b) Edge 8− > 5− > 2 to be
removed

(c) New shortcut path 8− > 2 (d) Final graph after contraction
of node 5, 6, 9

Fig. 2. Instant Contraction procedure for different nodes

graph G′ = (T \ Tu, E
′) and the length of the shortest path for any pair of nodes

(vi, vj) ∈ T \ Tu in G′ is the same as in G.

Proof sketch: First, ∀(vi, vj) ∈ T \ Tu, the shortest path in G′ can be easily re-
mapped to a path in G, and thus is a candidate for the shortest path in G. Therefore,
the shortest path in G′ is no shorter than that in G. Second, ∀(vi, vj) ∈ T \ Tu, it
can be shown that the shortest path in G can also be mapped to a path in G′. Let
P = t1 → t2 → ... → tK be the shortest path between vi and vj in G (t1 = vi,
tK = vj). Let tk1 and tk2 be any two nodes in P such that tk1 ∈ V , tk2 ∈ V and
tk ∈ Tu,∀k1 < k < k2. Then P̄ = tk1 → tk1+1 → . . . → tk2 has to be a shortest path
linking tk1 and tk2. Since tk1 and tk2 are in V and P̄ only traverses through nodes in
Tu, an edge (tk1, tk2) with the same length of P̄ is added to G′ according to Algorithm
1. Therefore, P can be mapped to a path P ′ in G′ with the same length. As a result, the
shortest path in G is no shorter than that in G′. Combine the two statements, the length
of the shortest path for any pair of nodes (vi, vj) ∈ T \Tu in G′ is the same as in G. ⊓⊔

Figure 2 shows how the contraction works. Figure 2(a) shows the removed nodes
Tu = (5, 6, 9). The neighbor set of Tu is V = (0, 1, 2, 4, 7, 8, 10, 12, 13, 14). For con-
venience we show a breakdown of the step in Figure 2(b) where the edge (8 → 5 → 2)
is shown and in Figure 2(c) where the edge (8 → 5 → 2) is replaced with shortcut
8 → 2. Figure 2(d) shows the final stage of the graph after contracting nodes 5, 6, 9.
Algorithm 1 shows pseudocode for the contraction procedure.

Algorithm 1 Instant Contraction Procedure
1: procedure INSTANTCONTRACTGRAPH ▷
2: G← Graph() ▷ Initiate the graph to contract
3: nd ← ContractedNodes() ▷ Get the nodes to contract
4: nnei ← ComputeNeighbors(nd)
5: apsp← AllPairShortestPath(G,nd, paths)
6: for v ← neighbors.pop() do
7: for v′ ← neighbors.pop() do
8: if v ̸= v

′
¬adjacent(v, v′) then

9: d← apsp[v][v′]
10: path← getPath(paths, v, v′)
11: if d ≤ dmax then ▷ if d is less than the distance limit
12: UpdateNeighbors(v, v′, path, d)
13: v.AddNeighbor(v′, path)
14: v′.AddNeighbor(v, path)

15: RemoveAllContractedNodes(G,nd)

Reverse Mapping When we solve a GSG with a contracted graph (e.g., using the
standard LP), the paths found in the solution must be mapped back to the paths in the
original graph so they can be executed. This is because a single edge in the abstract path
can correspond to a path of several nodes in the original graph. In algorithm 1, when
the contracted graph is constructed, the corresponding path in the original graph of each
edge being added is already recorded, and is the basis the reverse mapping.

5.2 Single-Oracle Algorithm Using Abstraction

Algorithm 2 Single Oracle With Abstraction (SO)
Input: original graph G, target utility Ui, ∀i ∈ V
Output: defender mixed strategy x and coverage vector c
1: T̄=GreedyCoverR(G) ▷ Find initial set of targets to be considered in the restricted graph
2: Set current graph Gc = G
3: repeat
4: Gt =Contract(Gc, T̄) ▷ Contract graph
5: (u, xt, ct) = Solve(Gt) ▷ Solve restricted graph, get attacker’s expected utility u,

defender strategy xt, coverage vector ct
6: v = AttEU(Gc, ct) ▷ Calculate actual attacker’s expected utility on current graph
7: if v == u then
8: Break
9: Gc =ContractWithThreshold(Gc, u) ▷ Remove targets with utility < u

10: if Gc is small enough then
11: (u, x, c) = Solve(Gc) ▷ Solve Gc directly
12: Break
13: Add at least one additional target into T̄
14: until 1 < 0

We begin by describing a basic “single oracle” algorithm that restricts only the
attacker’s strategy space (i.e., the number of targets). The basic observation that leads
to this approach is based on the notion of an attack set. In the Stackelberg equilibrium
solution to a security game, there is a set of targets that the attacker is willing to attack;
this is the set that the defender must cover with positive probability. All other target have
maximum payoffs lower than the expected payoff for the attacker in the equilibrium
solution, so the attacker will never prefer to attack one of these targets, even though it
is left unprotected. If we could determine ahead of time which set of targets must be
covered in the solution, we could simply apply graph contraction to this set of targets,
solve the resulting game, and be guaranteed to find the optimal solution.

Our approach is to start by considering only a small set of targets T̄ , perform con-
traction, and solve the abstracted game for this small set of targets. If the attacker ex-
pected value in the solution is lower than the value the attacker can get from attacking
the best target that was not included in the restricted game, we add at least one (and
possible more than one) additional target to the restricted game and repeat the process.
Targets are added in decreasing order of the attacker’s payoff for attacking the target if
it is not protected at all. If we solve a restricted game and the attacker’s expected value
is greater than the unprotected values of all remaining targets, we can terminate having
found the correct attack set and the optimal solution.

The initial set of targets to be considered is determined by GreedyCoverR (GCR).
First consider the case where there is only one patroller. We use an algorithm named
GC1 to find a greedy patrolling path. GC1 greedily inserts targets to the path and asks
the patroller to take the shortest path to move from one target to the next target. The
targets are added sequentially in a descending order of the target utility. GC1 terminates
when the distance limit constraint is violated. GCR calls GC1 R times to find greedy
paths for R patrolling resources. If the greedy paths can cover the top K targets, GCR
returns the set of targets whose utility is no less than the utility of the (K + 1)th target.
This is because a restricted graph with the top K targets can be perfectly protected given
the greedy paths, and therefore the patroller can try to protect more targets.

Algorithm 2 shows psuedocode for this procedure. Clearly, u is non-decreasing and
v is non-increasing with each iteration. For a value of u in any iteration, we can claim
that any target whose utility is smaller than u can be safely removed as those targets
will never be attacked (attacker will not deviate if those targets are added to the small
graph). The function Contract(G, T̄) completes two tasks. First, it removes targets
that are not in T̄ , and second, refine the graph by removing dominated targets. In each
iteration, u provides a lower bound of the attacker’s expected utility in the optimal
solution (optimal defender strategy) and v provides an upper bound. If v == u, it
means current solution is the optimal. Line 13 adds at least one target to the set T̄ .
Figure 3 illustrates the algorithm on an example graph. Figure 3 illustrates Algorithm 2
with an example.

5.3 Double Oracle Graph Contraction

The single oracle methods can prevent us from having to solve the full graph with
the complete set of targets. However, it still assumes that we use an exact, exhaustive
method to solve the smaller abstracted graphs. For very large problems, this may still

(a) (b)

(c) (d)

Fig. 3. Example of Single-oracle Algorithm. The numbers shown in the nodes represent the index
and the utility of the target. Node 10 is the base node and the defender has only one patrol
resource. 3(a): Original graph (distance limit= 4), which is also the initial current graph Gc. Red
lines indicate the greedy route, which determines T̄ = {10, 9, 8}. 3(b): First restricted graph Gt

and the corresponding optimal defender strategy (taking the route 10→ 8→ 10 with probability
0.47), which leads to u = 4.23 and v = 7. 3(c): Updated current graph Gc, which is achieved by
removing all nodes with utility≤ u (i.e., nodes 2,3,4) and then removing dominated targets (node
7 is dominated by node 9 and node 6 is dominated by node 8). 3(d): Second restricted graph Gt

with updated T̄ = {10, 9, 8, 5}, which leads to u=v=4.58 and the termination of the algorithm.

be too slow and use too much memory. To address this we introduce the Double Ora-
cle method that also restricts the defender’s strategy space when solving the abstracted
graphs. This basic idea (a version of column generation) has been widely used in secu-
rity games literature [24, 33]. Algorithm 3 outlines the procedure.

The outer loop is based on the single oracle method, and gradually adds targets to
the restricted set. However, each time we solve the problem for a new contracted graph,
we also start from a restricted set of possible paths for the defender. We then solve the
“Master” problem (i.e., the original LP), but only with this restricted set of paths. If
the solution to this restricted problem already implies that we need to add more targets
(because the attacker’s payoff is lower than the next best target), we do so and start over
with a new, larger contracted graph. Otherwise, we solve a “Slave” problem to find at
least one new path to add to the restricted problem, and then go back to solve the Master
again. This process terminates when we cannot add any additional paths to the Master
that would improve the payoff for the defender (and lower it for the attacker).

To guarantee that we have found the optimal solution, the slave should always return
a new path to add that has the minimum reduced cost. The reduced cost of a new joint
path Jm is rJm = −

∑
i yiU

u
a (i)PJm,i−ρ, where yi refers to the dual variable of the ith

constraint in the original LP (3), and ρ is the dual variable of constraint 4. The joint path
with the most negative reduced cost improves the objective the most. If the reduced cost
of the best new joint path is non-negative, then the current solution is optimal. In fact,

Algorithm 3 Double Oracle With Abstraction (DO)
Input: original graph G, target utility Ui, ∀i ∈ V
Output: defender mixed strategy x and coverage vector c
1: Sort the targets according to attacker’s reward Tsrt=sortTargets()
2: Get the list of initial targets using GCR from Tsrt, Tcur = GreedyCoverR()
3: repeat
4: Set temporary graph where Gt and all targets ti ∈ Gt is also in Tcur

5: Generate initial set of paths using GreedyPathR, scur = GPR(Gt)
6: repeat
7: Solve SSG for Gt, get mixed strategy xt, coverage vector ct, and attacker’s expected

utility u = AttEU(Gt, ct)
8: Calculate actual attacker’s expected utility on original graph v = AttEU(G, ct)
9: if u < v then

10: Break
11: Generate paths using st = GreedyPathR()
12: Append paths scur = scurUst
13: if st == 0 then
14: Break
15: until 1 < 0
16: Find attack target in G attackTarget(G, ct)
17: Add next n e.g. n = 5 targets to Tcur from Tsrt − Tcur

18: until u >= v and no more path can be added to scur

finding the joint path with the lowest reduced cost is equivalent to solving the following
combinatorial optimization problem:

Definition 2. In the coin collection problem, a GSG graph G = (V,E) is given, and
each node ti is associated with a number of coins, denoted as Yi. When a node is
covered by a patrolling path, the coins on the node will be collected and can be collected
at most once. The goal is to find a feasible joint path that collects the most number of
coins.

When Yi = yiU
u
a (i), the optimal solution of the coin collection problem is the joint

path with the lowest reduced cost. The coin collection problem is NP-hard based on
a reduction form the hamiltonian cycle problem (details omitted for space). Designing
efficient algorithms for finding the optimal or a near-optimal solution of the coin collec-
tion problem can potentially improve the scalability of using the double oracle method
to find the exact optimal solution to GSG. However, here we are interested in maximiz-
ing scalability for the DO approach combined with abstraction, so we designed heuristic
methods for the slave that are very fast, but will not necessarily guarantee the optimal
solution. More specifically, we use Algorithm 4 as a heuristic approach for solving the
coin collection problem.

6 Experimental Evaluation

We present a series of experiments to evaluate the computational benefits and solution
quality of our solution methods. We begin by evaluating the impact of abstraction in

Algorithm 4 GreedyPathR (GPR)
1: procedure GREEDYCOVER-COINCOLLECTION

2: Initialize best joint path set Jbest

3: for iter = 0 to 99 do
4: if iter == 0 then
5: T list← sort(T \B, Y) ▷ Get a sorted list with decreasing Yi

6: else
7: T list← shuffle(T \B) ▷ Get a random ordered list
8: Yr ← Y ▷ Initialize the coins remained
9: for j = 1 to R do

10: Initialize the current patrol route Qj

11: for each target ti in T list with Yr(i) > 0 do ▷ Check all uncovered targets
12: Insert ti to Qj while minimizing the total distance
13: if total distance of Qj exceeds dmax then
14: remove ti from Qj

15: for each target ti in Qj do
16: Yr(i) = 0

17: if {Q1, ..., QR} collects more coins than Jbest then
18: update Jbest

19: return Jbest

isolation, and then provide a comparison of many different variations of our methods on
synthetic game instances. Finally, we test our best algorithms on large game instances
using real-world data, demonstrating the ability to scale up to real world problems.

6.1 Graph Abstraction

We begin by isolating the effects of abstraction from the use of strategy generation
(using either the single or double-oracle framework). The baseline method solves a
graph-based security game directly using the standard optimization formulation, enu-
merating all joint patrolling paths directly on the full graph. We compare this to first
applying our graph abstraction method to the game, and then using the same solver
to find the solution to the abstracted graph. We compare the methods on both solution
quality and runtime. To measure the amount of error introduced we introduce an error
metric denoted by epsilon(ϵ) = [Ud(c,a)−U ′

d(c,a)]
Ud(c,a)∗100 , where U ′

d(c, a) is the expected payoff
for defender when using contraction and Ud(c, a) ≥ U ′

d(c, a).
For our experiments we used 100 randomly generated, 2-player security games in-

tended to capture the important features of green security games. Each game has 25
targets (nodes in the graph). Payoffs for the targets are chosen uniformly at random
from the range −10 to 10. The rewards for the defender or attacker are positive and
the penalties are negative. We set the distance constraint to 6. In the baseline solution
the is no contraction. For different levels of abstraction the number of contracted nodes
(#CN) varies between the values: (0, 2, 5, 8, 10). Figure 4 shows us how contraction
affects contraction time (CT), solution time (ST) and reverse mapping time (RMT). CT
only consider the contraction procedure, ST considers the construction of the P matrix

and the solution time for the optimization problem, and RMT considers time to generate
the P matrix for the original graph from the solution to the abstracted game.

Fig. 4. Effect of contraction on times CT, ST and RMT

We first note that as the graph becomes more contracted ST takes much less time,
as shown in Figure 4. The next experimental result presented in Figure 5 shows how
much error is introduced as we increase the amount of contraction and the amount of
time we can save by using contraction.

Fig. 5. Effect of contraction on Epsilon and runtime saved

6.2 Comparison of Solution Algorithms

We now present results comparing the solution quality and runtimes of different ver-
sions of our solution algorithm on graph-based security games of increasing size. We fo-
cus on grid-based graphs, which are typical of open-area patrolling problems like those
in wildlife protection domains. For the experiments we generated 20 sample games for
each size of game. For simplicity, the distance between every node and it’s neighbors is
set to 1. The patroller has two resources to conduct patrols in each case, and the distance
constraint on the paths varies depending on the game size.

All of the games are zero-sum. We randomly assign payoffs to the targets. In wildlife
protection, it is typical for there to be a relatively small number of areas with high
densities of animal/poaching activity. To reflect this low density of high-valued targets,
we partition the targets into high and low value types, with values uniformly distributed
in the ranges of [0, 4] and [8, 10], respectively. We assign 90% of the targets values
from the low range, and 10% values from the high range.

We break down the runtime into three different components: 1) The time to contract
graphs, ContractionTime (CT), 2) The time to solve optimization problems, Solving-
Time (ST), and 3) the total runtime, TotalTime (TT). All runtimes are given in millisec-
onds. EPd denotes the expected payoff for defender.

We compare out methods to two baselines that solve the original optimization prob-
lem with no contraction by enumerating joint patrolling paths. The first one enumerates
all paths and directly solves the problem, while the second algorithm uses column gen-
eration to iteratively add joint paths (but does not use contraction). All algorithms that
use the path sampling heuristic generate 1000 sample paths. We considered different
combinations of the heuristics for both the Single Oracle (SO) and Double Oracle (DO)
formulations. In Double Oracle, there are three modules where heuristic approaches can
be used: 1) selecting the initial set of targets for the restricted graph; 2) selecting initial
paths for solving the restricted graph; 3) in column generation, adding paths that can
improve the solution for the restricted graph. The first two modules are also needed in
Single Oracle. We discuss the heuristic approaches tested for these three modules. First,
for selecting the initial set of targets, we test GreedyCover1 (GC1) and GreedyCoverR
(GCR). Second, for selecting initial paths for the restricted graph, we enumerate all the
paths (denoted as All paths) for small scale problems. In addition, we test GreedyPathR
(GPR) and GreedyPath3 (GP3). When using GPR for selecting initial paths, we use
target utility as the number of coins on the targets. GreedyPath3 (GP3) initialize the
set of paths by listing the shortest paths from the base to a target and back to base for
each target. Third, to add new paths in column generation, we test GPR and random
sampling of paths (denoted as sample path).

We present the runtime and solution quality data for our algorithms as we increase
the size of the game, considering game sizes of 25, 50, 100 and 200 targets. Table 1 2 3
and Table 4 show the results for each of these four cases, respectively. We had a mem-
ory limitation of 16 GB, and many of the algorithms were not able to solve the larger
problems within this memory limit. We include only the data for algorithms that suc-
cessfully solved all of the sample games for a given size within the memory limit.

We note that the baseline algorithms are only able to solve the smallest games within
the memory limit. Even for these games, the single and double oracle methods using
abstraction are all dramatically faster, and many of the variations come close to finding
the optimal solutions. As we scale up the game size, the single oracle methods are
not able to solve the game within the memory limit. For the largest games, the double
oracle methods without sampled paths are still able to solve the problems to find good
solutions, and do so very quickly. The third and fourth variation consistently show the
best overall performance, with a good tradeoff between solution quality and speed.

We conduct a second experiment on large, 200-target graphs with the same distance
and resource constraints but a different distribution of payoffs. For this experiment we

Algorithm #Targets dmax #remaining targets EPd CT ST TT
DO + GC1 + GPR + LP + GPR 25 8 13 6.759 2 11 69
DO + GCR + GPR + LP + GPR 25 8 14 5.8845 2 12 65
DO + GC1 + GP3 + LP + GPR 25 8 12 7.2095 3 22 44
DO + GCR + GP3 + LP + GPR 25 8 10 7.1865 2 15 38

DO + GC1 + GPR + LP + Sample Paths 25 8 14 7.481 2 14 165
DO + GCR + GPR + LP + Sample Paths 25 8 14 7.3955 2 14 205
DO + GC1 + GP3 + LP + Sample Paths 25 8 14 7.605 3 97 267
DO + GCR + GP3 + LP + Sample Paths 25 8 14 7.587 2 99 283

SO + GC1 + IC + All paths + LP 25 8 12 7.702 1 105 632
SO + GCR + IC + All paths + LP 25 8 14 7.702 2 135 827

SO + GCR + IC + GP3 + LP 25 8 11 2.05 4 10 33
No contraction + No column generation 25 8 25 7.702 0 1417 14140

No contraction + Column generation 25 8 25 7.702 0 1480 14661
Table 1. Performance comparison, #target=25 and dmax = 8

Algorithm #Targets dmax #remaining targets EPd CT ST TT
DO + GC1 + GPR + LP + GPR 50 20 30 5.018 9 1313 1981
DO + GCR + GPR + LP + GPR 50 20 29 5.8195 7 461 790
DO + GC1 + GP3 + LP + GPR 50 20 28 7.4945 14 187 292
DO + GCR + GP3 + LP + GPR 50 20 27 7.6415 8 162 261

DO + GC1 + GPR + LP + Sample Paths 50 20 30 5.794 9 280 4154
DO + GCR + GPR + LP + Sample Paths 50 20 29 6.4185 6 167 3925
DO + GC1 + GP3 + LP + Sample Paths 50 20 20 6.8935 6 2194 4499
DO + GCR + GP3 + LP + Sample Paths 50 20 23 6.777 6 1570 4330

BA + GCR + IC + GP3 + LP 50 20 22 0.75 5 26 1113
Table 2. Performance comparison, #target=50 and dmax = 20

Algorithm #Targets dmax #remaining targets EPd CT ST TT
DO + GC1 + GPR + LP + GPR 100 29 51 6.5135 51 5753 8433
DO + GCR + GPR + LP + GPR 100 29 51 6.193 38 2170 3392
DO + GC1 + GP3 + LP + GPR 100 29 48 7.0545 52 766 1084
DO + GCR + GP3 + LP + GPR 100 29 47 7.2435 37 659 1017

DO + GC1 + GPR + LP + Sample Paths 100 29 50 6.098 46 1792 25017
DO + GC1 + GP3 + LP + Sample Paths 100 29 20 5.4735 13 2200 4420
DO + GCR + GP3 + LP + Sample Paths 100 29 30 5.0745 12 2596 5864

Table 3. Performance comparison, #target=100 and dmax = 29

Algorithm #Targets dmax #remaining targets EPd CT ST TT
DO + GC1 + GPR + LP + GPR 200 45 85 6.5355 345 10360 17904
DO + GCR + GPR + LP + GPR 200 45 83 6.501 287 5307 9657
DO + GC1 + GP3 + LP + GPR 200 45 72 6.551 270 2658 4156
DO + GCR + GP3 + LP + GPR 200 45 70 6.656 189 2274 3603

Table 4. Performance comparison, #target=200 and dmax = 45

have three payoff partitions, with the value ranges: [0, 1], [2, 8], [9, 10]. The ratio of
target values in these ranges is 80%, 10% and 10%, respectively. Table 5 shows the
results. In comparison with Table 5, the DO algorithms (especially variations 3 and 4)
are even faster, though in this case variation 1 and 2 do result in higher solution qualities.
The distribution of payoffs has a significant effect on the algorithm performance, and as
expected, the DO variations with abstraction are most effective when there is a relatively
small fraction of important targets and a large number of unimportant ones.

Algorithm #Targets dmax #remaining targets EPd CT ST TT
DO + GC1 + GPR + LP + GPR 200 45 44 8.621 110 8177 12363
DO + GCR + GPR + LP + GPR 200 45 43 8.6085 73 3796 5275
DO + GC1 + GP3 + LP + GPR 200 45 40 7.7445 96 595 906
DO + GCR + GP3 + LP + GPR 200 45 40 7.7075 70 721 1058

Table 5. Performance comparison with 3 partition in payoff, #target=200 and dmax = 45

Next we present figures to visualize the runtime differences among different solu-
tion algorithms. Again, only algorithms that were able to complete within the memory
bound are shown. Figures 6(a) 6(b) and 6(c) show the TotalTime, ContractionTime and
SolvingTime comparison respectively among Double Oracle methods and Basic Ab-
straction Methods with the baseline algorithms. The figures show the same patterns of
scalability discussed previously.

(a) TotalTime(TT). (b) ContractionTime(CT).

(c) SolvingTime(ST).

Fig. 6. Runtime comparison among solvers.

Next we visualize the solution quality of our proposed algorithms in comparison
with the baseline algorithms. The experiment setup is the same as the previous exper-
iment. Figure 7 shows that we were able to compare the solution quality properly for
#target = 25 since the baseline algorithms were able to finish. The Basic Abstraction
methods except the one which uses GP3 were able to compute the exact solution. All of
the Double Oracle methods are suboptimal, but typically provide good approximations.

Fig. 7. Solution quality evaluation

For the final experiments we used real world data. We test our algorithms on grid-
based graphs constructed from elevation and animal density information from a con-
servation area in Southeast Asia. The area is discretized into a grid map with each grid
cell of size 50m by 50m. The problem has a large number of targets and feasible pa-
trol routes when considering a practical distance limit constraint (often 5km-20km). We
tested with four different game sizes, and the result shows that the proposed algorithm
can solve real-world scale GSGs efficiently (see Table 6). Only DO4 was used for this
experiment since it provides superior performance than others. The payoff range for the
targets were [0, 90].

7 Conclusion

Green security games are being used to help combat environmental crime by improv-
ing patrolling strategies. However, the applications of GSG are still limited due to the
computational barriers of solving large, complex games based on underlying graphical
structures. Existing applications require manual pre-processing to come up with suit-
ably abstract games that can be solved by existing solvers. We address this problem

#targets dmax #remaining targets EPd CT ST TT
100 5000 56 25.83 121 303 789
200 8000 88 25.79 67 926 1678
500 15000 92 18.56 1928 1107 4403
1000 18000 100 16.29 12302 2072 18374

Table 6. Results of using abstraction in real world data

by designing the first algorithm for solving graph-based security games that integrates
automated abstraction techniques with strategy generation methods. Our algorithm is
the first to be able to provide high-quality solutions to very large green security games
(thousands of nodes) in seconds, potentially opening up many new applications of GSG
while avoiding the need for some of the arbitrary, manual abstraction stages when gen-
erating game models. With additional work to develop fast exact slave algorithms, we
should also be able to provide exact solutions using this approach to large GSG. We also
plan to investigate approximate slave formulations with performance bounds, using ab-
straction to compute solution concepts from behavioral game theory such as quantal
response equilibrium, and applying our algorithms to real-world applications in green
security games.

Acknowledgement

We would like to thank to our partners from Rimba and Panthera for providing the real
world data set. This work was supported by the NSF under Grant No. IIS-1253950.

References

1. Govt of Mozambique announces major decline in national elephant population, May 2015.
2. The IUCN Red List of threatened species, April 2015.
3. Estimate of global financial losses due to illegal fishing, February 2016.
4. N. Basilico, N. Gatti, and F. Amigoni. Patrolling security games: Definition and algorithms

for solving large instances with single patroller and single intruder. Artificial Intelligence,
184:78–123, 2012.

5. G. V. Batz, R. Geisberger, S. Neubauer, and P. Sanders. Time-dependent contraction hierar-
chies and approximation. In Experimental Algorithms, pages 166–177. Springer, 2010.

6. M. Breton, A. Alj, and A. Haurie. Sequential Stackelberg equilibria in two-person games.
Journal of Optimization Theory and Applications, 59(1):71–97, 1988.

7. M. Brown, W. B. Haskell, and M. Tambe. Addressing scalability and robustness in security
games with multiple boundedly rational adversaries. In Decision and Game Theory for
Security, pages 23–42. Springer, 2014.

8. N. Brown, S. Ganzfried, and T. Sandholm. Hierarchical abstraction, distributed equilibrium
computation, and post-processing, with application to a champion no-limit Texas hold’em
agent. Technical report, 2014.

9. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. The floyd-warshall algorithm. Introduction
to Algorithms, pages 558–565, 1990.

10. F. Fang, T. H. Nguyen, R. Pickles, W. Y. Lam, G. R. Clements, B. An, A. Singh, M. Tambe,
and A. Lemieux. Deploying PAWS: Field Optimization of the Protection Assistant for
Wildlife Security. In Proceedings of the Innovative Applications of Artificial Intelligence,
2016.

11. F. Fang, P. Stone, and M. Tambe. When security games go green: Designing defender strate-
gies to prevent poaching and illegal fishing. In International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

12. C. Field and R. Laws. The distribution of the larger herbivores in the Queen Elizabeth
National Park, Uganda. Journal of Applied Ecology, pages 273–294, 1970.

13. S. Ganzfried and T. Sandholm. Potential-aware imperfect-recall abstraction with earth
mover’s distance in imperfect-information games. In Conference on Artificial Intelligence
(AAAI), 2014.

14. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster and
simpler hierarchical routing in road networks. In Experimental Algorithms, pages 319–333.
Springer, 2008.

15. R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. Exact routing in large road networks
using contraction hierarchies. Transportation Science, 46(3):388–404, 2012.

16. A. Gilpin and T. Sandholm. A competitive Texas Hold’em poker player via automated ab-
straction and real-time equilibrium computation. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), volume 21, page 1007, 2006.

17. A. Gilpin and T. Sandholm. Better automated abstraction techniques for imperfect informa-
tion games, with application to texas hold’em poker. In AAMAS, page 192, 2007.

18. A. Gilpin and T. Sandholm. Lossless abstraction of imperfect information games. Journal
of the ACM (JACM), 54(5):25, 2007.

19. A. Gilpin, T. Sandholm, and T. B. Sørensen. Potential-aware automated abstraction of se-
quential games, and holistic equilibrium analysis of texas hold’em poker. In Proceedings of
the Conference on Artificial Intelligence (AAAI), volume 22, page 50, 2007.

20. A. Gilpin, T. Sandholm, and T. B. Sørensen. A heads-up no-limit Texas Hold’em poker
player: discretized betting models and automatically generated equilibrium-finding pro-
grams. In AAMAS, pages 911–918, 2008.

21. W. B. Haskell, D. Kar, F. Fang, M. Tambe, S. Cheung, and E. Denicola. Robust Protection
of Fisheries with COmPASS. In AAAI, pages 2978–2983, 2014.

22. T. Holmern, J. Muya, and E. Røskaft. Local law enforcement and illegal bushmeat hunting
outside the Serengeti National Park, Tanzania. Environmental Conservation, 34(01):55–63,
2007.

23. H. Iwashita, K. Ohori, H. Anai, and A. Iwasaki. Simplifying Urban Network Security Games
with Cut-based Graph Contraction. In Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, pages 205–213, 2016.

24. M. Jain, E. Kardes, C. Kiekintveld, F. Ordónez, and M. Tambe. Security Games with Arbi-
trary schedules: A Branch and Price Approach. In AAAI, 2010.

25. C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and M. Tambe. Computing optimal
randomized resource allocations for massive security games. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems-Volume 1, pages
689–696, 2009.

26. C. Kroer and T. Sandholm. Extensive-form game abstraction with bounds. In Proceedings
of the fifteenth ACM conference on Economics and computation, pages 621–638, 2014.

27. G. Leitmann. On generalized stackelberg strategies. Journal of Optimization Theory and
Applications, 26(4):637–643, 1978.

28. T. H. Nguyen, F. M. Delle Fave, D. Kar, A. S. Lakshminarayanan, A. Yadav, M. Tambe,
N. Agmon, A. J. Plumptre, M. Driciru, F. Wanyama, et al. Making the most of our regrets:

Regret-based solutions to handle payoff uncertainty and elicitation in green security games.
In Decision and Game Theory for Security, pages 170–191. Springer, 2015.

29. P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordonez, and S. Kraus. Playing games
for security: An efficient exact algorithm for solving Bayesian Stackelberg games. In Pro-
ceedings of the 7th international joint conference on Autonomous agents and multiagent
systems-Volume 2, pages 895–902, 2008.

30. J. Pita, H. Bellamane, M. Jain, C. Kiekintveld, J. Tsai, F. Ordóñez, and M. Tambe. Security
applications: Lessons of real-world deployment. ACM SIGecom Exchanges, 8(2):5, 2009.

31. T. Sandholm and S. Singh. Lossy stochastic game abstraction with bounds. In Proceedings
of the 13th ACM Conference on Electronic Commerce, pages 880–897, 2012.

32. E. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo, B. Maule, and G. Meyer.
Protect: A deployed game theoretic system to protect the ports of the united states. In
Proceedings of the 11th International Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 13–20, 2012.

33. E. Shieh, M. Jain, A. X. Jiang, and M. Tambe. Efficiently solving joint activity based security
games. In AAAI, pages 346–352. AAAI Press, 2013.

34. S. Skiena. Dijkstra’s algorithm. Implementing Discrete Mathematics: Combinatorics and
Graph Theory with Mathematica, Reading, MA: Addison-Wesley, pages 225–227, 1990.

35. J. Tsai, C. Kiekintveld, F. Ordonez, M. Tambe, and S. Rathi. Iris-a tool for strategic security
allocation in transportation networks. 2009.

36. B. Von Stengel and S. Zamir. Leadership with commitment to mixed strategies. 2004.
37. R. Yang, B. Ford, M. Tambe, and A. Lemieux. Adaptive resource allocation for wildlife

protection against illegal poachers. In Proceedings of the 2014 international conference on
Autonomous agents and multi-agent systems, pages 453–460, 2014.

38. R. Yang, A. X. Jiang, M. Tambe, and F. Ordonez. Scaling-up Security Games with Bound-
edly Rational Adversaries: A Cutting-plane Approach. In IJCAI, 2013.

39. Z. Yin, A. X. Jiang, M. Tambe, C. Kiekintveld, K. Leyton-Brown, T. Sandholm, and J. P.
Sullivan. TRUSTS: Scheduling randomized patrols for fare inspection in transit systems
using game theory. AI Magazine, 33(4):59, 2012.

40. M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in games
with incomplete information. In Advances in neural information processing systems, pages
1729–1736, 2007.

