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Abstract

This paper studies the problem of multi-step manipulative
attacks in Stackelberg security games, in which a clever at-
tacker attempts to orchestrate its attacks over multiple time
steps to mislead the defender’s learning of the attacker’s be-
havior. This attack manipulation eventually influences the de-
fender’s patrol strategy towards the attacker’s benefit. Previ-
ous work along this line of research only focuses on one-
shot games in which the defender learns the attacker’s be-
havior and then designs a corresponding strategy only once.
Our work, on the other hand, investigates the long-term im-
pact of the attacker’s manipulation in which current attack
and defense choices of players determine the future learning
and patrol planning of the defender. This paper has three key
contributions. First, we introduce a new multi-step manipu-
lative attack game model that captures the impact of sequen-
tial manipulative attacks carried out by the attacker over the
entire time horizon. Second, we propose a new algorithm to
compute an optimal manipulative attack plan for the attacker,
which tackles the challenge of multiple connected optimiza-
tion components involved in the computation across multiple
time steps. Finally, we present extensive experimental results
on the impact of such misleading attacks, showing a signifi-
cant benefit for the attacker and loss for the defender.

1 Introduction
Stackelberg security games (SSGs) have been widely ap-
plied for solving many real-world problems in public safety
and security, cybersecurity, and conversations (Pita et al.
2008; Tambe 2011; Shieh et al. 2012; Fang et al. 2016).
In recent work in SSGs, machine learning-based techniques
have been used for modeling and predicting the attacker’s
behavior based on collected attack data (Yang et al. 2011;
Kar et al. 2017; Sinha et al. 2018; Gholami et al. 2019). For
example, in PROTECT, Quantal Response was used to pre-
dict decision making of the attacker in the domain of ferry
protection (Shieh et al. 2012). In addition, in the PAWS-
related work, different models such as Quantal Response,
SUQR, and SHARP, etc were used to capture the behavior of
poachers (i.e., predicting where the poachers are likely to set
trapping tools to catch wild animals) (Fang et al. 2016; Kar
et al. 2017, 2015; Sinha et al. 2018; Gholami et al. 2019).
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These behavior models, after being trained, are used to de-
termine an optimal strategy of the defender.

However, as pointed out in previous work, since the de-
fender relies on some attack data to make prediction, the
attacker can intentionally change its attack behavior to mis-
lead the defender’s learning (Nguyen et al. 2020; Nguyen,
Sinha, and He 2020). Consequently, the learned adversary
behavior model deviates from the true behavior model, and
causes the defender to generate ineffective patrolling strate-
gies, which benefits the attacker in the end. Intuitively, the
attacker is perfectly rational, but pretends to act in a bound-
edly rational manner. The attacker may suffer an immediate
loss for deviating from a myopic optimal response, but it
will gain significantly more long-term benefit as a result of
the defender’s deteriorated strategies. In this work, we focus
on analyzing such manipulative attacks of the attacker.

The existing works in SSGs mainly study one-shot game
scenarios in which the defender only learns the attacker be-
havior once and then commits to a single defense strategy af-
terward (Nguyen et al. 2020; Nguyen, Sinha, and He 2020).
However, in many real-world domains such as wildlife pro-
tection, the defender and attacker often interact in a repeated
manner (Fang et al. 2016). That is, at each time step, given
historical attack and patrol data, the defender updates his
model of the attacker’s behavior and re-generates a new de-
fense strategy while the attacker responds accordingly by
launching a certain number of attacks. These new defense
and attack actions are then collected for the future use. This
learning-patrolling-attack loop continues until the end of the
time horizon. In this multi-step interaction scenario, it is
clear that the existing one-shot SSG studies fail to capture
the long-term impact of the attacker’s manipulation.

In this work, we study the problem of sequential manip-
ulative attacks in multi-step SSGs. We aim at investigating
the long-term manipulative decisions of the attacker and the
accumulative impact of such manipulation on both the de-
fender and attacker’s utility. We provide the following three
key contributions. First, we introduce a new multi-step ma-
nipulative attack game model. In our game model, the de-
fender follows a learning-patrolling process at each time step
to play. On the other hand, at each time step, the attacker at-
tempts to find an optimal attack strategy given the current
defense strategy, taking into account the tradeoff between
the immediate utility loss for playing boundedly rational at



current time step and the future utility gain for misleading
the defender. Second, we present a new algorithm to com-
pute such optimal manipulative attack plan for the attacker.
The key challenge of computing an optimal attack plan is
that it involves multiple connected optimization components
over the entire time horizon, which is not straightforward
to solve. In order to tackle this computational challenge,
our new algorithm follows the Projected Gradient Descent
(PGD) approach to iteratively update the attack plan based
on the gradient of the attacker’s utility with respect to its at-
tacks. Inspired by hyper-parameter learning (Bengio 2000),
we then determine this gradient based on the recursive rela-
tionships of the gradient components involved in the gradi-
ent updating steps of the inner optimization levels.

Finally, we provide an extensive experimental analysis on
the impact of the attacker’s attack manipulation on the ac-
cumulated utility of both players. We show that the attacker
gains a substantially higher utility while the defender suffers
a significant loss as a result of the attacker’s manipulation.

2 Related Work
Attacker behavior modeling is an important research line
in SSGs which focuses on building behavior models of
the attacker in various security-related domains such as
wildlife protection (Yang et al. 2011; Kar et al. 2017; Gho-
lami et al. 2019). Several different models were proposed
before, including Quantal Response (Yang et al. 2011),
SUQR (Nguyen et al. 2013), and SHARP (Kar et al. 2015)
models. These models enable the defender to predict bound-
edly rational decisions of human attackers such as poachers
using historical attack data. For example, in wildlife protec-
tion, rangers can collect poaching signs such as snares dur-
ing their patrols (Fang et al. 2016). These observations are
then used to predict poaching activities in the future.

However, there is a rising concern about the vulnerabil-
ity of these learning-patrolling methods in the presence of
a deceptive attacker who intentionally maneuvers its attacks
to fool the defender’s learning. Previous work has demon-
strated that weakness of the learning-patrolling methods
in one-shot (sometimes Bayesian) SSGs (Gan et al. 2019;
Nguyen et al. 2020; Nguyen, Sinha, and He 2020); our fo-
cus is on multiple steps. A multi-step related work has so
far looked into a simple learning situation in which the de-
fender uses the Bayes rule method to update his belief about
the attacker’s type over time (Nguyen et al. 2019).

Our work is also related to adversarial learning in machine
learning in the sense of attacking the training/testing data
or interfering with the learning process. Poisoning attacks
(i.e., altering the training data) are the most closely related
to our work (Lowd and Meek 2005; Song et al. 2018; Huang
et al. 2011; Madry et al. 2017; Zhang, Zhu, and Lessard
2019; Demontis et al. 2019; Biggio and Roli 2018; Paper-
not et al. 2018). Different attack methods were designed to
deteriorate the performance of standard machine learning al-
gorithms such as SVMs and neural nets, etc. Differentiating
from this research line, in our problem, multi-step decision
quality (which is measured via utilities of players) in terms
of players’ strategies is the ultimate objective of the players,
rather than just the prediction accuracy.

Finally, in secrecy and deception in SSGs, previous work
investigated situations in which information available to the
defender and attacker is asymmetric (Guo et al. 2017; Xu
et al. 2015; Rabinovich et al. 2015; Hendricks and McAfee
2006; Brown et al. 2005; Farrell and Rabin 1996; Zhuang,
Bier, and Alagoz 2010). They then determine how the de-
fender should strategically reveal or disguise his information
to the attacker so as to influence the attacker’s decision for
the sake of the defender’s benefit.

3 Preliminaries
Stackelberg security games (SSGs) SSGs are a class of
leader-follower games in which a defender has to allocate
a limited number of security resources over a set of im-
portant targets [N ] = {1, . . . , N} to protect these targets
against an attacker. In one-shot SSGs, a pure strategy of the
defender can be viewed as a subset of targets that can be
covered by his security resources. A mixed strategy of the
defender is a distribution over the defender’s pure strategies.
We consider generic SSGs in which the defender’s mixed
strategies can be represented as a marginal probability vec-
tor x = {x1, . . . , xN} with resource constraints can be cap-
tured by a set of linear constraints Ax ≤ b. Here, xn ∈ [0, 1]
is the marginal coverage of the defender at target n. We de-
note by X = {x : Ax ≤ b} the set of all mixed strategies.

In SSGs, the players’ payoff depends on which target the
attacker attacks and whether the defender is protecting that
target or not. In particular, when the attacker attacks a tar-
get n, if the defender is not protecting n, the attacker will
receive a reward of Ran while the defender gets a penalty of
P dn . Conversely, if the defender is protecting n, the attacker
gets a penalty P an < Ran and the defender obtains a reward
Rdn > P dn . Given a mixed strategy of the defender x, when
the attacker attacks n, the defender and attacker’s expected
utility at n is computed as follows:

Udn(xn) = xnR
d
n + (1− xn)P dn (1)

Uan(xn) = xnP
a
n + (1− xn)Ran (2)

A standard game-theoretic solution concept in SSGs is
Strong Stackelberg Equilibrium (SSE) in which players play
optimally against each other given that the attacker is aware
of the defender strategy before taking any action.

Learning attacker behavior One of the very first behav-
ior model used to predict the attacker behavior is Quantal
Response, a well-known behavior model used in both be-
havioral economics and game theory (MCFADDEN 1973;
McKelvey and Palfrey 1995; Yang et al. 2011). While an
SSE considers a perfectly rational attacker, QR assumes a
boundedly rational attacker who attacks each target n with
a probability proportional to the attacker’s expected utility
at that target. Later on, SUQR, an extension of Quantal Re-
sponse, which uses a linear combination of various domain
features to reason about the attacker’s behavior (Nguyen
et al. 2013). Building upon the success of QR and SUQR,
Kar et. al introduce a new model, named SHARP, that aug-
ments a two-parameter probability weighting function into
the SUQR model to predict poachers’ behavior in wildlife
protection (Kar et al. 2015). Among all these models, the



final prediction of the attacker’s behavior can be abstractly
captured using the following soft-max function:

qn(x, θ) =
ef(xn,θ)∑
n′ e

f(xn′ ,θ)

which is the probability the attacker attacks target n. The
function f(xn, θ) represents the behavior model used by the
defender, indicating that the attacker’s decision depends on
the defender’s strategy xn (in addition to other domain fea-
tures such as the attacker rewards and penalties, etc. which
we omit from the formulation for the sake of presentation).
Finally, θ ∈ Rm is the model parameter vector.

4 Manipulative Attack Game Model
In many real-world security domains such as wildlife
protection, the defender and attacker repeatedly interact
with each other through a multi-step learning-patrolling-
attacking loop. The one-shot SSG model can be then ex-
tended to capture such security scenarios.

Formally, at each step t, let’s denote by (Xt−1,Zt−1)
the historical patrolling strategies and attacks at previous
time steps. (Xt−1,Zt−1) is also the data the defender uses
to learn the attacker’s behavior. In particular, Xt−1 =
{x1, . . . ,xt−1} where xt′ = {xt′,1, xt′,2, . . . , xt′,N} with
t′ ≤ t − 1 is the defender’s mixed strategy at time step
t′. In addition, Zt−1 = {z1, . . . , zt−1} where zt′ =
{zt′,1, zt′,2, . . . , zt′,N} is the attack distribution at time step
t′ ≤ t − 1 (i.e., zt′,n is the number of times the attackers
attacks target n in time step t′). The horizon is T time steps
and we denote [T ] = {1, . . . , T}.

Defender’s learning and patrolling
At each step t, the defender’s strategy xt follows a two-stage
learning-patrolling process to determine his strategy at t:
• Learning: The defender optimizes the model parameter

vector θt at step t based on (Xt−1,Zt−1), which is the
result of the following minimization problem:

minθ∈Θ L(Xt−1,Zt−1, θ)

where L(Xt−1,Zt−1, θ) is the defender’s loss function
and Θ is the set of possible values of θ.

• Patrolling: Given the learning outcome θt, the defender
finds an optimal strategy xt accordingly, which is an op-
timal solution of the following optimization problem:

maxx∈X Ud(x, θt)

which maximizes the defender’s utility with respect to
the learned parameter θt, denoted by Ud(x, θt), with:

Ud(x, θt) =
∑

n
qn(x, θt)U

d
n(xn)

where qn(x, θt) is the predicted probability the attacker
attacks target n at step t and Udn(xn) is the defender’s
expected utility if the attacker actually attacks t.

At the first time step t = 1, in particular, the defender
does not have any data. Therefore, the defender can choose
a particular strategy x1 to play, such as the SSE strategy.
This repeated learning-patrolling process has been used in
the PAWS application for generating ranger patrols in the
wildlife protection domain (Fang et al. 2016).

Attacker Manipulation
Since the defender relies on attack data to learn the attacker’s
behavior, a clever attacker can orchestrate its attacks to fool
the defender, influencing the defender’s learning and as a
result, leading to ineffective patrolling strategies which ben-
efit the attacker. In our model, the attacker is perfectly ra-
tional, but pretends to be bounded rational to mislead the
defender. By acting in this manipulative way, the attacker
suffers some immediate utility loss (for playing bounded ra-
tional) but would obtain a significant long term benefit as
the result of its influence on the defender’s patrolling strate-
gies. The attacker’s goal is to find an optimal manipulative
sequential-attack strategy that maximizes the attacker’s ac-
cumulative expected utility across the entire time horizon,
given the trade-off between the loss and benefit of such pre-
tentious boundedly rational playing.

Our paper focuses on analyzing such manipulative at-
tacks, assuming the attacker knows the defender’s learning
model. In real-world security domains, the attacker may not
know the learning model used by the defender. In this case,
the attacker can assume a certain behavior model and plan
its deceptive attacks accordingly (this assumed model may
be different from the behavior model used by the defender).
Later in the experiment section, we will analyze the impact
of the attacker’s knowledge and model assumption on the at-
tacker manipulation outcomes. In particular, we empirically
show that in the black-box attack scenario, the attacker’s
manipulation designed based on a surrogate learning model
(which may be different from the defender’s actual model)
is still highly effective in terms of significantly deteriorating
the defender’s behavior learning and patrol planning.

Formally, the problem of finding an optimal manipulative
attack strategy can be represented as the following:

maxz

∑
t
Ua(xt, zt) (3)

s.t. θt ∈ arg minθ∈Θ L(Xt−1,Zt−1, θ),∀t (4)

xt ∈ arg maxx∈X U
d(x, θt),∀t (5)∑

n
zt,n ≤ K, zt,n ∈ N,∀n, t (6)

which maximizes the attacker’s accumulated expected util-
ity over the entire time horizon. In particular, the expected
utility of the attacker at time step t is computed as follows:

Ua(xt, zt) =
∑

n
zt,nU

a
n(xt,n)

which depends on the frequency the attacker would attack
each target n at each step t, zt,n, and the attacker’s expected
utility, Uan(xt,n). Constraints (4–5) represent the two-stage
learning-patrolling of the defender at each step t. Constraint
(6) ensures that the attacker can only launch at most K at-
tacks at each step. The constant K represents the attacker’s
limited capability in influencing the defender’s learning.

5 Attack Manipulation Computation
Overall, (3–6) consists of multiple connected optimization
levels. The decision on which targets and how frequently to
attack at each step not only influences the utility outcome at



current step but also affects the learning outcomes of the de-
fender in future time steps. As a result, that attack decision of
the attacker will contribute to the future utility outcomes that
the attacker will receive. The problem (3–6) is challenging
to solve given that all optimization levels are inter-connected
and each optimization level itself is non-convex.

Projected Gradient Descent. We propose to relax the at-
tack variables zt = {zt,n} for all time steps t to be contin-
uous and then apply the Projected Gradient Descent (PGD)
approach to solve it. Essentially, starting with some initial
values of z0 = {z0

1, z
0
2, . . . , z

0
T }, PGD iteratively updates

the values of these attack variables based on the gradient
step. Denote by F =

∑
t U

a(xt, zt) the attacker’s accu-
mulative utility across the entire time horizon, at each it-
eration i of the PGD, given the current estimation zi−1 =
{zi−1

1 , zi−1
2 , . . . , zi−1

T }, the gradient update step on attack
variables is determined as follows:

zi = zi−1 + α
dF

dzi−1
(7)

where α > 0 is the step size. PGD then projects the updated
value into the feasible region by finding the closest point in
the region Z = {z :

∑
n zt,n ≤ K, zt,n ≥ 0,∀t, n}. Note

that z ∈ Z is a vector of length T×N where T is the number
of steps and N is the number of targets in the game. This
projection step is done by finding the closest feasible point
in Z to the current value zi, which is formulated as follows:

minz∈Z ||zi − z||2
which is a convex optimization problem and thus can be
solved optimally using standard solvers. This update process
continues until convergence, where convergence means that
the update does not improve the attacker utility in Eq. (3).
Once converged, we obtain a local optimal solution of (3–
6). By running the PGD multiple times with different initial
values of the attack variables, we get multiple local optimal
solutions. The final solution will be the best with the highest
attacker accumulated utility among the local optimal ones.

Technical Challenge. The main technical issue of apply
PGD is computing the gradients required for PGD. Essen-
tially, the core of PGD is to compute the gradient of the at-
tacker utility at a value z of the attack variables:

dF

dz
=
∑

t

dUa(xt, zt)

dz

=
∑

t

∑
n

dzt,n
dz

Uan(xt,n) + zt,n(P an −Ran)
dxt,n
dz

which depends on the two gradient components dzt,n
dz and

dxt,n
dz . The first component, dzt,ndz , is the gradient of the num-

ber of attacks at each target and time step with respect to
other targets and steps, dzt,n

dz =
{ ∂zt,n
∂zt′,n′

}
(t′,n′)∈[T ]×[N ]

,
which is straightforwardly determined as follows:
∂zt,n
∂zt′,n′

= 0 if t 6= t′ or n′ 6= n and
∂zt,n
∂zt′,n′

= 1, otherwise.

The second component is dxt,n
dz =

{ ∂xt,n
∂zt′,n′

}
(t′,n′)∈[T ]×[N ]

,
which is the gradient of the defender’s strategy at each time

step with respect to the number of attacks across all targets
and time steps. Note that ∂xt,n

∂zt′,n′
is non-zero only when t′ <

t since the defender’s strategy at each step only depends on
the historical attacks at previous time steps. By applying the
chain rule, it can be decomposed as:
∂xt,n
∂zt′,n′

=
∑

j

∂xt,n
∂θt,j

· ∂θt,j
∂zt′,n′

,∀t′<t and
∂xt,n
∂zt′,n′

=0,∀t′≥ t

where θt,j is the jth component of the parameter vector θt at
step t. Next, the challenge is that, even though xt,n depends
on θt and θt depends on zt′,n′ , we do not have a closed form
of xt,n and θt as a function of θt and zt′,n′ , respectively.

To address this, we take inspiration from hyper-parameter
learning (Maclaurin, Duvenaud, and Adams 2015); for uti-
lizing hyper-parameter learning, the attacker has to assume
knowledge of the computations steps and model used by de-
fender to solve the problem in Eq. (4) and (5). The com-
putational steps can be any differentiable steps that leads to
the optimally solving problem in Eq. (4) and (5). Here we
take the computation by the defender to be a projected gra-
dient descent approach. We show later in our experiments
that even when the attacker’s assumption about the compu-
tation steps is different from the defender’s actual model, the
attacker still gains a significant benefit for its manipulation.
Next, we elaborate methods to estimate the gradient compo-
nents dxt

dθt
=
{
∂xt,n
∂θt,j

}
and dθt

dzt′
=
{

∂θt,j
∂zt′,n′

}
for all t′ < t.1

Computing Gradient of Defender Strategy
Overall, computing the gradient dxt

dθt
is not straightforward

since we don’t have a closed-form representation of the de-
fender’s strategy xt as a function of the model parameter
θt. Essentially, the defender strategy at time step t, xt, is an
optimal solution of the following optimization problem:

maxx∈X Ud(x, θt)

The above problem is in general a non-convex optimization
problem. Our technique of obtaining dxt

dθt
is to differentiate

through the steps of the defender’s PGD approach to solve
this problem; this approach is related to the hyper or (some-
times) meta gradient approach in literature (Bengio 2000).

Essentially, the defender starts with an initial strategy
x0,proj ∈ X which is randomly generated within the feasible
region X = {x : Ax ≤ b} of the defender’s patrol strate-
gies. At each iteration i of the defender’s PGD, given the
current defender strategy xi−1,proj, the update is as follows:

xi = xi−1,proj + α
∂Ud(xi−1,proj, θt)

∂xi−1,proj (8)

Then the updated (possibly infeasible) strategy is projected
back to the feasible region. We obtain a new feasible strategy
xi,proj which is an optimal solution of:

xi,proj ∈ arg minx∈X ||x− xi||2 (9)

1In (Nguyen, Sinha, and He 2020), they propose a different ap-
proach to compute these gradient components in one-shot SSGs
by exploiting intrinsic properties of the defender’s learning. Their
approach is applicable only when Quantal Response is used. Our
approach can be applied for any differentiable behavior models.



Algorithm 1: Compute the gradient dxtdθt

1 Initialize optU = −∞;
2 for round = 1→ nRound do
3 Initialize x0,proj; δU = +∞; i = 0;
4 while δU > 0 do
5 Update i = i+ 1;
6 Compute xi and xi,proj according to (8–9);
7 Compute dxi,proj

dθt
based on (10) and Prop. 1;

8 Update δU=Ud(xi,proj, θt)−Ud(xi−1,proj, θt);

9 if optU < Ud(xi,proj, θt) then
10 Update optU = Ud(xi,proj, θt); dxtdθt

= dxi,proj

dθt
;

The problem (9) is a convex optimization problem, which
can be easily solved using any convex solver. Clearly, xi,proj

is a function of xi. We thus have the gradient decomposition:

dxi,proj

dθt
=
dxi,proj

dxi
· dx

i

dθt
(10)

We present Proposition 1 which shows the computation of
the two gradient components on the RHS of (10).

Proposition 1. Denote byG(xi−1,proj, θt)= ∂Ud(xi−1,proj,θt)
∂xi−1,proj .

Denote by JG,θt the sub-matrix of the Jacobian JG of
G that is formed by partial derivatives w.r.t. θt,j . Simi-
larly, JG,xi−1,proj is the sub-matrix of JG that is formed by
partial derivatives w.r.t. xi−1,proj. Note that then, JG =
[JG,xi−1,proj | JG,θt ]. Then, the gradient components in (10)
are computed as follows:

dxi

dθt
=αJG,θt+

[
αJG,xi−1,proj +diag(~1)

]
· dx

i−1,proj

dθt
(11)[

dxi,proj

dxi

dη
dxi

]
=−
[
∇2

xi,proj ||xi−xi,proj||2 AT

diag(η)A diag(Axi,proj−b)

]−1

(12)

·

[
d∇xi,proj ||xi−xi,proj||2

dxi

0

]
where η is the dual variable with respect to the projected
strategy xi,proj in the optimization problem (9).

All of our proofs are in the appendix. We now present Al-
gorithm 1 which computes dxt

dθt
. Overall, we run nRound,

each round finds a local optimal strategy solution and its
gradient w.r.t θt. At each round, Algorithm 1 starts by ini-
tializing a defender strategy x0,proj. Then at each iteration i,
the algorithm updates the defender’s strategy and its corre-
sponding gradient. This process stops when the update does
not increase the defender’s utility (i.e., δU ≤ 0). Finally, the
optimal defender’s strategy and its gradient is determined
based on his maximum utility over all rounds (line (10)).

Compute Gradient of Learning Outcome
In general, computing the gradient dθt

dzt′
is challenging since

the learning outcome θt depends on the entire attack history

before t. More specifically, the learning outcome, θt, is an
optimal solution of the following optimization problem:

minθ∈Θ L(Xt−1,Zt−1, θ) (13)

which minimizes the defender’s learning loss. Xt−1 =
{x1, . . . ,xt−1} and Zt−1 = {z1, . . . , zt−1} are the de-
fender’s strategies and the attacker’s attacks at previous time
steps. We consider the set parameter feasible region Θ to
be represented by a set of linear constraints Θ = {θ :
C · θ ≤ D}. This optimization problem is generally known
to be non-convex. Similar to the computation of the gradi-
ent of the defender strategy, we also apply the a recursive
approach to solve this problem and differentiate through the
gradient steps. That is, we start with some initial value of θ,
denoted by θ0,proj, which is randomly generated within the
feasible region Θ. Then at each iteration i, given the current
value θi−1, we update:

θi = θi−1,proj − αdL(Xt−1,Zt−1, θ
i−1,proj)

dθi−1,proj (14)

Then the updated (possibly infeasible) learning outcome θi
is projected back to the feasible region Θ. We obtain a new
feasible learning outcome θi,proj which is the optimal solu-
tion of the following minimization problem:

θi,proj ∈ arg minθ∈Θ ||θ − θi||2 (15)

We thus have the following gradient decomposition:

dθi,proj

dzt′
=
dθi,proj

dθi
· dθ

i

dzt′
(16)

Observing that the problem (15) is similar to problem
Eq. (9), we can thus compute the gradient dθi,proj

dθi similarly
to dxi,proj

dxi . On the other hand, the gradient dθi

dzt′
is chal-

lenging to compute since θi depends on the entire history
(Xt−1,Zt−1). We present our Proposition 2 which shows
that this gradient component can be computed recursively
according to time steps.

Proposition 2. Let H(Xt−1,Zt−1, θ
i−1,proj) =

dL(Xt−1,Zt−1,θ
i−1,proj)

dθi−1,proj . Let JH be the Jacobian of H .
Let JH,xt′′ be the part of the Jacobian restricted to partial
derivatives w.r.t. xt′′ (and similar for other variables
zt′ , θ

i−1,proj). The gradient component, dθi

dzt′
, can be

computed recursively, as follows:

dθi

dzt′
=
dθi−1,proj

dzt′
(17)

− α

[
t−1∑

t′′=t′+1

JH,xt′′ ·
dxt′′

dzt′
+ JH,zt′ + JH,θi−1,proj · dθ

i−1,proj

dzt′

]

where
dxt′′

dzt′
=
dxt′′

dθt′′
· dθt

′′

dzt′
, t′ + 1 ≤ t′′ ≤ t− 1 (18)

Therefore, in order to compute all the derivatives dθt
dzt′

for
all t′ < t, we can recursively call a modified version of
Algorithm 1 for t = 2, . . . , T and t′ = 1, . . . , t − 1. The



inputs of this modified algorithm include: (i) previous de-
fense strategies Xt−1; (ii) previous attacks Zt−1; and (iii)
the derivatives

{
dθt′′
dzt′

}
and

{
dxt′′
dθt′′

}
, for all t′′ > t′ and

t′′ < t. Note that the derivative
{
dxt′′
dθt′′

}
is computed based

on Algorithm 1. The full algorithm is stated in the appendix.

6 Experiments
Our experiments are conducted on a High Performance
Computing (HPC) cluster, with dual E5-2690v4 (28 cores)
processors and 128 GB memory. We use Matlab to imple-
ment our algorithms. While the attacker assumes the de-
fender uses PGD for his computation, the defender in our
experiments actually uses the interior-point method, a well
known optimization method. Our goal is to show that even
when the defender uses a different optimization technique
(i.e., interior-point method), the attack data manipulation
computed based on the gradient descent assumption remains
highly effective. Further, we investigate the impact of the
attacker’s incorrect knowledge of the defender’s learning
models on its manipulation outcomes. We analyze the im-
pact of the attacker’s manipulation on both players’ utility
(which is their ultimate goal) over the entire time horizon.

Security Game Generation. To analyze average perfor-
mance, we generate multiple games with payoffs randomly
within [0, 10] for the rewards and [−10, 0] for the penalties
of players at each target, using covariance games from Gam-
bit (McKelvey, McLennan, and Turocy 2014). This is the
commonly-used approach for generating games in security
game literature (Tambe 2011). Our work aims at examining
the impact of attack manipulation in various security set-
tings. The covariance value r in game simulation of Gambit
allows us to govern the correlation between the attacker and
defender’s payoffs. In particular, when r = −1, the games
are zero-sum which means the players’ utility objectives are
completely opposite. When r = 0, the players’ payoffs are
uncorrelated. We use 10 game instances for each value of
r ∈ {−1.0,−0.8,−0.6,−0.4,−0.2, 0} (60 games in total).
In our games, the maximum number of attacks at each time
step is limited to K = 50. Each of data points is averaged
over 60 games. Next, we highlight important results.

Attacker Behavior Models. We consider three different
behavior models: QR (Yang et al. 2011), SUQR (Nguyen
et al. 2013), and SHARP (Kar et al. 2015), with an in-
creasing order of model complexity (i.e., QR is the simplest
model while SHARP is the most complex among the three).
These three models have been validated and applied in both
human subject experiments and real-world domains such as
ferry protection and wildlife security. In addition, these three
models are generic, which are suitable for various security
settings, including the standard security game setting used
in our evaluation. Note that, beside these three models, there
are other models which were proposed to predict poacher be-
havior in the wildlife setting. However, these specific models
exploit intrinsic properties of the wildlife domain. We thus
don’t include these models in our experiments.
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(a) QR manipulation, T = 4
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(b) QR manipulation, T = 8
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(c) SUQR manipulation, T = 4
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(d) SUQR manipulation, T = 8
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(e) SHARP manipulation, T =4
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(f) SHARP manipulation, T =8

Figure 1: Attacker Utility Evaluation

Evaluation Results As mentioned previously, the impact
of the attacker’s manipulative attacks depends on the at-
tacker’s knowledge of the defender’s learning model. In our
experiments, we analyze nine difference manipulation sce-
narios; each scenario corresponds to a different pair of learn-
ing models (a combination of the attacker’s assumption of
the defender’s learning model and the actual model used by
the defender). For example, QRvsSUQR refers to the scenario
in which (i) the attacker assumes the defender uses Quan-
tal Response; and (ii) the defender actually chooses SUQR.
The other scenarios are interpreted similarly. Our results on
players’ utility are shown in Figures 4 and 2. In each fig-
ure, the y-axis is either the attacker or the defender’s util-
ity outcomes which are averaged over 60 different games.
The x-axis is the number of targets in the games. In addi-
tion, nonManipulate refers to the case when the attacker
is not manipulative at all (i.e., both players plays the SSE
strategies). For a fair comparison between different number
of time steps, we show the averaged utility return per step.

Overall, Figure 4 shows that the attacker gains a sig-
nificantly higher utility for manipulating its attacks, es-
pecially when the attacker knows the defender’s behavior
model (QRvsQR, SUQRvsSUQR and SHARPvsSHARP versus
nonManipulate). When the attacker optimizes its manipu-
lative attacks w.r.t a behavior model not actually used by the
defender, the impact of the attacker’s manipulation is much
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(e) SHARP manipulation, T =4
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Figure 2: Defender Utility Evaluation

less severe compared to the case of a known behavior model.
But in most cases, the attacker’s utility for playing manip-
ulatively is still substantially higher than nonManipulate.
For example, in Figure 4(a), when the number of tar-
gets is 12, the attacker’s average utility is 1.03 in QRvsQR
while its utility reduces to 0.41 and 0.20 in QRvsSUQR and
QRvsSHARP, respectively. Yet, it is still significantly higher
than nonManipulate with the utility of 0.03.

There is a notable case in which the attacker suffers loss
when it assumes the SHARP model (the most complex one
among the three model) while the defender actually uses QR
(the simplest model) (Figure 4(e)(f) with 12-target games
and SHARPvsQR versus nonManipulate). Indeed, an over-
parameterized complex model generally tends to be more
sensitive towards noise and has been shown to a poor choice
for a surrogate model in transferability of attacks in machine
learning (Demontis et al. 2019). Thus, when the learning
model is unknown, it would be beneficial for the attacker
to use a simple behavior model.

Next, we examine the long-term benefit of the attacker’s
deception by comparing its utility between the 4-step
games and the 8-step games (Figures 4(a)(c)(e) versus Fig-
ures 4(b)(d)(f)). For a fair comparison, we show results of
the average utility return per step of the attacker. In these
figures, we observe that when the number of time steps in-
creases (8 versus 4 steps), the average utility return per step
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Figure 3: Runtime Performance

for the attacker is reduced. This result indicates that the at-
tacker’s deception has less impact on its benefit in a longer-
term. This result is reasonable since the attacker has to trade
off between the deception benefit (for misleading the de-
fender’s learning and patrolling) and the immediate utility
loss for playing boundedly rational at every time step. And,
in a long run, manipulative attacks at later time steps would
have less impact on the defender’s learning outcome.

Regarding the defender’s utility (Figure 2), regardless of
whether the attacker knows the defender’s choice of a learn-
ing behavior model or not, the defender suffers a significant
loss in utility in the presence of the attacker’s manipulation
(compared to the nonManipulate case). This result clearly
shows that when the defender relies on attacker behavior
learning, the quality of his strategy outcome is extremely
vulnerable to the manipulative attacks of a clever attacker.

Finally, we examine the runtime performance of our pro-
posed algorithm. The result is shown in Figure 3 in which
the y-axis is the average runtime in minutes. Each of our
data points is computed based on aggregated 5 rounds of
the PGD process; each round consists of approximately 30
iterations of gradient descent update until reaching a local
optimal solution. Note that each iteration involves multiple
optimization components (i.e., training the behavior model
and computing an optimal strategy at each time step). De-
spite the complex computation, Figure 3 shows that the run-
time increases linearly in the number of targets, suggesting
our method can be scaled up for large games.

7 Summary
This work investigates sequential attack manipulation in
multi-step security games. We formulate new gradient based
algorithms to compute an optimal attack plan for the at-
tacker, tackling the computational challenge due to multi-
ple inter-connected optimization components across the en-
tire time horizon. Our experiments in various game settings
show that the defender’s data-based patrol strategies become
extremely vulnerable to the attacker’s manipulation of attack
data, regardless of whether the attacker knows the defender’s
learning model or not. Our future research goal is to design
effective learning-planning solutions for the defender in se-
curity games that are resilient to such attacker manipulation.
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Appendix
Proof of Proposition 1
Proof. Essentially, Eq. (11) is derived by differentiating
both sides of Eq. (8). And Eq. (12) is the result from ap-
plying the Implicit Function Theorem (Krantz and Parks
2012) upon the KKT conditions (Boyd and Vandenberghe
2004) for the convex problem given by Eq. (9). Here, η is
the dual variable of xi,proj. We denote by G(xi−1,proj, θt) =
∂Ud(xi−1,proj,θt)

∂xi−1,proj , which is a function of (xi−1,proj, θt). Recall
the notation JG = [JG,xi−1,proj | JG,θt ]. By taking the deriva-
tive on both side of Eq. (8) with respect to θt, we obtain the
gradient computation as follows:

dxi

dθt
=
dxi−1,proj

dθt
+ α

dG(xi−1,proj, θt)

dθt

=
dxi−1,proj

dθt
+ α

dG(xi−1,proj, θt)

d(xi−1,proj, θt)
· d(xi−1,proj, θt)

dθt
)

=
dxi−1,proj

dθt
+ α

[
JG,θt + JG,xi−1,proj · dx

i−1,proj

dθt

]
=⇒ dxi

dθt
= αJG,θt +

[
αJG,xi−1,proj + diag(~1)

]
· dx

i−1,proj

dθt

which show that we can compute the gradient dxi

dθt
recur-

sively according to the gradient ascent step.
Next, we will describe the computation of dxi,proj

dxi , which
is the gradient of the projected strategy xi,proj with respect
to the gradient-based updated strategy xi. Note that the pro-
jection problem (9) is a convex optimization problem:

min
x
||x− xi||2 (19)

s.t. Ax ≤ b (20)

By applying the the KKT conditions (Boyd and Vanden-
berghe 2004) to this optimization problem, we obtain that
the projected strategy xi,proj satisfies:

∇xi,proj ||xi,proj − xi||2 + η∇xi,proj(Axi,proj − b) = 0

η
(
Axi,proj − b

)
= 0

where η is the dual variable with respect to xi,proj. We can
thus apply the Implicit Function Theorem (Krantz and Parks
2012) upon these equations, to obtain the gradient dxi,proj

dxi .
That is, we can differentiate these two equations with respect
to xi, resulting in:[∇2

xi,proj ||xi,proj − xi||2 AT

diag(η)A diag(Axi,proj − b)

][dxi,proj

dxi

dη
dxi

]

= −

[
d∇

xi,proj ||xi,proj−xi||2
dxi

0

]
(21)

which implies equation (12), concluding our proof.

Algorithm 2: Compute the gradients
{
dθt
dzt′

(t′ < t)
}

1 for t = 2→ N do
2 for t′ = 1→ t− 1 do

3 Compute the derivatives
dx
t′′

dz
t′

=
dx
t′′

dθ
t′′
·
dθ
t′′

dz
t′

for all

t′ + 1 ≤ t′′ ≤ t− 1 where the derivative
dx
t′′

dθ
t′′

is computed by

Algorithm 1;
4 Initialize optL = +∞;
5 for round = 1→ nRound do
6 Initialize θ0,proj; δL = +∞; i = 0;
7 while δL > 0 do
8 Update i = i + 1;
9 Compute θi, θi,proj based on (14–15);

10 Compute dθ
i,proj
dz
t′

= dθi,proj

dθi
· dθ

i

dz
t′

where dθ
i,proj

dθi
is

computed similar to dx
i,proj

dxi
and dθi

dz
t′

is based on Prop. 2;

11 Update δL=L(Xt−1, Zt−1, θ
i,proj)−

L(Xt−1, Zt−1, θ
i−1,proj);

12 if optL < L(Xt−1, Zt−1, θ
i,proj) then

13 Update optL=L(Xt−1, Zt−1, θ
i,proj);

dθt
dz
t′

= dθi,proj
dz
t′

;

Proof of Proposition 2
Let H(Xt−1,Zt−1, θ

i−1,proj) = dL(Xt−1,Zt−1,θ
i−1,proj)

dθi−1,proj . By
taking the derivatives on both sides of (14), we obtain:

dθi

dzt′
=
dθi−1,proj

dzt′
− α dH

dzt′

We observe that H is a function of (Xt−1,Zt−1, θ
i−1,proj)

in which the defender’s strategies xt′′ ∈ Xt−1 with t′′ ≤
t − 1 is a function of attack variables zt′ for all t′′ > t′.
In addition, θi−1,proj is also a function of zt′ . Therefore, by
applying the chain rule, we obtain:

dH

dzt′
=

dH

d(Xt−1,Zt−1, θi−1,proj)

d(Xt−1,Zt−1, θ
i−1,proj)

dzt′

=
∑t−1

t′′=1
JH,xt′′ ·

dxt′′

dzt′
+JH,zt′′ ·

dzt′′

dzt′
+ JH,θi−1,proj · dθ

i−1,proj

dzt′

Note that dzt′′dzt′
= 0 if zt′′ 6= zt′ and is the identity matrix I

otherwise. Also, dxt′′dzt′
= 0 for all t′′ ≤ t′. Thus, the above is

same as:

=
∑t−1

t′′=t′+1
JH,xt′′ ·

dxt′′

dzt′
+ JH,zt′ + JH,θi−1,proj · dθ

i−1,proj

dzt′

Note that when t′ = t− 1, we have:

dH

dzt−1
= JH,zt′ + JH,θi−1,proj · dθ

i−1,proj

dzt′

which concludes our proof.

Full details of Algorithm 2
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Figure 4: Players’ utility evaluation. The defender follows
Projected Gradient Descent to compute his strategies.


