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Abstract. Security is a critical concern around the world, whether it is the chal-
lenge of protecting ports, airports and other critical infrastructure, interdicting the
illegal flow of drugs, weapons and money, protecting endangered wildlife, forests
and fisheries, suppressing urban crime or security in cyberspace. Unfortunately,
limited security resources prevent full security coverage at all times; instead, we
must optimize the use of limited security resources. To that end, a new “security
games” framework was developed, which led to building of decision-aids for se-
curity agencies around the world. Security games is a novel area of research that
is based on computational and behavioral game theory, while also incorporating
elements of AI planning under uncertainty and machine learning. Today security-
games based decision aids for infrastructure security are deployed in the US and
internationally; examples include deployments at ports and ferry traffic with the
US coast guard, for security of air traffic with the US Federal Air Marshals, and
for security of university campuses, airports and metro trains with police agen-
cies in the US and other countries. Moreover, recent work on “green security
games” has led decision aids to be deployed, assisting NGOs in protection of
wildlife; and “opportunistic crime security games” have focused on suppressing
urban crime. In the cyber-security domain, the interaction between the defender
and adversary is quite complicated with a high degree of incomplete information
and uncertainty. Recently, applications of game theory to provide quantitative and
analytical tools to network administrators through defensive algorithm develop-
ment and adversary behavior prediction to protect cyber infrastructures has also
received significant attention. This chapter provides an overview of use-inspired
research in security games including algorithms for scaling up security games to
real-world sized problems, handling multiple types of uncertainty, and dealing
with bounded rationality and bounded surveillance of human adversaries.
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1 Introduction

Security is a critical concern around the world that manifests in problems such as pro-
tecting our ports, airports, public transportation, and other critical national infrastruc-
ture from terrorists, in protecting our wildlife and forests from poachers and smugglers,
and in curtailing the illegal flow of weapons, drugs, and money across international



borders. In all of these problems, we have limited security resources which prevents
security coverage on all the targets at all times; instead, security resources must be
deployed intelligently taking into account differences in the importance of targets, the
responses of the attackers to the security posture, and potential uncertainty over the
types, capabilities, knowledge and priorities of attackers faced.

To address these challenges in adversarial reasoning and security resource allo-
cation, a new “security games” framework has been developed (Tambe (2011)); this
framework has led to building of decision-aids for security agencies around the world.
Security games are based on computational and behavioral game theory, while also in-
corporating elements of AI planning under uncertainty and machine learning. Security
games algorithms have led to successes and advances over previous human-designed
approaches in security scheduling and allocation by addressing the key weakness of pre-
dictability in human-designed schedules. These algorithms are now deployed in mul-
tiple applications. The first application was ARMOR, which was deployed at the Los
Angeles International Airport (LAX) in 2007 to randomize checkpoints on the road-
ways entering the airport and canine patrol routes within the airport terminals (Jain
et al (2010b)). Following that, came several other applications: IRIS, a game-theoretic
scheduler for randomized deployment of the US Federal Air Marshals (FAMS), has
been in use since 2009 (Jain et al (2010b)); PROTECT, which schedules the US Coast
Guard’s randomized patrolling of ports, has been deployed in the port of Boston since
April 2011 and is in use at the port of New York since February 2012 (Shieh et al
(2012)), and has spread to other ports such as Los Angeles/Long Beach, Houston, and
others; another application for deploying escort boats to protect ferries has been de-
ployed by the US Coast Guard since April 2013 (Fang et al (2013)); and TRUSTS (Yin
et al (2012)) which has been evaluated in field trials by the Los Angeles Sheriffs Depart-
ment (LASD) in the LA Metro system. Most recently, PAWS— another game-theoretic
application was tested by rangers in Uganda for protecting wildlife in Queen Elizabeth
National Park in April 2014 (Yang et al (2014)); MIDAS was tested by the US Coast
Guard for protecting fisheries (Haskell et al (2014)). These initial successes point the
way to major future applications in a wide range of security domains.

Researchers have recently started to explore the use of such security game models
in tackling security issues in the cyber world. In (Vanek et al (2012)), the authors study
the problem of optimal resource allocation for packet selection and inspection to de-
tect potential threats in large computer networks with multiple computers of differing
importance. In their paper, they study the application of security games to deep packet
inspection as countermeasure to intrusion detection. In a recent paper (Durkota et al
(2015)), the authors study the problem of optimal number of honeypots to be placed
in a network using a security game framework. Another interesting work, called audit
games (Blocki et al (2013, 2015)), enhances the security games model with choice of
punishments in order to capture scenarios of security and privacy policy enforcement in
large organizations (Blocki et al (2013, 2015)).

Given the many game-theoretic applications for solving real-world security prob-
lems, this chapter provides an overview of the models and algorithms, key research
challenges and a description of our successful deployments. Overall, the work in secu-
rity games has produced numerous decision aids that are in daily use by security agen-



cies to optimize their limited security resources. The implementation of these applica-
tions required addressing fundamental research challenges. We categorize the research
challenges associated with security games into four broad categories: (1) addressing
scalability across a number of dimensions of the game, (2) tackling different forms of
uncertainty that be present in the game, (3) addressing human adversaries’ bounded
rationality and bounded surveillance (limited capabilities in surveillance), and (4) eval-
uation of the framework in the field. Given the success in providing solutions for many
security domains involving the protection of critical infrastructure, the topic of security
games has evolved and expanded to include new types of security domains, for example,
for wildlife and environmental protection.

The rest of the chapter is organized as follows: Section 2 introduces the general
security games model, Section 3 discusses three different types of security games, Sec-
tion 4 describes the approaches used to tackle scalability issues, Section 5 describes
the approaches to deal with uncertainty, Section 6 focuses on bounded rationality and
bounded surveillance, and Section 7 provides details of field evaluation of the science
of security games.

2 Stackelberg Security Games

Stackelberg games were first introduced to model leadership and commitment (von
Stackelberg (1934)). A Stackelberg game is a game played sequentially between two
players: the first player is the leader who commits to a strategy first, and then the sec-
ond player, called the follower, observes the strategy of the leader and then commits
to his own strategy. The term Stackelberg Security Games (SSG) was first introduced
by Kiekintveld et al (2009) to describe specializations of a particular type of Stackel-
berg game for security as discussed below. This section provides details on this use of
Stackelberg games for modeling security domains. We first give a generic description
of security domains followed by security games, the model by which security domains
are formulated in the Stackelberg game framework3.

2.1 Stackelberg Security Game

In Stackelberg Security Games, a defender must perpetually defend a set of targets T
using a limited number of resources, whereas the attacker is able to surveil and learn
the defender’s strategy and attack after careful planning. An action, or pure strategy,
for the defender represents deploying a set of resources R on patrols or checkpoints,
e.g., scheduling checkpoints at the LAX airport or assigning federal air marshals to
protect flight tours. The pure strategy for an attacker represents an attack at a target,
e.g., a flight. The mixed strategy of the defender is a probability distribution over the
pure strategies. Additionally, with each target are also associated a set of payoff values
that define the utilities for both the defender and the attacker in case of a successful or
a failed attack.

3 Note that not all security games in the literature are Stackelberg security games (see Alpcan
and Başar (2010))



A key assumption of Stackelberg Security Games (we will sometimes refer to them
as simply security games) is that the payoff of an outcome depends only on the target
attacked, and whether or not it is covered (protected) by the defender (Kiekintveld et al
(2009)). The payoffs do not depend on the remaining aspects of the defender allocation.
For example, if an adversary succeeds in attacking target t1, the penalty for the defender
is the same whether the defender was guarding target t2 or not.

Defender Attacker
Target Covered Uncovered Covered Uncovered
t1 10 0 -1 1
t2 0 -10 -1 1

Table 1: Example of a security game with two targets.

This allows us to compactly represent the payoffs of a security game. Specifically, a
set of four payoffs is associated with each target. These four payoffs are the rewards and
penalties to both the defender and the attacker in case of a successful or an unsuccessful
attack, and are sufficient to define the utilities for both players for all possible outcomes
in the security domain. More formally, if target t is attacked, the defender’s utility is
U cd(t) if t is covered, or Uud (t) if t is not covered. The attacker’s utility is U ca(t) if t
is covered, or Uua (t) if t is not covered. Table 1 shows an example security game with
two targets, t1 and t2. In this example game, if the defender was covering target t1 and
the attacker attacked t1, the defender would get 10 units of reward whereas the attacker
would receive −1 units. We make the assumption that in a security game it is always
better for the defender to cover a target as compared to leaving it uncovered, whereas
it is always better for the attacker to attack an uncovered target. This assumption is
consistent with the payoff trends in the real-world. A special case is zero-sum games,
in which for each outcome the sum of utilities for the defender and attacker is zero,
although general security games are not necessarily zero-sum.

2.2 Solution Concept: Strong Stackelberg Equilibrium

The solution to a security game is a mixed strategy4 for the defender that maximizes the
expected utility of the defender, given that the attacker learns the mixed strategy of the
defender and chooses a best-response for himself. The defender’s mixed strategy is a
probability distribution over all pure strategies, where a pure strategy is an assignment
of the defender’s limited security resources to targets. This solution concept is known
as a Stackelberg equilibrium (Leitmann (1978)).

The most commonly adopted version of this concept in related literature is called
Strong Stackelberg Equilibrium (SSE) (Breton et al (1988); Conitzer and Sandholm
(2006); Paruchuri et al (2008); von Stengel and Zamir (2004)). In security games, the
mixed strategy of the defender is equivalent to the probabilities that each target t is

4 Note that mixed strategy solutions apply beyond Stackelberg games



covered by the defender, denoted by C = {ct} (Korzhyk et al (2010)). Furthermore, it
is enough to consider a pure strategy of the rational adversary (Conitzer and Sandholm
(2006)), which is to attack a target t. The expected utility for defender for a strategy
profile (C, t) is defined as Ud(t, C) = ctU

c
d(t) + (1− ct)Uud (t), and a similar form for

the adversary. A SSE for the basic security games (non-Bayesian, rational adversary) is
defined as follows:

Definition 1. A pair of strategies (C∗, t∗) form a Strong Stackelberg Equilibrium (SSE)
if they satisfy the following:

1. The defender plays a best-response: Ud(t∗, C∗) ≥ Ud(t(C), C) for all defender’s
strategy C where t(C) is the attacker’s response against the defender strategy C.

2. The attacker plays a best-response: Ua(t∗, C∗) ≥ Ua(t, C∗) for all target t.
3. The attacker breaks ties in favor of the defender: Ud(t∗, C∗) ≥ Ud(t

′, C∗) for all
target t′ such that t′ = argmaxt Ua(t, C

∗)

The assumption that the follower will always break ties in favor of the leader in cases
of indifference is reasonable because in most cases the leader can induce the favorable
strong equilibrium by selecting a strategy arbitrarily close to the equilibrium that causes
the follower to strictly prefer the desired strategy (von Stengel and Zamir (2004)). Fur-
thermore an SSE exists in all Stackelberg games, which makes it an attractive solution
concept compared to versions of Stackelberg equilibrium with other tie-breaking rules.
Finally, although initial applications relied on the SSE solution concept, we have since
proposed new solution concepts that are more robust against various uncertainties in the
model (Yin et al (2011); An et al (2011); Pita et al (2012)) and have used these robust
solution concepts in some of the later applications.

For simple examples of security games, such as the one shown above, the Strong
Stackelberg Equilibrium can be calculated by hand. However, as the size of the game
increases, hand calculation is no longer feasible and an algorithmic approach for gen-
erating the SSE becomes necessary. Conitzer and Sandholm (Conitzer and Sandholm
(2006)) provided the first complexity results and algorithms for computing optimal
commitment strategies in Stackelberg games, including both pure and mixed-strategy
commitments. An improved algorithm for solving Stackelberg games, DOBSS (Paruchuri
et al (2008)), is central to the fielded application ARMOR that was in use at the Los An-
geles International Airport (Jain et al (2010b)).

Decomposed Optimal Bayesian Stackelberg Solver (DOBSS): We now describe the
DOBSS5 algorithm in detail as it provides a starting point for the algorithms we develop
in the next section. We first present DOBSS in its most intuitive form as a Mixed-Integer
Quadratic Program (MIQP); we then present a linearized equivalent Mixed-Integer Lin-
ear Program (MILP). The DOBSS model explicitly represents the actions by the leader
and the optimal actions for the follower in the problem solved by the leader. Note that
we need to consider only the reward-maximizing pure strategies of the follower, since
for a given fixed mixed strategy x of the leader, each follower faces a problem with

5 DOBSS addresses Bayesian Stackelberg games with multiple follower types, but for simplicity
we do not introduce Bayesian Stackelberg games here.



fixed linear rewards. If a mixed strategy is optimal for the follower, then so are all the
pure strategies in support of that mixed strategy.

Thus, we denote by x the leader’s policy, which consists of a probability distribution
over the leader’s pure strategies σi ∈ ΣΘ, wherΣΘ is the set of all pure strategies of the
leader. Hence, the value xi is the proportion of times in which pure strategy σi ∈ ΣΘ
is used in the policy. Similarly, qj is the probability of taking strategy σj ∈ ΣΨ for the
follower, whereΣΨ is the set of all pure strategies for the follower. We denote byX and
Q the index sets of the leader and follower pure strategies, respectively. We also index
the payoff matrices of the leader and the follower by the matrices R and C where Rij
and Cij are the rewards obtained if the leader takes strategy σi ∈ ΣΘ and the follower
takes strategy σj ∈ ΣΨ . Let M be a large positive number; constraint 3 in the MIQP
below requires that the variable a be set to the maximum reward a follower can obtain
given the current policy x taken by the leader. The leader then solves the following:

max
x,q,a

∑
i∈X

∑
j∈Q

Rijxiqj (1)

s.t.
∑
i∈X xi = 1 (2)∑
j∈Q qj = 1 (3)

0 ≤ (a−
∑
i∈X Cijxi) ≤ (1− qj)M ∀j ∈ Q (4)
xi ∈ [0 . . . 1] ∀i ∈ X (5)
qj ∈ {0, 1} ∀j ∈ Q (6)
a ∈ < (7)

Here, for a leader strategy x and a strategy q for the follower, the objective (Line
1) represents the expected reward for the leader. The first (Line 2) and the fourth (Line
5) constraints define the set of feasible solutions x ∈ X as a probability distribution
over the set of strategies σi ∈ ΣΘ. The second (Line 3) and third (Line 6) constraints
limit the vector of strategies, q, to be a pure strategy over the set Q (that is each q has
exactly one coordinate equal to one and the rest equal to zero). The two inequalities in
the third constraint (Line 4) ensure that qj = 1 only for a strategy j that is optimal for
the follower. Indeed this is a linearized form of the optimality conditions for the linear
programming problem solved by each follower. We explain the third constraint (Line 4)
as follows: this constraint enforces dual feasibility of the follower’s problem (leftmost
inequality) and the complementary slackness constraint for an optimal pure strategy q
for the follower (rightmost inequality). Note that the leftmost inequality ensures that
∀j ∈ Q, a ≥

∑
i∈X Cijxi. This means that given the leader’s policy x, a is an upper

bound on follower’s reward for any strategy. The rightmost inequality is inactive for
every strategy where qj = 0, since M is a large positive quantity. In fact, since only
one pure strategy can be selected by the follower, say some qj = 1, for the strategy that
has qj = 1 the right inequality states a ≤

∑
i∈X Cijxi, which combined with the left

inequality enforces a =
∑
i∈X Cijxi, thereby imposing no additional constraint for all

other pure strategies which have qj = 0 and showing that this strategy must be optimal
for the follower.



We can linearize the quadratic programming problem (Lines 1 to 7) through the
change of variables zij = xiqj to obtain the following mixed integer linear program-
ming problem as shown in Paruchuri et al (2008).

max
q,z,a

∑
i∈X

∑
j∈Q pRijzij (8)

s.t.
∑
i∈X

∑
j∈Q zij = 1 (9)∑

j∈Q zij ≤ 1 ∀i ∈ X (10)

qj ≤
∑
i∈X zij ≤ 1 ∀j ∈ Q (11)∑

j∈Q qj = 1 (12)

0 ≤ (a−
∑
i∈X Cij(

∑
h∈Q zih)) ≤ (1− qj)M ∀j ∈ Q (13)∑

j∈Q zij =
∑
j∈Q z

1
ij ∀i ∈ X (14)

zij ∈ [0 . . . 1] ∀i ∈ X, j ∈ Q (15)

qj ∈ {0, 1} ∀j ∈ Q (16)
a ∈ < (17)

DOBSS solves this resulting mixed integer linear program using efficient integer pro-
gramming packages. The MILP was shown to be equivalent to the MIQP (Lines 1 to
7) and the equivalent Harsanyi transformed Stackelberg game (Paruchuri et al (2008)).
For a more in depth explanation of DOBSS please see Paruchuri et al (2008).

3 Categorizing Security Games

With progress in the security games research, and the expanding set of applications,
it is valuable to consider categorizing this work into three separate areas. These cate-
gories are driven by applications, but they also impact the types of games (e.g., single
shot vs repeated games) considered, and the research issues that arise. Specifically, the
three categories are: (i) Infrastructure Security Games; (ii) Green Security Games; (iii)
Opportunistic Crime Security Games. We discuss each category below.

3.1 Infrastructure Security Games

These types of games and their applications is where the original research on security
games was initiated. Key characteristics of these games include the following:

– Application characteristics: These games are focused on applications of protecting
infrastructure, such as ports, airports, trains, flights and so on; the goal is often as-
sisting agencies engaged in counter-terrorism. Notice that the infrastructure being
protected tends to be static, and little changes in a few months, e.g., an airport be-
ing protected may have new construction once in 2-3 years. The activities in the
infrastructure are regulated by well established schedules of movement of people
or goods. Furthermore, the targets being protected often have a discrete structure,



e.g., terminals at an airport, individual flights, individual trains, etc.

– Overall characteristics of the defender and adversary play: These games are single
shot games. The defender does play her strategy repeatedly, i.e., the defender com-
mits to a mixed strategy in this security game. This mixed strategy may get played
for months at a time. However, a single attack by an adversary ends the game. The
game could potentially restart after such an attack, but it is not setup as a repeated
game as in the game categories described below.

– Adversary characteristics: The games assume that the adversaries are highly strate-
gic, who may attack after careful planning and surveillance. These carefully planned
attacks have high consequences. Furthermore since these attacks are a result of
careful planning with the anticipation of high consequences, attackers commit to
these plans of attacks and are not considered to opportunistically move from target
to target.

– Defender characteristics: The defender does not repeatedly update her strategies.
In these domains, there may be just a few attacks that may occur, but these tend
to be rare; they are not a very large number of attacks that occur repeatedly. As a
result, traditionally, no machine learning is used in this work for the defender to
update her strategies over time.

3.2 Green Security Games

These types of games and their applications are focused on trying to protect the envi-
ronment; and we adopt the term from “green criminology”.6

– Application characteristics: These games are focused on applications of protecting
the environment, including forests, fish and wildlife. The goal is thus often to as-
sist security agencies against poachers, illegal fishermen or those illegally cutting
trees in national parks in countries around the world. Unlike infrastructure security
games, animals or fish being protected may move around in geographical space,
introducing new dimensions of complexity. Finally, the targets being protected are
spread out over vast open geographical spaces, e.g., large forest regions protect
trees from illegal cutting.

– Overall characteristics of the defender and adversary play: These games are not
single shot games. Unfortunately, the adversaries often conducts multiple repeated
“attacks”, e.g., poaching animals repeated. Thus, a single illegal activity does not

6 We use the term green security games also to avoid any confusion that may come about given
that terms related to the environment and security have been adopted for other uses. For exam-
ple, the term “environmental security” broadly speaking refers to threats posed to humans due
to environmental issues, e.g., climate change or shortage of food. The term “environmental
criminology” on the other hand refers to analysis and understanding of how different environ-
ments affect crime.



end the game. Instead, usually, after obtaining reports, e.g., over a month, of illegal
activities, the defender often replans her security activities. In other words, these are
repeated security games where the defender plays a mixed strategy, while the at-
tacker attacks multiple times, and then the defender replans and plays a new mixed
strategy and the cycle repeats. Notice also that the illegal activities of concern here
may be conducted by multiple individuals, and thus there are multiple adversaries
that are active at any one point.

– Adversary characteristics: As mentioned earlier, the adversaries are engaged in re-
peated illegal activities; and the consequences of failure or success are not as severe
as in the case of counter-terrorism. As a result, every single attack (illegal action)
cannot be carried out with the most detailed surveillance and planning; the adver-
saries will hence exhibit more of a bounded rationality and bounded surveillance in
these domains.
Nonetheless, these domains are not ones where illegal activities can be conducted
opportunistically (as in the opportunistic crime security games discussed below).
This is because in these green security games, the adversaries often have to act in
extremely dangerous places (e.g., deep in forests, protecting themselves from wild
animals), and thus given the risks involved, they cannot take an entirely opportunis-
tic approach.

– Defender characteristics: Since this is a repeated game setting, the defender repeat-
edly updates her strategies. Machine learning can now be used in this work for the
defender to update her strategies over time, given that attack data is available over
time. The presence of large amounts of such attack data is very unfortunate in that
very large numbers of crimes against the environment are recorded in real life, but
the silver lining is that the defender can improve her strategy exploiting this data.

3.3 Opportunistic Crime Security Games

These types of games and their applications are focused on trying to combat oppor-
tunistic crime. Such opportunistic crime may include criminals engaged in thefts such
as snatching of cell phones in metros or stealing student laptops from libraries.

– Application characteristics: These games focused on applications involving pro-
tecting the public against opportunistic crime. The goal is thus often to assist secu-
rity agencies in protecting public’s property such as cell phones, laptops or other
valuables. Here, human crowds may move around based on scheduled activities,
e.g., office hours in downtown settings, or class timings on a university campus,
and thus the focus of what needs to be protected may shift on a regular schedule.
At least in urban settings, these games focus on specific limited geographical areas
as opposed to vast open spaces as involved in “green security games”.

– Overall characteristics of the defender and adversary play: While these games are
not explicitly formulated as repeated games, the adversary may conduct or attempt



to conduct multiple “attacks” (thefts) in any one round of the game. Thus, the de-
fender commits to a mixed strategy, but a single attack by a single attacker does
not end the game. Instead multiple attackers may be active at a time, conducting
multiple thefts while the defender attempts to stop these thefts from taking place.

– Adversary characteristics: Once again, the adversaries are engaged in repeated il-
legal activities; and the consequences of failure or success are not as severe as in
the case of counter-terrorism. As a result, once again, given that every single at-
tack (illegal action) cannot be carried out with the most detailed surveillance and
planning, the adversaries may thus act even less strategically, and exhibit more of
a bounded rationality and bounded surveillance in these domains. Furthermore, the
adversaries are not as committed to detailed plans and are flexible in their execution
of their plans, as targets of opportunity present themselves.

– Defender characteristics: How to update defender strategies in these games from
crime data is still an open research challenge.

3.4 Cyber Security Games

These types of games and their applications are focused on trying to combat cyber
crimes. Such crimes include attackers compromising network infrastructures to launch
a physical attack or stealing digital data, etc.

– Application characteristics: These games are focused on applications involving
protecting network assets against cyber attacks. The goal is thus often to assist net-
work administrators in protecting computer systems such as data servers, switches,
etc, from data theft or damage to hardware, software or information, as well as pre-
venting disruption of services.

– Overall characteristics of the defender and adversary play: Depending on the prob-
lem at hand, the attacker (or the intruder) may want to gain control over (or to dis-
able) a valuable computer in the network by scanning the network, compromising
a more vulnerable system, and/or gaining access to further devices on the computer
network. The ultimate goal could be to use the compromised systems to launch
further attacks or to steal data, etc. The broader goal of the defender (a human net-
work administrator, or a detection system) could be formulated as preventing the
adversary from gaining control over systems in the network by detecting malicious
attacks.

– Adversary characteristics: The adversary’s characteristics vary from one applica-
tion domain to another. In some application scenarios, the intruder may simply want
to gain control over (or to disable) a valuable computer in the network to launch
other attacks, by scanning the network and thus compromising a more vulnerable
system, and/or gaining access to further devices on the computer network. The ac-
tions of the attacker can therefore be seen as sending malicious packets from a



controlled computer (termed source) to a single or multiple vulnerable computers
(termed targets). In other scenarios, the attacker may be interested in stealing valu-
able information from a particular data server and therefore takes necessary actions
to compromise the desired system, possibly through a series of disruptions as stud-
ied in the Advanced Persistent Threat (APT) literature.

– Defender characteristics: Although this is a new and open problem, there has been
recent literature that studies the problem of optimal defender resource allocation
for packet selection and inspection to detect potential threats in large computer net-
works with multiple computers of differing importance. Therefore, the objective of
the defender in such problems is to prevent the intruder from succeeding by select-
ing the packets for inspection, identifying the attacker, and subsequently thwarting
the attack.

Even though we have categorized the research and applications of security games
in these three categories, not everything is very cleanly divided in this fashion. Further
research may reveal other categories of need to generate sub-categories of the above
three categories.

In the rest of this chapter, we will concentrate only on Infrastructure Security Games
and Green Security Games. In the following sections, we first present three key chal-
lenges in solving real-world security problems which are summarized in Figure 1: 1)
scaling up to real-world sized security problems, 2) handling multiple uncertainties in
security games, and 3) dealing with bounded rationality and bounded surveillance of
human adversaries. While Figure 1 does not provide an exhaustive overview of all re-
search in SSG, it provides a general overview of the areas of research, and a roadmap
to the rest of the book chapter. In each case, we will use a domain example to motivate
the specific challenge and then outline the key algorithmic innovation needed to address
the challenge.

4 Addressing Scalability in Real-world Problems

The early works in Stackelberg security games such as DOBSS (Paruchuri et al (2008))
required that the full set of pure strategies for both players be considered when model-
ing and solving Stackelberg security games. However, many real world problems fea-
ture billions of pure strategies for either the defender and/or the attacker. Such large
problem instances cannot even be represented in modern computers, let alone solved
using previous techniques.

In addition to large strategy spaces, there are other scalability challenges presented
by different real world security domains. There are domains where, rather than being
static, the targets are moving and thus the security resources need to be mobile and
move in a continuous space to provide protection. There are also domains where the
attacker may not conduct the careful surveillance and planning that is assumed for a
Strong Stackelberg Equilibrium and thus it is important to model the bounded ratio-
nality and bounded surveillance of the attacker in order to predict their behavior. In



Fig. 1: Summary of Real-world Security Challenges

the former case, both the defender and attacker’s strategy spaces are infinite. In the
latter case, computing the optimal strategy for the defender given attacker behavioral
(bounded rationality and/or bounded surveillance) model is computationally expensive.
Furthermore, in certain domains, it is important to incorporate fine-grained topograph-
ical information to generate realistic patrol strategies for the defender. However, in do-
ing so, existing techniques lead to a significant challenge in scalability especially when
scheduling constraints need to be satisfied. In this section, we thus highlight the critical
scalability challenges faced to bring Stackelberg security games to the real world and
the research contributions that served to address these challenges.

4.1 Scale Up with Large Defender Strategy Spaces

This section provides an example of a research challenge in security games where the
number of defender strategies is too enormous to be enumerated in computer memory.



In this section as in others that will follow, we will first provide a domain example
motivating the challenge and then the algorithmic solution for the challenge.

Domain Example – IRIS for US Federal Air Marshals Service. The US Federal Air
Marshals Service (FAMS) allocates air marshals to flights departing from and arriving
in the United States to dissuade potential aggressors and prevent an attack should one
occur. Flights are of different importance based on a variety of factors such as the num-
bers of passengers, the population of source and destination cities, and international
flights from different countries. Security resource allocation in this domain is signif-
icantly more challenging than for ARMOR: a limited number of air marshals need to
be scheduled to cover thousands of commercial flights each day. Furthermore, these air
marshals must be scheduled on tours of flights that obey various constraints (e.g., the
time required to board, fly, and disembark). Simply finding schedules for the marshals
that meet all of these constraints is a computational challenge. For an example scenario
with 1000 flights and 20 marshals, there are over 1041 possible schedules that could
be considered. Yet there are currently tens of thousands of commercial flights flying
each day, and public estimates state that there are thousands of air marshals that are
scheduled daily by the FAMS (Keteyian (2010)). Air marshals must be scheduled on
tours of flights that obey logistical constraints (e.g., the time required to board, fly, and
disembark). An example of a schedule is an air marshal assigned to a round trip from
New York to London and back.

Against this background, the IRIS system (Intelligent Randomization In Schedul-
ing) has been developed and deployed by FAMS since 2009 to randomize schedules of
air marshals on international flights. In IRIS, the targets are the set of n flights and the
attacker could potentially choose to attack one of these flights. The FAMS can assign
m < n air marshals that may be assigned to protect these flights.

Since the number of possible schedules exponentially increases with the number
of flights and resources, DOBSS is no longer applicable to the FAMS domain. Instead,
IRIS uses the much faster ASPEN algorithm (Jain et al (2010a)) to generate the schedule
for thousands of commercial flights per day.

Algorithmic Solution – Incremental Strategy Generation (ASPEN). In this section,
we describe one particular algorithm ASPEN, that computes strong Stackelberg equi-
libria (SSE) in domains with a very large number of pure strategies (up to billions of
actions) for the defender (Jain et al (2010a)). ASPEN builds on the insight that in many
real-world security problems, there exist solutions with small support sizes, which are
mixed strategies in which only a small set of pure strategies are played with positive
probability (Lipton et al (2003)). ASPEN exploits this by using a incremental strategy
generation approach for the defender, in which defender pure strategies are iteratively
generated and added to the optimization formulation.

In ASPEN’s security game, the attacker can choose any of the flights to attack, and
each air marshal can cover one schedule. Each schedule here is a feasible set of targets
that can be covered together; for the FAMS, each schedule would represent a flight tour
which satisfies all the logistical constraints that an air marshal could fly. For example,
{t1, t2} would be a flight schedule, where t1 is an outbound flight and t2 is an inbound
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Fig. 2: Strategy generation employed in ASPEN: The schedules for a defender are gen-
erated iteratively. The slave problem is a novel minimum-cost integer flow formulation
that computes the new pure strategy to be added to P; J4 is computed and added in this
example.

flight for one air marshal. A joint schedule then would assign every air marshal to a
flight tour, and there could be exponentially many joint schedules in the domain. A pure
strategy for the defender in this security game is a joint schedule. Thus for example, if
there are two air marshals, one possible joint schedule would be {{t1, t2}, {t3, t4}},
where the first air marshal covers flights t1 and t2, and the second covers flights t3 and
t4. As mentioned previously, ASPEN employs incremental strategy generation since all
the defender pure strategies cannot be enumerated for such a massive problem. ASPEN
decomposes the problem into a master problem and a slave problem, which are then
solved iteratively. Given a number of pure strategies, the master solves for the defender
and the attacker optimization constraints, while the slave is used to generate a new pure
strategy for the defender in every iteration. This incremental, iterative strategy gener-
ation process allows ASPEN to avoid generation of the entire set of pure strategies.
In other words, by exploiting the small support size mentioned above, only a few pure
strategies get generated via the iterative process; and yet we are guaranteed to reach the
optimal solution.

The iterative process is graphically depicted in Figure 2. The master operates on
the pure strategies (joint schedules) generated thus far, which are represented using the
matrix P. Each column of P, Jj , is one pure strategy (or joint schedule). An entry Pij
in the matrix P is 1 if a target ti is covered by joint-schedule Jj , and 0 otherwise. For
example, in Figure 2, the joint schedule J3 covers target t1 but not target t2. The objec-
tive of the master problem is to compute x, the optimal mixed strategy of the defender
over the pure strategies in P. The objective function for the slave is updated based on



the solution of the master, and the slave is solved to identify the best new column to add
to the master problem, using reduced costs (explained later). If no column can improve
the solution, the algorithm terminates. Therefore, in terms of our example, the objec-
tive of the slave problem is to generate the best joint schedule to add to P. This best
joint schedule is identified using the concept of reduced costs, which captures the total
change in the defender payoff if a candidate column is added to P, i.e., it measures if
a pure strategy can potentially increase the defender’s expected utility. The candidate
column with minimum reduced cost improves the objective value the most. The details
of the approach are provided in (Jain et al (2010a)). While a naı̈ve approach would be
to iterate over all possible pure strategies to identify the pure strategy with the maxi-
mum potential, ASPEN uses a novel minimum-cost integer flow problem to efficiently
identify the best pure strategy to add. ASPEN always converges on the optimal mixed
strategy for the defender.

Employing incremental strategy generation for large optimization problems is not
an “out-of-the-box” approach, the problem has to be formulated in a way that allows
for domain properties to be exploited. The novel contribution of ASPEN is to provide a
linear formulation for the master and a minimum-cost integer flow formulation for the
slave, which enables the application of strategy generation techniques.

4.2 Scale Up with Large Defender & Attacker Strategy Spaces

Whereas the previous section focused on domains where only the defender’s strategy
was difficult to enumerate, we now turn to domains where both defender and attacker
strategies are difficult to enumerate. Once again we provide a domain example and then
an algorithmic solution.

Domain Example – Road Network Security One area of great importance is se-
curing urban city networks, transportation networks, computer networks and other net-
work centric security domains. For example, after the terrorist attacks in Mumbai of
2008 (Chandran and Beitchman (29 November 2008)), the Mumbai police started set-
ting up vehicular checkpoints on roads. We can model the problem faced by the Mumbai
police as a security game between the Mumbai police and an attacker. In this urban se-
curity game, the pure strategies of the defender correspond to allocations of resources
to edges in the network—for example, an allocation of police checkpoints to roads in
the city. The pure strategies of the attacker correspond to paths from any source node to
any target node—for example, a path from a landing spot on the coast to the airport.

The strategy space of the defender grows exponentially with the number of available
resources, whereas the strategy space of the attacker grows exponentially with the size
of the network. For example, in a fully connected graph with 20 nodes and 190 edges,
the number of defender pure strategies for only 5 defender resources is

(
190
5

)
or almost

2 billion, while the number of attacker pure strategies (i.e., paths without cycles) is on
the order of 1018. Real-world networks are significantly larger, e.g., the entire road net-
work of the city of Mumbai has 9,503 nodes (intersections) and 20,416 edges (streets),
and the security forces can deploy dozens (but not as many as number of edges) of
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Fig. 3: Strategy Generation employed in RUGGED: The pure strategies for both the de-
fender and the attacker are generated iteratively.

resources. In addressing this computational challenge, novel algorithms based on incre-
mental strategy generation have been able to generate randomized defender strategies
that scale up to the entire road network of Mumbai (Jain et al (2013)).

Algorithmic Solution – Double Oracle Incremental Strategy Generation (RUGGED)
In domains such as the urban network security setting, the number of pure strategies of
both the defender and the attacker are exponentially large. In this section, we describe
the RUGGED algorithm (Jain et al (2011)), which generates pure strategies for both the
defender and the attacker.

RUGGED models the domain as a zero-sum game, and computes the minimax equi-
librium, since the minimax strategy is equivalent to the SSE in zero-sum games. Fig-
ure 3 shows the working of RUGGED: at each iteration, the Minimax module generates
the optimal mixed strategies 〈x,a〉 for the two players for the current payoff matrix,
the Best Response Defender module generates a new strategy for the defender that is a
best response against the attacker’s current strategy a, and the Best Response Attacker
module generates a new strategy for the attacker that is a best response against the de-
fender’s current strategy x. The rows Xi in the figure are the pure strategies for the
defender, they would correspond to an allocation of checkpoints in the urban road net-
work domain. Similarly, the columns Aj are the pure strategies for the attacker, they
represent the attack paths in the urban road network domain. The values in the matrix
represent the payoffs to the defender. For example, in Figure 3, the row denoted by X1

indicates that there was one checkpoint setup, and it provides a defender payoff of −5
against attacker strategy (path) A1, and a payoff of 10 against attacker strategy (path)
A2.

In Figure 3, we show that RUGGED iterates over two oracles: the defender best
response and the attacker best response oracles. In this case, the defender best response
oracle has added a strategyX2, and the attacker best response oracle then adds a strategy
A3. The algorithm stops when neither of the generated best responses improve on the
current minimax strategies.



The contribution of RUGGED is to provide the mixed integer formulations for the
best response modules which enable the application of such a strategy generation ap-
proach. The key once again is that RUGGED is able to converge to the optimal solution
without enumerating the entire space of defender and attacker strategies. However, orig-
inally RUGGED could only compute the optimal solution for deploying up to 4 resources
in real-city network with 250 nodes within a time frame of 10 hours (the complexity
of this problem can be estimated by observing that both the best response problems are
NP-hard themselves (Jain et al (2011))). More recent work (Jain et al (2013)) builds on
RUGGED and proposes SNARES , which allows scale-up to the entire city of Mumbai,
with 10–15 checkpoints.

4.3 Scale Up with Mobile Resources & Moving Targets

Whereas the previous two sections focused on incremental strategy generation as an ap-
proach for scale-up this section introduces another approach: use of compact marginal
probability representations. This alternative approach is shown in use in the context of
a new application of protecting ferries.

Domain Example – Ferry Protection for the US Coast Guard The United States
Coast Guard is responsible for protecting domestic ferries, including the Staten Island
Ferry in New York, from potential terrorist attacks. here are a number of ferries carrying
hundreds of passengers in many waterside cities. These ferries are attractive targets for
an attacker who can approach the ferries with a small boat packed with explosives at any
time; this attacker’s boat may only be detected when it comes close to the ferries. Small,
fast, and well-armed patrol boats can provide protection to such ferries by detecting the
attacker within a certain distance and stop him from attacking with the armed weapons.
However, the numbers of patrol boats are often limited, thus the defender cannot protect
the ferries at all times and locations. We thus developed a game-theoretic system for
scheduling escort boat patrols to protect ferries, and this has been deployed at the Staten
Island Ferry since 2013 (Fang et al (2013)).

The key research challenge is the fact that the ferries are continuously moving in a
continuous domain, and the attacker could attack at any moment in time. This type of
moving targets domain leads to game-theoretic models with continuous strategy spaces,
which presents computational challenges. Our theoretical work showed that while it is
“safe” to discretize the defender’s strategy space (in the sense that the solution quality
provided by our work provides a lower bound), discretizing the attacker’s strategy space
would result in loss of utility (in the sense that this would provide only an upper bound,
and thus an unreliable guarantee of true solution quality). We developed a novel algo-
rithm that uses a compact representation for the defender’s mixed strategy space while
being able to exactly model the attacker’s continuous strategy space. The implemented
algorithm, running on a laptop, is able to generate daily schedules for escort boats with
guaranteed expected utility values.

Algorithmic Solution – Compact Strategy Representation (CASS). In this section,
we describe the CASS (Solver for Continuous Attacker Strategy) algorithm (Fang et al



Fig. 4: Escort boats protecting the Staten Island Ferry use strategies generated by our system.

(2013)) for solving security problems where the defender has mobile patrollers to pro-
tect a set of mobile targets against the attacker who can attack these moving targets
at any time during their movement. In these security problems, the sets of pure strate-
gies for both the defender and attacker are continuous w.r.t the continuous spatial and
time components of the problem domain. The CASS algorithm attempts to compute
the optimal mixed strategy for the defender without discretizing the attacker’s contin-
uous strategy set; it exactly models this set using sub-interval analysis which exploits
the piecewise-linear structure of the attacker’s expected utility function. The insight of
CASS is to compactly represent the defender’s mixed strategies as a marginal prob-
ability distribution, overcoming the short-coming of an exponential number of pure
strategies for the defender.

CASS casts problems such as the ferry protection problem mentioned above as a
zero-sum security game in which targets move along a one-dimensional domain, i.e.,
a straight line segment connecting two terminal points. This one-dimensional assump-
tion is valid as in real-world domains such as ferry protection, ferries normally move
back-and-forth in a straight line between two terminals (i.e., ports) around the world.
Although the targets’ locations vary w.r.t time changes, these targets have a fixed daily
schedule, meaning that determining the locations of the targets at a certain time is
straightforward. The defender has mobile patrollers (i.e., boats) that can move along
between two terminals to protect the targets. While the defender is trying to protect the
targets, the attacker will decide to attack a certain target at a certain time. The probabil-
ity that the attacker successfully attacks depends on the positions of the patroller at that
time. Specifically, each patroller possesses a protective circle of radius within which
she can detect and try to intercept any attack, whereas she is incapable of detecting the
attacker prior to that radius.

In CASS, the defender’s strategy space is discretized and her mixed strategy is com-
pactly represented using flow distributions. Figure 5 shows an example of a ferry tran-
sition graph in which each node of the graph indicates a particular pair of (location,



Fig. 5: An example of a ferry transition graph

time step) for the target. Here, there are three location points namely A, B, and C on a
straight line where B lies between A and C. Initially, the target is at one of these location
points at the 5-minute time step. Then the target moves to the next location point which
is determined based on the connectivity between these points at the 10-minute time step
and so on. For example, if the target is at the location point A at the 5-minute time step,
denoted by (A, 5 min) in the transition graph, it can move to the location point B or
stay at location point A at the 10-minute time step. The defender follows this transition
graph to protect the target.

A pure strategy for the defender is defined as a trajectory of this graph, e.g., the tra-
jectory including (A, 5 min), (B, 10 min), and (C, 15 min) indicates a pure strategy for
the defender. One key challenge of this representation for the defender’s pure strategies
is that the transition graph consists of an exponential number of trajectories, i.e.,O(NT )
where N is the number of location points and T is the number of time steps. To address
this challenge, CASS proposes a compact representation of the defender’s mixed strat-
egy. Instead of directly computing a probability distribution over pure strategies for the
defender, CASS attempts to compute the marginal probability that the defender will fol-
low a certain edge of the transition graph, e.g., the probability of being at the node (A,
5 min) and moving to the node (B, 10 min). We show that given a discretized strategy
space for the defender, any strategy in full representation can be mapped into a compact
representation as well as compact representation does not lead to any loss in solution
quality compared to the full representation (see Theorem 1 in Fang et al (2013)). This
compact representation allows CASS to reformulate the resource-allocation problem as
computing the optimal marginal coverage of the defender over a number ofO(NT ) the
edges of the transition graph.

4.4 Scale Up with Boundedly Rational Attackers

One key challenge of real-world security problems is that the attacker is boundedly ra-
tional; the attacker’s target choice is non-optimal. In SSGs, attacker bounded rational-
ity is often modeled via behavior models such as Quantal Response (QR) (McFadden
(1972); McKelvey and Palfrey (1995)). In general, QR attempts to predict the probabil-
ity the attacker will choose each target with the intuition is that the higher the expected



utility at a target is, the more likely that the adversary will attack that target. Another
behavioral model that was recently shown to provide higher prediction accuracy in pre-
dicting the attacker’s behavior than QR is Subjective Utility Quantal Response (SUQR)
(Nguyen et al (2013)). SUQR is motivated by the lens model which suggested that
evaluation of adversaries over targets is based on a linear combination of multiple ob-
servable features (Brunswik (1952)). We provide a detailed discussion on modeling and
learning the attacker’s behavioral model in Section 6. However, even when the attacker’s
bounded rationality is modeled and those models are learned efficiently, handling mul-
tiple attackers with these behavioral models in the context of a large strategy space for
the defender is a computational challenge. Therefore, in this section, we mainly focus
on handling the scalability problem given behavioral models of the attacker.

To handle the problem of large defender’s strategy space given behavioral models
of attackers, we introduce yet another technique of scaling up, which is similar to the
incremental strategy generation. Instead, here we use incremental marginal space re-
finement. We use the compact marginal representation, discussed earlier, but refine that
space incrementally if the solution produces violates the necessary constraints.

Domain Example– Fishery Protection for US Coast Guard Fisheries are a vital nat-
ural resource from both an ecological and economic standpoint. However, fish stocks
around the world are threatened with collapse due to illegal, unreported, and unreg-
ulated (IUU) fishing. The United States Coast Guard (USCG) is tasked with the re-
sponsibility of protecting and maintaining the nation’s fisheries. To this end, the USCG
deploys resources (both air and surface assets) to conduct patrols over fishery areas in
order to deter and mitigate IUU fishing. Due to the large size of these patrol areas and
the limited patrolling resources available, it is impossible to protect an entire fishery
from IUU fishing at all times. Thus, an intelligent allocation of patrolling resources is
critical for security agencies like the USCG.

Natural resource conservation domains such as fishery protection raise a number of
new research challenges. In stark contrast to counter-terrorism settings, there is frequent
interaction between the defender and attacker in these resource conservation domains.
This distinction is important for three reasons. First, due to the comparatively low stakes
of the interactions, rather than a handful of persons or groups, the defender must protect
against numerous adversaries (potentially hundreds or even more), each of which may
behave differently. Second, frequent interactions make it possible to collect data on the
actions of the adversaries actions over time. Third, the adversaries are less strategic
given the short planning windows between actions.

Algorithmic Solution – Incremental Constraint Generation (MIDAS). Generating
effective strategies for domains such as fishery protection requires an algorithmic ap-
proach which is both scalable and robust. For scalability, the defender is responsible
for protecting a large patrol area and therefore must consider a large strategy space.
Even if the patrol area is discretized into a grid or graph structure, the defender must
still reason over an exponential number of patrol strategies. For robustness, the de-
fender must protect against multiple boundedly rational adversaries. Bounded rational-
ity models, such as the quantal response (QR) model (McKelvey and Palfrey (1995))



and the subjective utility quantal response (SUQR) model (Nguyen et al (2013)), intro-
duce stochastic actions, relaxing the strong assumption in classical game theory that all
players are perfectly rational and utility maximizing. These models are able to better
predict the actions of human adversaries and thus lead the defender to choose strategies
that perform better in practice. However, both QR and SUQR are non-linear models
resulting in a computationally difficult optimization problem for the defender. Combin-
ing these factors, MIDAS models a population of boundedly rational adversaries and
utilizes available data to learn the behavior models of the adversaries using the subjec-
tive utility quantal response (SUQR) model in order to improve the way the defender
allocates its patrolling resources.

Previous work on boundedly rational adversaries has considered the challenges of
scalability and robustness separately, by (Yang et al (2012, 2013a)) and (Yang et al
(2014); Haskell et al (2014)), respectively. The MIDAS algorithm was introduced to
merge these two research threads for the first time by addressing scalability and robust-
ness simultaneously. Figure 6 provides a visual overview of how MIDAS operates as
an iterative process. Similar to the ASPEN algorithm described earlier, given the sheer
complexity of the game being solved, the problem is decomposed using a master-slave
formulation. The master utilizes multiple simplifications to create a relaxed version of
the original problem which is more efficient to solve. First, a piecewise linear approxi-
mation of the security game is taken to make the optimization problem both linear and
convex. Second, the complex spatio-temporal constraints associated with patrols are ini-
tially ignored and then incrementally added back using cut generation. In other words,
we ignore the spatio-temporal constraint that a patroller cannot simple appear and dis-
appear at different locations instantaneously; and that a patroller must pass through re-
gions connecting two different regions if the patroller is go from one region to another.
This significantly simplifies the master problem.

Due to the relaxations, solving the master produces a marginal strategy x which is
a probability distribution over targets. However, the defender ultimately needs a prob-
ability distribution over patrols. Additionally, since not all of the spatio-temporal con-
straints are considered in the master, the relaxed solution x may not be a feasible so-
lution to the original problem. Therefore, the slave checks if the marginal strategy x
can expressed as a linear combination, i.e., probability distribution, of patrols. Other-
wise, the marginal distribution is infeasible for the original problem. However, given
the exponential number of patrol strategies, even performing this optimality check is
intractable. Thus, column generation is used within the slave where only a small set
of patrols is considered initially in the optimality check and the set is expanded over
time. Much like previous examples of column generation in security games, e.g., (Jain
et al (2010a)), new patrols are added by solving a minimum cost network flow prob-
lem using reduced cost information from the optimality check. If the optimality check
fails, then the slave generates a cut which is returned to refine and constrain the master,
incrementally bringing it closer to the original problem. The entire process is repeated
until an optimal solution is found. Finally, MIDAS has been successfully deployed and
evaluated by the USCG in the Gulf of Mexico.



Fig. 6: Overview of the multiple iterative process within the MIDAS algorithm

4.5 Scale Up with Fine-Grained Spatial Information

Discretization is a standard way to convert a continuous problem to a discrete problem.
Therefore, a grid map is often used to describe a large area. However, when fine-grained
spatial information needs to be considered, each cell in the grid map should be of small
size and the total number of cells is large, which leads to a significant challenge in
scalability in security games especially when scheduling constraints need to be satisfied.
In this section, we introduce a hierarchical modeling approach for problems with fine-
grained spatial information, which is used in the context of designing foot patrols in
area with complex terrain (Fang et al (2016)).

Domain Example– Wildlife Protection for Area with Complex Terrain There is an
urgent need to protect wildlife from poaching. Indeed, poaching can lead to extinction
of species and destruction of ecosystems. For example, poaching is considered a major
driver (Chapron et al (2008)) of why tigers are now found in less than 7% of their
historical range (Sanderson et al (2006)), with three out of nine tiger subspecies already
extinct (IUCN (2015)). As a result, efforts have been made by law enforcement agencies
in many countries to protect endangered animals; the most commonly used approach is
conducting foot patrols. However, given their limited human resources, improving the
efficiency of patrols to combat poaching remains a major challenge.

While game-theoretic framework can be used to address this challenge, the complex
terrain of the patrolled area introduces additional complexity. In many conservation
areas, high changes in elevation and the existence of large water bodies may result in a
big difference in the effort needed for patrollers’ movement. These factors also have a
direct effect on poachers’ movement. Therefore, when designing defender strategies, it



(a) A foot-patrol (Malaysia) (b) Illegal camp sign

Fig. 7: Patrols through a forest in Malaysia

is important to incorporate such topographic information. Figure 7(a) shows a sample
foot patrol through a forest in Malaysia and the difficulty of conducting these patrols due
to topographical constraints. Figure 7(b) shows illegal camping signs observed during
those foot patrols. To generate patrol routes that contain detailed information for the
patrollers and are compatible with the terrain, a fine-grained discretization of the area
is necessary, leading to a large grid map of the area. On the other hand, the number of
feasible routes is exponential to the number of discretized cells in the grid map due to
the practical scheduling constraints such as patrol time limit and starting and ending
at the base camp. Therefore, computing the optimal patrolling strategy is exceptionally
computationally challenging.

Algorithmic Solution– Hierarchical Modeling Approach The hierarchical modeling
approach allows us to attain a good compromise between scaling up and providing
detailed guidance. This approach would be applicable in many other domains for large
open area patrolling where security games are applicable, not only other green security
games applications, but others including patrolling of large warehouse areas or large
open campuses via robots or UAVs.

We leverage insights from hierarchical abstraction for heuristic search such as path
planning (Botea et al (2004)) and apply two levels of discretization to the area of inter-
est. We first discretize the area into large-sized Grid Cells and treat every grid cell as a
target. We further discretize the grid cells into small-sized Raster Pieces and describe
the spatial information for each raster piece. The defender actions are patrol routes de-
fined over a virtual “street map” – which is built in the terms of raster pieces while aided
by the grid cells in this abstraction as described below. With this hierarchical model-
ing, the model keeps a small number of targets and reduces the number of patrol routes
while allowing for details at a fine-grained scale. The street map is a graph consisting
of nodes and edges, where the set of nodes is a small subset of the raster pieces and
edges are sequences of raster pieces linking the nodes. We denote nodes as Key Access



Points (KAPs) and edges as route segments. While designing foot patrols in areas with
complex terrain, the street map not only helps scalability but also allows us to focus
patrolling on preferred terrain features such as ridgelines which patrollers find easier to
move around and are important conduits for certain mammal species such as tigers.

The street map is built in three steps: (i) determine the accessibility type for each
raster piece, (ii) define KAPs and (iii) find route segments to link the KAPs. In the
first step, we check the accessibility type of every raster piece. In the example domain,
raster pieces in a lake are inaccessible, whereas raster pieces on ridge lines or previous
patrol tracks are easily accessible. In other domains, the accessibility of a raster piece
can be defined differently. The second step is to define a set of KAPs, via which patrols
will be routed. We want to build the street map in such a way that each grid cell can
be reached. So we first choose raster pieces which can serve as entries and exits for
the grid cells as KAPs, i.e., the ones that are on the boundary of grid cells and are
easily accessible. In addition, we consider existing base camps and mountain tops as
KAPs as they are key points in planning the patroller’s route. We choose additional
KAPs to ensure KAPs on the boundary of adjacent cells are paired. Figure 8 shows
identified KAPs and easily accessible pieces (black and grey raster pieces respectively).

Fig. 8: KAPs
(black) for 2 by
2 grid cells.

The last step is to find route segments to connect the KAPs. Instead
of inefficiently finding route segments to connect each pair of KAPs
on the map globally, we find route segments locally for each pair of
KAPs within the same grid cell, which is sufficient to connect all
the KAPs. When finding the route segment, we design a distance
measure which estimates the actual patrol effort according to the
accessibility type of the raster pieces. Given the distance measure,
the route segment is defined as the shortest distance path linking two
KAPs within the grid cell.

The defender’s pure strategy is defined as a patrol route on the
street map, starting from the base node, walking along route seg-
ments and ending with the base node, with its total distance sat-
isfying the patrol distance limit. The defender’s goal is to find an
optimal mixed patrol strategy — a probability distribution over pa-
trol routes. Based on the street map concept, we use a cutting-plane
approach (Yang et al (2013b)) that is similar to MIDAS; specifically, in the master com-
ponent, we use ARROW (Nguyen et al (2015)) algorithm to handle payoff uncertainty
using the concept of minimax regret and in the slave component, we also use optimal-
ity check and column generation, and in generating new column (new patrol), we use a
random selection approach over the street map. This framework is the core of the PAWS
(Protection Assistant for Wildlife Security) application. Collaborating with two NGOs
(Panthera and Rimba), PAWS has been deployed in Malaysia for tiger conservation.

5 Addressing Uncertainty in Real-world Problems

The standard security game model features a number of strong assumptions includ-
ing that the defender has perfect information about the game payoff matrix as well as
the attacker’s behavorial model. Additionally, the defender is assumed to be capable



Fig. 9: Uncertainty space and algorithms

of exactly executing the computed patrolling strategy. However, uncertainty is endemic
in real-world security domains and thus is may be impossible or impractical for the
defender to the accurately estimate various aspects of the game. Also, there are any
number of practicalities and unforeseen events that may force the defender to change
their patrolling strategy. These types of uncertainty can significantly deteriorate the ef-
fectiveness of the defender’s strategy and thus addressing uncertainty when generating
strategies is a key challenge of solving real-world security problems. This section de-
scribes several approaches for dealing with various types of uncertainties in SSGs.

We first summarize the major types of uncertainties in SSGs as a 3-dimensional
uncertainty space with the following three dimensions (Figure 9): 1) uncertainty in the
adversary’s payoffs; 2) uncertainty related to the defender’s strategy (including uncer-
tainty in the defender’s execution and the attacker’s observation); and 3) uncertainty
in the adversary’s rationality. These dimensions refer to three key attributes which af-
fect both players’ utilities. The origin of the uncertainty space corresponds to the case
with no uncertainty. Figure 9 also shows existing algorithms for addressing uncertainty
in SSGs which follow the two different approaches: 1) applying robust optimization
techniques using uncertainty intervals to represent uncertainty in SSGs. For example,
BRASS (Pita et al (2009b)) is a robust algorithm that only addresses attacker-payoff
uncertainty, RECON (Yin et al (2011)) is another robust algorithm that focuses on ad-
dressing defender-strategy uncertainty, and Monotonic Maximin (Jiang et al (2013b)) is
to handle the uncertainty in the attacker’s bounded rationality. Finally, URAC (Nguyen
et al (2014)) is a unified robust algorithm that handles all types of uncertainty; and
2) following Bayesian Stackelberg game model with dynamic execution uncertainty in
which the uncertainty is represented using Markov Decision Process (MDP) where the
time factor is incorporated.

In the following, we present two algorithmic solutions which are the representatives
of these two approaches: URAC – a unified robust algorithm to handle all types of un-



certainty with uncertainty intervals and the MDP-based algorithm to handle execution
uncertainty with an MDP representation of uncertainty.

5.1 Security Patrolling with Unified Uncertainty Space

Domain Example – Security in Los Angeles International Airport. Los Angeles
International Airport (LAX) is the largest destination airport in the United States and
serves 60-70 million passengers per year. The LAX police use diverse measures to pro-
tect the airport, which include vehicular checkpoints, police units patrolling the roads to
the terminals, patrolling inside the terminals (with canines), and security screening and
bag checks for passengers. The application of our game-theoretic approach is focused
on two of these measures: (1) placing vehicle checkpoints on inbound roads that ser-
vice the LAX terminals, including both location and timing, and (2) scheduling patrols
for bomb-sniffing canine units at the different LAX terminals. The eight different ter-
minals at LAX have very different characteristics, like physical size, passenger loads,
international versus domestic flights, etc. These factors contribute to the differing risk
assessments of these eight terminals. Furthermore, the numbers of available vehicle
checkpoints and canine units are limited by resource constraints. Thus, it is challeng-
ing to optimally allocate these resources to improve their effectiveness while avoiding
patterns in the scheduled deployments.

Fig. 10: LAX checkpoints are deployed using ARMOR.

The ARMOR system (Assistant for Randomized Monitoring over Routes) focuses
on two of the security measures at LAX (checkpoints and canine patrols) and opti-
mizes security resource allocation using Bayesian Stackelberg games. Take the vehicle
checkpoints model as an example. Assuming that there are n roads, the police’s strat-
egy is placing m < n checkpoints on these roads where m is the maximum number
of checkpoints. ARMOR randomizes allocation of checkpoints to roads. The adversary
may conduct surveillance of this mixed strategy and may potentially choose to attack



through one of these roads. ARMOR models different types of attackers with differ-
ent payoff functions, representing different capabilities and preferences for the attacker.
ARMOR has been successfully deployed since August 2007 at LAX (Jain et al (2010b)).

Although standard SSG-based solutions (i.e., DOBSS) have been demonstrated to
improve the defender’s patrolling effectiveness significantly, there remains potential
improvements that can be made to further enhance the quality of such solutions such
as taking uncertainties in payoff values, in the attacker’s rationality, and in defender’s
execution into account. Therefore, we propose the unified robust algorithm, URAC,
to handle these types of uncertainties by maximizing the defender’s utility against the
worst-case scenario resulting from these uncertainties.

Algorithmic Solution – Uncertainty Dimension Reduction (URAC). In this section,
we present the robust URAC (Unified Robust Algorithmic framework for addressing
unCertainties) algorithm for addressing a combination of all uncertainty types (Nguyen
et al (2014)). Consider an SSG where there is uncertainty in the attacker’s payoff, the
defender’s strategy (including the defender’s execution and the attacker’s observation),
and the attacker’s behavior, URAC represents all these uncertainty types (except for the
attacker’s behaviors) using uncertainty intervals. Instead of knowing exactly values of
these game attributes, the defender only has prior information w.r.t the upper bounds
and lower bounds of these attributes. For example, the attacker’s reward if successfully
attacking a target t is known to lie within the interval [1, 3]. Furthermore, URAC as-
sumes the attacker monotonically responds to the defender’s strategy. In other words,
the higher the expected utility of a target, the more likely that the attacker will attack
that target; however, the precise attacking probability is unknown for the defender. This
monotonicity assumption is motivated by the Quantal Response model — a well-known
human behavorial model for capturing the attacker’s decision making (McKelvey and
Palfrey (1995)).

Based on these uncertainty assumptions, URAC attempts to compute the optimal
strategy for the defender by maximizing her utility against the worst-case scenario of
uncertainty. The key challenge of this optimization problem is that it involves several
types of uncertainty, resulting in multiple minimization steps for determining the worst-
case scenario. Nevertheless, URAC introduces a unified representation of all these un-
certainty types as a uncertainty set of attacker’s responses. Intuitively, despite of any
type of uncertainty mentioned above, what finally affects the defender’s utility is the
attacker’s response, which is unknown to the defender due to uncertainty. As a result,
URAC can represent the robust optimization problem as a single maximin problem.

However, the infinite uncertainty set of the attacker’s responses depends on the
planned mixed strategy for the defender, making this maximin problem difficult to
solve if directly applying the traditional method (i.e., taking the dual maximization
of the inner minimization of maximin and merging it with the outer maximization —
maximin now can be represented a single maximization problem). Therefore, URAC
proposes a divide-and-conquer method in which the defender’s strategy set is divided
into subsets such that the uncertainty set of the attacker’s responses is the same for ev-
ery defender strategy within each subset. This division leads to multiple sub-maximin
problems which can be solved by using the traditional method. The optimal solution



of the original maximin problem is now can be computed as a maximum over all the
sub-maximin problems.

5.2 Security Patrolling with Dynamic Execution Uncertainty

Domain Example – TRUSTS for Security in Transit Systems. Urban transit systems
face multiple security challenges, including deterring fare evasion, suppressing crime
and counter-terrorism. In particular, in some urban transit systems, including the Los
Angeles Metro Rail system, passengers are legally required to purchase tickets before
entering but are not physically forced to do so (Figure 11). Instead, security personnel
are dynamically deployed throughout the transit system, randomly inspecting passenger
tickets. This proof-of-payment fare collection method is typically chosen as a more
cost-effective alternative to direct fare collection, i.e., when the revenue lost to fare
evasion is believed to be less than what it would cost to directly preclude it. In the case
of Los Angeles Metro, with approximately 300,000 riders daily, this revenue loss can be
significant; the annual cost has been estimated at $5.6 million (Hamilton (2007)). The
Los Angeles Sheriffs Department (LASD) deploys uniformed patrols on board trains
and at stations for fare-checking (and for other purposes such as crime prevention). The
LASD’s current approach relies on humans for scheduling the patrols, which places a
tremendous cognitive burden on the human schedulers who must take into account all
of the scheduling complexities (e.g., train timings, switching time between trains, and
schedule lengths).

The TRUSTS system (Tactical Randomization for Urban Security in Transit Sys-
tems) models the patrolling problem as a leader-follower Stackelberg game (Yin et al
(2012)). The leader (LASD) pre-commits to a mixed strategy patrol (a probability distri-
bution over all pure strategies), and riders observe this mixed strategy before deciding
whether to buy the ticket or not. Both ticket sales and fines issued for fare evasion
translate into revenue for the government. Therefore the utility for the leader is the total
revenue (total ticket sales plus penalties). The main computational challenge is the ex-
ponentially many possible patrol strategies, each subject to both the spatial and temporal
constraints of travel within the transit network under consideration. To overcome this
challenge, TRUSTS uses a compact representation of the strategy space which captures
the spatiotemporal structure of the domain.

The LASD conducted field tests of this TRUSTS system in the LA Metro in 2012,
and one of the feedback comments from the officers was that patrols are often inter-
rupted due to execution uncertainty such as emergencies and arrests.

Algorithmic Solution – Marginal MDP Strategy Representation Utilizing tech-
niques from planning under uncertainty (in particular Markov Decision Processes), we
proposed a general approach to dynamic patrolling games in uncertain environments,
which provides patrol strategies with contingency plans (Jiang et al (2013a)). This led
to schedules now being loaded onto smartphones and given to officers. If interruptions
occur, the schedules are then automatically updated on the smartphone app. The LASD
has conducted successful field evaluations using the smartphone app, and the TSA is
currently evaluating it toward nationwide deployment. We now describe the solution



(a) Los Angeles Metro (b) Barrier-free entrance to transit system

Fig. 11: TRUSTS for transit systems

Fig. 12: An example of execution uncertainty in a transition graph

approach in more detail. Note that the targets, e.g., trains normally follow predeter-
mined schedules, thus timing is an important aspect which determines the effectiveness
of the defender’s patrolling schedules (the defender needs to be at the right location at a
specific time in order to protect these moving targets). However, as a result of execution
uncertainty (e.g., emergencies or errors), the defender could not carry out her planned
patrolling schedule in later time steps. For example, in real-world trials for TRUSTS
carried out by Los Angeles Sheriff’s Department (LASD), there is interruption (due
to writing citations, felony arrests, and handling emergencies) in a significant fraction
of the executions, causing the officers to miss the train they are supposed to catch as
following the pre-generated patrolling schedule.

In this section, we present the Bayesian Stackelberg game model for security pa-
trolling with dynamic execution uncertainty introduced by (Jiang et al (2013a)) in which
the uncertainty is represented using Markov Decision Processes (MDP). The key advan-
tage of this game-theoretic model is that patrol schedules which are computed based on
Stackelberg equilibrium have contingency plans to deal with interruptions and are ro-
bust against execution uncertainty. Specifically, the security problem with execution



uncertainty is represented as a two-player Bayesian Stackelberg game between the de-
fender and the attacker. The defender has multiple patrol units while there are also
multiple types of attackers which are unknown to the defender. A (naive) patrol sched-
ule consists of a set of sequenced commands in the following form: at time t, the patrol
unit should be at location l and execute patrol action a. This patrol action a will take the
unit to the next location and time if successfully executed. However, due to execution
uncertainty, the patrol unit may end up at a different location and time. Figure 12 shows
an example of execution uncertainty in a transition graph where if the patrol unit is cur-
rently at location A at the 5-minute time step, she is supposed to take the on-train action
to move to location B in the next time step. However, unlike CASS for ferry protection
in which the defender’s action is deterministic, there is a 10% chance that she will still
stay at location A due to execution uncertainty. This interactions of the defender with
the environment when executing patrol can be represented as an MDP.

In essence, the transition graph as represented above is augmented to indicate the
possibility that there are multiple uncertain outcomes possible from a given state. Solv-
ing this transition graph results in marginals over MDP policies. When a sample MDP
policy is obtained and loaded on to a smart phone, it provides a patroller not only the
current action, but contingency actions should the current action fail or succeed. So the
MDP policy provides options for the patroller, allowing the system to handle execution
uncertainty. A key challenge of computing the SSE for this type of security problem is
that the dimension of the space of mixed strategies for the defender is exponential in the
number of states in terms of the defender’s times and locations. Therefore, instead of
directly computing the mixed strategy, the defender attempts to compute the marginal
probabilities of each patrolling unit reaching a state s = (t, l), and taking action awhich
have dimensions polynomial in the sizes of the MDPs (the details of this approach are
provided in (Jiang et al (2013a))).

6 Addressing Bounded Rationality and Bounded Surveillance in
Real-world Problems

Game theory models the strategic interactions between multiple players who are of-
ten assumed to be perfectly rational, i.e., they will always select the optimal strategy
available to them. This assumption may be applicable for high-stakes security domains
such as infrastructure protection where presumably the adversary will conduct careful
surveillance and planning before attacking. However, there are other security domains
where the adversary may not be perfectly rational due to short planning windows or
because the adversary is less strategic due to lower stakes associated with attacking.
Security strategies generated under the assumption of a perfectly rational adversary are
not necessarily as effective as would be feasible against a less-than-optimal response.

In addition to bounded rationality, attackers’ bounded surveillance (limited capa-
bilities in surveillance) also needs to be considered in real-world domains. In previous
sections, a one-shot Stackelberg Security Game model is used, and it is assumed that
the adversaries will conduct extensive surveillance to get a perfect understanding of
the defender’s strategy before an attack. However, this assumption does not apply to
real world domains involving frequent and repeated attacks. In carrying out frequent



(a) An illegal trapping tool (b) Illegally cutting trees

Fig. 13: Examples of illegal activities in green security domains

attacks, the attackers generally do not conduct extensive surveillance before perform-
ing an attack and therefore the attackers’ understanding of the defender strategy may
not be up-to-date. As will be shown later in this section, if the bounded surveillance of
attackers is known to the defender, the defender can exploit it to improve her average
expected utility by carefully planning changes in her strategy. The improvement may
depend on the level of bounded surveillance and the defender’s correct understanding of
the bounded surveillance. Therefore, addressing the human adversaries’ bounded ratio-
nality and bounded surveillance is a fundamental challenge for applying security games
to a wide variety of domains.

Domain Example – Green Security Domains. A number of newer applications are
focused on resource conservation, through suppression of environmental crime. One
area is protecting forests (Johnson et al (2012)), where we must protect a continuous
forest area from extractors by patrols through the forest that seek to deter such extraction
activity. With limited resources for performing such patrols, a patrol strategy will seek
to distribute the patrols throughout the forest, in space and time, in order to minimize the
resulting amount of extraction that occurs or maximize the degree of forest protection.
This problem can be formulated as a Stackelberg game and the focus is on computing
optimal allocations of patrol density (Johnson et al (2012)).

As mentioned earlier, endangered species poaching is reaching critical levels as
the populations of these species plummet to unsustainable numbers. The global tiger
population, for example, has dropped over 95% from the start of the 1900s and has
resulted in three out of nine species extinctions. Depending on the area and animals
poached, motivations for poaching range from profit to sustenance, with the former
being more common when profitable species such as tigers, elephants, and rhinos are the
targets. To counter poaching efforts and to rebuild the species’ populations, countries
have set up protected wildlife reserves and conservation agencies tasked with defending
these large reserves. Because of the size of the reserves and the common lack of law
enforcement resources, conservation agencies are at a significant disadvantage when it
comes to deterring and capturing poachers. Agencies use patrolling as a primary method
of securing the park. Due to their limited resources, however, patrol managers must
carefully create patrols that account for many different variables (e.g., limited patrol



units to send out, multiple locations that poachers can attack at varying distances to the
outpost).

6.1 Bounded Rationality Modeling and Learning

Recently, we have conducted some research on applying ideas from behavioral game
theory (e.g., prospect theory (Kahneman and Tvesky (1979)) and quantal response (Mc-
Fadden (1976))) within security game algorithms. One line of approaches is based on
the quantal response model to predict the behaviors of the human adversary, and then to
compute optimal defender strategies against such behavior of the adversary. These in-
clude BRQR (Yang et al (2011)) which follows the logit quantal response (QR) (McFad-
den (1976)) model, and subsequent work on subjective-utility quantal response (SUQR)
models (Nguyen et al (2013)). The parameters of these models are estimated by exper-
imental tuning. Data from a large set of participants on the Amazon Mechanical Turk
(AMT) were collected and used to learn the parameters of the behavioral models to
predict future attacks. In real-world domains like fisheries protection, or wildlife crime,
there are repeated interactions between the defender and the adversary, where the game
progresses in “rounds”. We call this a Repeated Stackelberg Security Game (RSSG)
where in each round the defender would play a particular strategy and the adversary
would observe that strategy and act accordingly. In order to simulate this scenario and
conduct experiments to identify adversary behavior in such repeated settings, an online
RSSG game was developed (shown in Fig. 14) and deployed.

Fig. 14: Interface of the Wildlife Poaching game to simulate an RSSG



Wildlife Poaching Game: In the game, human subjects play the role of poachers look-
ing to place a snare to hunt a hippopotamus in a protected wildlife park. The portion of
the park shown in the map is actually a Google Maps view of a portion of the Queen
Elizabeth National Park (QENP) in Uganda. The region shown is divided into a 5*5
grid, i.e. 25 distinct cells. Overlaid on the Google Maps view of the park is a heat-map,
which represents the rangers’ mixed strategy x — a cell i with higher coverage prob-
ability xi is shown more in red, while a cell with lower coverage probability is shown
more in green. As the subjects play the game and click on a particular region on the map,
they were given detailed information about the poacher’s reward, penalty and coverage
probability at that region: Rai , P ai and xi for each target i. However, the participants
are unaware of the exact location of the rangers while playing the game, i.e. they do
not know the pure strategy that will be played by the rangers, which is drawn randomly
from mixed strategy x shown on the game interface. Thus, we model the real-world
situation that poachers have knowledge of past pattern of ranger deployment but not the
exact location of ranger patrols when they set out to lay snares. In the game, there were
9 rangers protecting this park, with each ranger protecting one grid cell. Therefore, at
any point in time, only 9 out of the 25 distinct regions in the park are protected. A player
succeeds if he places a snare in a region which is not protected by a ranger, else he is
unsuccessful.

Similar to (Nguyen et al (2013)), here also we recruited human subjects on AMT
and asked them to play this game repeatedly for a set of rounds with the defender
strategy changing per round based on the behavioral model being used to learn the
adversary’s behavior. Before we discuss more about the experiments conducted, we
first give a brief overview of the bounded rationality models used in our experiments to
learn adversary behavior.

Bounded Rationality Models: Subjective Utility Quantal Response (SUQR) (Nguyen
et al (2013)) is a behavioral model which builds upon prior work on quantal response
(QR) (McFadden (1976)) according to which rather than strictly maximizing utility,
an adversary stochastically chooses to attack targets, i.e., the adversary attacks a target
with higher expected utility with a higher probability. SUQR proposes a new utility
function called Subjective Utility, which is a linear combination of key features that are
considered to be the most important in each adversary decision-making step. Nguyen
et al (2013) experimented with three features: defender’s coverage probability, adver-
sary’s reward and penalty (xi, Rai , P ai ) at each target i. According to this model, the
probability that the adversary will attack target i ∈ T is given by:

qi(ω|x) =
eSU

a
i (x)∑

j∈T
eSU

a
j (x)

(18)

where SUai (x) is the Subjective Utility of an adversary for attacking target i when
defender employs strategy x and is given by:

SUai (x) = ω1xi + ω2R
a
i + ω3P

a
i (19)

The vector ω = (ω1, ω2, ω3) encodes information about the adversary’s behavior and
each component of ω indicates the relative importance the adversary gives to each at-



tribute in the decision making process. The weights are computed by performing Max-
imum Likelihood Estimation (MLE) on available attack data.

While behavioral models like QR (McFadden (1976)) and SUQR (Nguyen et al
(2013)) assume that there is a homogeneous population of adversaries, in the real-
world we face heterogeneous populations of adversaries. Therefore Bayesian SUQR
was proposed to learn the behavioral model for each attack (Yang et al (2014)). Pro-
tection Assistant for Wildlife Security (PAWS) is an application which was originally
created using Bayesian SUQR. However, in real-world security domains, we may have
very limited data, or may only have some limited information on the biases displayed
by adversaries. An alternative approach is based on robust optimization: instead of as-
suming a particular model of human decision making, try to achieve good defender
expected utility against a range of possible models. One instance of this approach is
MATCH (Pita et al (2012)), which guarantees a bound for the loss of the defender
to be within a constant factor of the adversary loss if the adversary responds non-
optimally. Another robust solution concept is monotonic maximin (Jiang et al (2013b)),
which tries to optimize defender utility against the worst-case monotonic adversary
behavior, where monotonicity is the property that actions with higher expected utility
is played with higher probability. Recently, there has been attempts to combine such
robust-optimization approaches with available behavior data (Haskell et al (2014)) for
RSSGs, resulting in a new human behavior model called Robust SUQR. However, one
question of research is how these proposed models and algorithms will fare against hu-
man subjects in RSSGs. This has been explored in recent research (Kar et al (2015)) in
the ‘first-of-its-kind’ human subjects experiments in RSSGs over a period of 46 weeks
with the ‘Wildlife Poaching’ game. A brief description of the experimental observations
from the RSSG human subjects experiments is presented below.

Results in RSSG Experiments— An Overview: In the human subjects experiments in
RSSGs, we observe that: (i) Existing approaches (QR, SUQR, Bayesian SUQR) (Nguyen
et al (2013); Yang et al (2014); Haskell et al (2014)) perform poorly in initial rounds,
while Bayesian SUQR which is the basis for PAWS (Yang et al (2014)), perform poorly
through-out all rounds; (ii) Surprisingly, simpler models like SUQR which were origi-
nally proposed for single-shot games performed better than recent advances like Bayesian
SUQR and Robust SUQR which are geared specifically towards addressing repeated
SSGs. These results are shown in Figures 16(a) – 16(d). Therefore, we proposed a
new model called SHARP (Stochastic Human behavior model with AttRactiveness and
Probability weighting) (Kar et al (2015)) which is specifically suited for dynamic set-
tings such as RSSGs. SHARP addresses the limitations of the existing models in the
following way: (i) Modeling the adversary’s adaptive decision making process in re-
peated SSGs, SHARP reasons based on success or failure of the adversary’s past ac-
tions on exposed portions of the attack surface, where attack surface is defined as the
n-dimensional space of the features used to model adversary behavior; (ii) Addressing
limited exposure to significant portions of the attack surface in initial rounds, SHARP
reasons about similarity between exposed and unexposed areas of the attack surface,
and also incorporates a discounting parameter to mitigate adversary’s lack of exposure
to enough of the attack surface; (iii) Addressing the limitation that existing models do



not account for the adversary’s weighting of probabilities, we incorporate a two parame-
ter probability weighting function. We discuss these three modeling aspects of SHARP.

SHARP— Probability Weighting: SHARP has three key novelties, of which we dis-
cuss probability weighting first. The need for probability weighting became apparent
when it was observed based on the initial experiments with existing models (Nguyen
et al (2013); Yang et al (2014); Haskell et al (2014)) that the weight on coverage prob-
ability was positive for experiments. That is, counter-intuitively humans were modeled
as being attracted to cells with high coverage probability, even though they were not
attacking targets with very high coverage but they were going after targets with mod-
erate to very low coverage probability. It is reasonable to hypothesize that this counter-
intuitive result of a model with ω1 > 0 may be because the SUQR model may not be
considering people’s actual weighting of probability. SUQR assumes that people weigh
probabilities of events in a linear fashion, while existing work on probability weighting
(Kahneman and Tversky (1979); Tversky and Kahneman (1992)) suggest otherwise. To
address this issue, the Subjective Utility function is augmented with a two-parameter
probability weighting function (Eqn. 20) proposed by Gonzalez and Wu (Gonzalez and
Wu (1999)), that can be either inverse S-shaped (concave near probability zero and
convex near probability one) or S-shaped.

f(p) =
δpγ

δpγ + (1− p)γ
(20)

The SU of an adversary denoted by ‘a’ can then be computed as:

SUai (x) = ω1f(xi) + ω2R
a
i + ω3P

a
i (21)

where f(xi) for coverage probability xi is computed as per Eqn. 20.
One of the key findings is that the curve representing human weights for probabil-

ity is S-shaped in nature, and not inverse S-shaped as prospect theory suggests. The
S-shaped curve indicates that people would overweight high probabilities and under-
weight low to medium probabilities. An example of learned curves on the data over
several rounds of the RSSG experiment is shown in Figure 15. Recent studies (Alarie
and Dionne (2001); Humphrey and Verschoor (2004); Etchart-Vincent (2009)) have
also found S-shaped probability curves which contradict the inverse S-shaped obser-
vation of prospect theory. Given S-shaped probability weighting functions, the learned
ω1 was negative as it accurately captured the trend that a significantly higher number
of people were attacking targets with low to medium coverage probabilities and not
attacking high coverage targets.

SHARP— Adaptive Utility Function: A second major innovation in SHARP is the
adaptive nature of the adversary and addressing the issue of attack surface exposure
where attack surface α is defined as the n-dimensional space of the features used to
model adversary behavior. A target profile βk ∈ α is defined as a point on the attack
surface α and can be associated with a target. Exposing the adversary to a lot of differ-
ent target profiles would therefore mean exposing the adversary to more of the attack



Fig. 15: Probability curves from rounds 1 to 4

surface and gathering valuable information about their behavior. While a particular tar-
get location, defined as a distinct cell in the 2-d space, can only be associated with one
target profile in a particular round, more than one target may be associated with the
same target profile in the same round. βik denotes that target profile βk is associated
with target i in a particular round. Below is an observation from the human subjects
data that reveal interesting trends in attacker behavior in RSSGs.

Observation 1 Consider two sets of adversaries: (i) those who have succeeded in at-
tacking a target associated with a particular target profile in one round; and (ii) those
who have failed in attacking a target associated with a particular target profile in the
same round. In the subsequent round, the first set of adversaries are significantly more
likely than the second set of adversaries to attack a target with a target profile which is
‘similar’ to the one they attacked in the earlier round.

Now, existing models only consider the adversary’s actions from round (r − 1)
to predict their actions in round r. However, based on Observation 1, it is clear that
the adversary’s actions in a particular round are dependent on his past successes and
failures. The adaptive probability weighted subjective utility function proposed in Eq.
22 captures this adaptive nature of the adversary’s behavior in such dynamic settings by
capturing the shifting trends in attractiveness of various target profiles over rounds.

ASURβi
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)ω1f(xβi
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(22)

Here, ARβi
denotes the attractiveness of a target profile βi at the end of round R and

models the attacker’s current affinity towards targets he attacked in the past based on
his past successes and failures. The parameter d (0 ≤ d ≤ 1) in Eqn. 22 is a discounting
parameter which is based on a measure of the amount of attack surface exposed and
mitigates this attack surface exposure problem. Therefore, there are three main parts to
SHARP’s adaptive utility computation: (i) Adapting the subjective utility based on past
successes and failures on exposed parts of the attack surface; (ii) Discounting to handle
situations where not enough attack surface has been exposed; and (ii) Reasoning about
similarity of unexposed portions of the attack surface based on other exposed parts of
the attack surface. See (Kar et al (2015)) for details.

Based on the human subjects experiments with SHARP and other models on four
different payoff structures, we observe in Figures 16(a) – 16(d) that SHARP completely
outperforms existing approaches consistently over all rounds, most notably in initial



(a) Results on payoff 1 (b) Results on payoff 2

(c) Results on payoff 3 (d) Results on payoff 4

Fig. 16: (a), (b), (c) and (d): Defender utilities for various models on four payoff struc-
tures respectively .

rounds (refer to (Kar et al (2015)) for more details about the experimental results and
observations).

6.2 Bounded Surveillance Modeling and Planning

We have discussed above some of the bounded rationality models applied to RSSGs.
However, sometimes the adversaries may be bounded by their surveillance capabili-
ties. Therefore, to account for adversaries’ bounded surveillance, more recent work has
generalized the perfect Stackelberg assumption and they assume that the adversaries’
understanding of the defender strategy may not be up-to-date and can be instead approx-
imated as a convex combination of the defender strategies used in recent rounds (Fang
et al (2015)). The RSSG framework, which assume that the attackers always have up-to-
date information, can be seen as a special case of this more generalized Green Security
Games (GSG) model.

More specifically, a GSG model considers a repeated game between a defender and
multiple attackers. Each round corresponds to a period of time, which can be a time
interval (e.g., a month) after which the defender (e.g., warden) communicate with local
guards to assign them a new strategy. In each round, the defender chooses a mixed
strategy at the beginning of the round. Different from RSSG, an attacker in GSG is
characterized by his memory length and weights on recent rounds in addition to his



SUQR model parameters. The attacker is assumed to respond to a weighted sum of
the defender strategies used in recent rounds (within his memory length). The defender
aims to maximize her total expected utility over all the rounds.

Due to the bounded surveillance of attackers, the defender can potentially improve
her average expected utility by carefully planning changes in her strategy from round to
round in a GSG. Based on the GSG model, we provide two algorithms that plan ahead
— the generalization of the Stackelberg assumption introduces a need to plan ahead
and take into account the effect of defender strategy on future attacker decisions. While
the first algorithm plans a fixed number of steps ahead, the second one designs a short
sequence of strategies for repeated execution.

For clarity of exposition, we first focus on the case where the attackers have one
round memory and have no information about the defender strategy in the current round,
i.e., the attackers respond to the defender strategy in the last round. To maximize her
average expected utility, the defender could optimize over all rounds simultaneously.
However, this approach is computationally expensive when the game has many rounds:
it needs to solve a non-convex optimization problem with at least NT variables where
N is the number of targets considered and T is the length of the game. An alternative is
the myopic strategy, i.e., the defender can always protect the targets with the highest ex-
pected utility in the current round. However, this myopic choice may lead to significant
quality degradation as it ignores the impact of current strategy in the future round.

Therefore, we propose an algorithm named PlanAhead-M (or PA-M) in (Fang et al
(2015)) that looks ahead a few steps. PA-M finds an optimal strategy for the current
round as if it is the M th last round of the game. If M = 2, the defender chooses a
strategy assuming she will play a myopic strategy in the next round and end the game.
PA-T corresponds to the optimal solution and PA-1 is the myopic strategy. Choosing
1 < M < T can balance the solution quality and the computation complexity.

While PA-M presents an effective way to design sequential defender strategies, we
provide another algorithm called FixedSequence-M (FS-M) for GSGs in (Fang et al
(2015)). FS-M not only has provable theoretical guarantees, but may also ease the im-
plementation in practice. The idea of FS-M is to find a short sequence of strategies with
fixed length M and require the defender to execute this sequence repeatedly. If M = 2,
the defender will alternate between two strategies and she can exploit the attackers’ de-
layed response. It can be easier to communicate with local guards to implement FS-M
in green security domains as the guards only need to alternate between several types of
maneuvers.

7 Addressing Field Evaluation in Real-world Problems

Evidence showing the benefits of the algorithms discussed in the previous sections is
definitely an important issue that is necessary for us to answer. Unlike conceptual ideas,
where one can run thousands of careful simulations under controlled conditions, it is not
possible to conduct such experiments in the real world with the deployed applications.
Nor is it possible to provide a proof of 100% security – there is no such thing.

Instead, we focus on the specific question of: are the game-theoretic algorithms
presented better at security resource optimization or security allocation than how they



Fig. 17: ARMOR evaluation results.

Fig. 18: PROTECT evaluation results: pre-deployment (left) and post deployment pa-
trols (right).

were allocated previously, which was typically relying on human schedulers or a simple
dice roll for security scheduling (simple dice roll is often the other “automation” that is
used or offered as an alternative to our methods). We have used the following methods
to illustrate these ideas. These methods range from simulations to actual field tests.

1. Simulations (including using a “machine learning” attacker): We provide simu-
lations of security schedules, e.g., randomized patrols, assignments, comparing our
approach to earlier approaches based on techniques used by human schedulers. We
have a machine learning based attacker who learns any patterns and then chooses to
attack the facility being protected. Game-theoretic schedulers are seen to perform
significantly better in providing higher levels of protections (Pita et al (2008); Jain
et al (2010b)). This is also shown in Figure 17.

2. Human adversaries in the lab: We have worked with a large number of human
subjects and security experts (security officials) to have them get through random-
ized security schedules, where some are schedules generated by our algorithms,
and some are baseline approaches for comparison. Human subjects are paid money
based on the reward they collect by successfully intruding through our security



schedules; again our game-theoretic schedulers perform significantly better (Pita
et al (2009a)).

3. Actual security schedules before and after: For some security applications, we
have data on how scheduling was done by humans (before our algorithms were
deployed) and how schedules are generated after deployment of our algorithms.
For measures of interest to security agencies, e.g., predictability in schedules, it is
possible to compare the actual human-generated schedules versus the algorithmic
schedules presented in this chapter. Again, game-theoretic schedulers are seen to
perform significantly better by avoiding predictability and yet ensuring that more
important targets are covered with higher frequency of patrols. Some of this data is
published (Shieh et al (2012)) and is also shown in Figure 18.

4. “Adversary” teams simulate attack: In some cases, security agencies have de-
ployed adversary perspective teams or “mock attacker teams” that will attempt to
conduct surveillance to plan attacks; this is done before and after the game-theoretic
algorithms have been deployed to check which security deployments worked better.
This was done by the US Coast Guard indicating that the game-theoretic scheduler
provided higher levels of deterrence (Shieh et al (2012)).

5. Real-time comparison: human vs algorithm: This is a test we ran on the metro
trains in Los Angeles. For a day of patrol scheduling, we provided head-to-head
comparison of human schedulers trying to schedule 90 officers on patrols vs an au-
tomated game-theoretic scheduler. External evaluators then provided an evaluation
of these patrols; the evaluators did not know who had generated each of the sched-
ules. The results show that while human schedulers required significant effort even
for generating one schedule (almost a day), and the game-theoretic scheduler ran
quickly, the external evaluators rated the game theoretic schedulers higher (with
statistical significance) (Fave et al (2014a)).

6. Actual data from deployment: This is another test run on the metro trains in LA.
We had a comparison of game-theoretic scheduler vs an alternative (in this case a
uniform random scheduler augmented with real time human intelligence) to check
fare evaders. In 21 days of patrols, the game-theoretic scheduler led to significantly
higher numbers of fare evaders captured than the alternative (Fave et al (2014a,b)).

7. Domain expert evaluation (internal and external): There have been of course
significant numbers of evaluations done by domain experts comparing their own
scheduling method with game theoretic schedulers and repeatedly the game theo-
retic schedulers have come out ahead. The fact that the game-theoretic software is
now in use for several years at several different important airports, ports, air-traffic,
and so on, is an indicator that the domain experts must consider this software of
some value.

8 Conclusions

Security is recognized as a world-wide challenge and game theory is an increasingly
important paradigm for reasoning about complex security resource allocation. We have
shown in the chapter that the general model of security games is applicable (with ap-
propriate variations) to varied security scenarios. There are applications deployed in



the real world that have led to a measurable improvement in security. We presented
approaches to address four significant challenges: scalability, uncertainty, bounded ra-
tionality and field evaluation in security games.

In short, we introduced specific techniques to handle each of these challenges. For
scalability, we introduced three approaches: (i) incremental strategy generation for ad-
dressing the problem of large defender strategy spaces; (ii) double oracle incremen-
tal strategy generation w.r.t large defender & attacker strategy spaces; (iii) compact
representation of strategies for the case of mobile resources and moving targets (iv)
cutting plane (incremental constraint generation) for handling multiple boundedly ra-
tional attacker; and (v) a hierarchical approach for incorporating fine-grained spatial
information. For handling uncertainty we introduced two approaches: (i) dimensional-
ity reduction in uncertainty space for addressing a unification of uncertainties; and (ii)
Markov Decision Process with marginal strategy representation w.r.t dynamic execu-
tion uncertainty. In terms of handling attacker bounded rationality and bounded surveil-
lance, we propose different behavioral models to capture the attackers’ behaviors and
introduce human subject experiments with game simulation to learn such behavioral
models. Finally, for addressing field evaluation in real-world problems, we discussed
two approaches: (i) data from deployment; and (ii) mock attacker team.

While the deployed game theoretic applications have provided a promising start,
significant amount of research remains to be done. These are large-scale interdisci-
plinary research challenges that call upon multi-agent researchers to work with re-
searchers in other disciplines, be “on the ground” with domain experts and examine
real-world constraints and challenges that cannot be abstracted away.
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