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Abstract. Security is a critical concern around the world. In many domains from
counter-terrorism to sustainability, limited security resources prevent complete
security coverage at all times. Instead, these limited resources must be scheduled
(or allocated or deployed), while simultaneously taking into account the impor-
tance of different targets, the responses of the adversaries to the security posture,
and the potential uncertainties in adversary payoffs and observations, etc. Com-
putational game theory can help generate such security schedules. Indeed, casting
the problem as a Stackelberg game, we have developed new algorithms that are
now deployed over multiple years in multiple applications for scheduling of secu-
rity resources. These applications are leading to real-world use-inspired research
in the emerging research area of “security games”. The research challenges posed
by these applications include scaling up security games to real-world sized prob-
lems, handling multiple types of uncertainty, and dealing with bounded rationality
of human adversaries.

1 Introduction

Security is a critical concern around the world that manifests in problems such as pro-
tecting our ports, airports, public transportation, and other critical national infrastruc-
ture from terrorists, in protecting our wildlife and forests from poachers and smugglers,
and in curtailing the illegal flow of weapons, drugs, and money across international
borders. In all of these problems, we have limited security resources which prevents
security coverage on all the targets at all times; instead, security resources must be
deployed intelligently taking into account differences in the importance of targets, the
responses of the attackers to the security posture, and potential uncertainty over the
types, capabilities, knowledge and priorities of attackers faced.

Game theory, which models interactions among multiple self-interested agents, is
well-suited to the adversarial reasoning required for the security resource allocation and
scheduling problem. Casting the problem as a Stackelberg game, we have developed
new algorithms for efficiently solving such games that provide randomized patrolling
or inspection strategies. These algorithms have led to successes and advances over pre-
vious human-designed approaches in security scheduling and allocation by addressing
the key weakness of predictability in human-designed schedules. These algorithms are
now deployed in multiple applications. The first application was ARMOR, which was



deployed at the Los Angeles International Airport (LAX) in 2007 to randomize check-
points on the roadways entering the airport and canine patrol routes within the airport
terminals [14]. Following that, came several other applications: IRIS, a game-theoretic
scheduler for randomized deployment of the US Federal Air Marshals (FAMS), has
been in use since 2009 [14]; PROTECT, which schedules the US Coast Guard’s random-
ized patrolling of ports, has been deployed in the port of Boston since April 2011 and is
in use at the port of New York since February 2012 [35], and has spread to other ports
such as Los Angeles/Long Beach, Houston, and others; another application for deploy-
ing escort boats to protect ferries has been deployed by the US Coast Guard since April
2013 [6]; and TRUSTS [43] which has been evaluated in field trials by the Los Angeles
Sheriffs Department (LASD) in the LA Metro system. Most recently, PAWS— another
game-theoretic application was tested by rangers in Uganda for protecting wildlife in
Queen Elizabeth National Park in April 2014 [38]; MIDAS was tested by the US Coast
Guard for protecting fisheries [10]. These initial successes point the way to major future
applications in a wide range of security domains.

Given the many game-theoretic applications for solving real-world security prob-
lems, this book chapter provides an overview of the models and algorithms, key re-
search challenges and a brief description of our successful deployments. Overall, the
work in security games has produced numerous game-theoretic decision aids that are in
daily use by security agencies to optimize their limited security resources. The imple-
mentation of these applications required addressing fundamental research challenges
and has led to an emerging science of security games consisting of a general frame-
work for modeling and solving security resource allocation problems. We categorize
the research challenges associated with security games into four broad categories: (1)
addressing scalability across a number of dimensions of the game, (2) tackling differ-
ent forms of uncertainty that be present in the game, (3) addressing human adversaries’
bounded rationality and (4) evaluation of the framework in the field. Given the success
in providing solutions for many security domains involving the protection of critical
infrastructure, the science of security games has evolved and expanded to include new
types of security domains for wildlife and environmental protection. These green se-
curity games address important global conservation problems and introduce additional
research challenges that require incorporating new techniques such as planning and
learning into security games.

The rest of the chapter is organized as follows: Section 2 introduces the general
security games model, Section 3 describes the approaches used to tackle scalability
issues, Section 4 describes the approaches to deal with uncertainty, Section 5 focuses
on bounded rationality and Section 6 provides details of field evaluation of the science
of security games.

2 Stackelberg Security Games

Stackelberg games were first introduced to model leadership and commitment [36].
The term Stackelberg Security Games (SSG) was first introduced by Kiekintveld et
al [21] to describe specializations of a particular type of Stackelberg game for security
as discussed below. This section provides details on this use of Stackelberg games for



modeling security domains. We first give a generic description of security domains
followed by security games, the model by which security domains are formulated in the
Stackelberg game framework.

2.1 Stackelberg Security Game

In Stackelberg Security Games, a defender must perpetually defend a set of targets T’
using a limited number of resources, whereas the attacker is able to surveil and learn
the defender’s strategy and attack after careful planning. An action, or pure strategy,
for the defender represents deploying a set of resources R on patrols or checkpoints,
e.g., scheduling checkpoints at the LAX airport or assigning federal air marshals to
protect flight tours. The pure strategy for an attacker represents an attack at a target,
e.g., a flight. The mixed strategy of the defender is a probability distribution over the
pure strategies. Additionally, with each target are also associated a set of payoff values
that define the utilities for both the defender and the attacker in case of a successful or
a failed attack.

A key assumption of Stackelberg Security Games (we will sometimes refer to them
as simply security games) is that the payoff of an outcome depends only on the target
attacked, and whether or not it is covered (protected) by the defender [21]. The payoffs
do not depend on the remaining aspects of the defender allocation. For example, if
an adversary succeeds in attacking target ¢, the penalty for the defender is the same
whether the defender was guarding target ¢5 or not.

Defender Attacker
Target|Covered|Uncovered|Covered|Uncovered

t1 10 0 -1 1

to 0 -10 -1 1

Table 1. Example of a security game with two targets.

This allows us to compactly represent the payoffs of a security game. Specifically, a
set of four payoffs is associated with each target. These four payoffs are the rewards and
penalties to both the defender and the attacker in case of a successful or an unsuccessful
attack, and are sufficient to define the utilities for both players for all possible outcomes
in the security domain. More formally, if target t is attacked, the defender’s utility is
Ug(t) if t is covered, or Uj(t) if ¢ is not covered. The attacker’s utility is US(t) if ¢
is covered, or U¥(t) if ¢ is not covered. Table 1 shows an example security game with
two targets, 1 and ¢o. In this example game, if the defender was covering target ¢; and
the attacker attacked ¢;, the defender would get 10 units of reward whereas the attacker
would receive —1 units. We make the assumption that in a security game it is always
better for the defender to cover a target as compared to leaving it uncovered, whereas
it is always better for the attacker to attack an uncovered target. This assumption is
consistent with the payoff trends in the real-world. A special case is zero-sum games,



in which for each outcome the sum of utilities for the defender and attacker is zero,
although general security games are not necessarily zero-sum.

2.2 Solution Concept: Strong Stackelberg Equillibrium

The solution to a security game is a mixed strategy for the defender that maximizes the
expected utility of the defender, given that the attacker learns the mixed strategy of the
defender and chooses a best-response for himself. The defender’s mixed strategy is a
probability distribution over all pure strategies, where a pure strategy is an assignment
of the defender’s limited security resources to targets. This solution concept is known
as a Stackelberg equilibrium [23].

The most commonly adopted version of this concept in related literature is called
Strong Stackelberg Equilibrium (SSE) [2, 5, 30, 37]. In security games, the mixed strat-
egy of the defender is equivalent to the probabilities that each target ¢ is covered by the
defender, denoted by C' = {¢;} [22]. Furthermore, it is enough to consider a pure strat-
egy of the rational adversary [5], which is to attack a target ¢. The expected utility for
defender for a strategy profile (C, t) is defined as Uy (t, C) = ¢, US(t) + (1 — ¢, )U¥(¢),
and a similar form for the adversary. A SSE for the basic security games (non-Bayesian,
rational adversary) is defined as follows:

Definition 1. A pair of strategies (C*, t*) form a Strong Stackelberg Equilibrium (SSE)
if they satisfy the following:

1. The defender plays a best-response: Uy(t*,C*) > Uy(t(C), C) for all defender’s

strategy C where t(C) is the attacker’s response against the defender strategy C.

The attacker plays a best-response: U, (t*,C*) > U, (t, C*) for all target t.

3. The attacker breaks ties in favor of the defender: Uy(t*,C*) > Uy(t', C*) for all
target t' such that t' = argmax; U, (t,C*)

N

The assumption that the follower will always break ties in favor of the leader in
cases of indifference is reasonable because in most cases the leader can induce the
favorable strong equilibrium by selecting a strategy arbitrarily close to the equilibrium
that causes the follower to strictly prefer the desired strategy [37]. Furthermore an SSE
exists in all Stackelberg games, which makes it an attractive solution concept compared
to versions of Stackelberg equilibrium with other tie-breaking rules. Finally, although
initial applications relied on the SSE solution concept, we have since proposed new
solution concepts that are more robust against various uncertainties in the model [42, 1,
34] and have used these robust solution concepts in some of the later applications.

In the following sections, we present three key challenges in solving real-world
security problems which are summarized in Figure 1: 1) scaling up to real-world sized
security problems, 2) handling multiple uncertainties in security games, and 3) dealing
with bounded rationality of human adversaries. While Figure 1 does not provide an
exhaustive overview of all research in SSG, it provides a general overview of the areas
of research, and a roadmap to the rest of the book chapter. In each case, we will use a
domain example to motivate the specific challenge and then outline the key algorithmic
innovation needed to address the challenge.
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Fig. 1. Summary of Real-world Security Challenges

3 Addressing Scalability in Real-world Problems

For simple examples of security games, such as the one shown in the previous section,
the Strong Stackelberg Equilibrium can be calculated by hand. However, as the size of
the game increases, hand calculation is no longer feasible and an algorithmic approach
for generating the SSE becomes necessary. Conitzer and Sandholm [5] provided the
first complexity results and algorithms for computing optimal commitment strategies in
Bayesian Stackelberg games, including both pure and mixed-strategy commitments. An
improved algorithm for solving Bayesian Stackelberg games, DOBSS [30], is central to
the fielded application ARMOR in use at the Los Angeles International Airport [14].
These early works required that the full set of pure strategies for both players be con-
sidered when modeling and solving Stackelberg security games. However, many real
world problems feature billions of pure strategies for either the defender and / or the at-
tacker. Such large problem instances cannot even be represented in modern computers,
let alone solved using previous techniques.

In addition to large strategy spaces, there are other scalability challenges presented
by different real world security domains. There are domains where, rather than being
static, the targets are moving and thus the security resources need to be mobile and
move in a continuous space to provide protection. There are also domains where the
attacker may not conduct the careful surveillance and planning that is assumed for a
Strong Stackelberg Equilibrium and thus it is important to model the bounded ratio-
nality of the attacker in order to predict their behavior. In the former case, both the
defender and attacker’s strategy spaces are infinite. In the latter case, computing the
optimal strategy for the defender given attacker behavioral (bounded rationality) model
is computationally espensive. In this section, we thus highlight the critical scalability
challenges faced to bring Stackelberg security games to the real world and the research
contributions that served to address these challenges.



3.1 Scale Up with Large Defender Strategy Spaces

This section provides an example of a research challenge in security games where the
number of defender strategies is too enormous to be enumerated in computer memory.
In this section as in others that will follow, we will first provide a domain example
motivating the challenge and then the algorithmic solution for the challenge.

Domain Example — IRIS for US Federal Air Marshals Service. The US Federal Air
Marshals Service (FAMS) allocates air marshals to flights departing from and arriving
in the United States to dissuade potential aggressors and prevent an attack should one
occur. Flights are of different importance based on a variety of factors such as the num-
bers of passengers, the population of source and destination cities, and international
flights from different countries. Security resource allocation in this domain is signif-
icantly more challenging than for ARMOR: a limited number of air marshals need to
be scheduled to cover thousands of commercial flights each day. Furthermore, these air
marshals must be scheduled on tours of flights that obey various constraints (e.g., the
time required to board, fly, and disembark). Simply finding schedules for the marshals
that meet all of these constraints is a computational challenge. For an example scenario
with 1000 flights and 20 marshals, there are over 10! possible schedules that could
be considered. Yet there are currently tens of thousands of commercial flights flying
each day, and public estimates state that there are thousands of air marshals that are
scheduled daily by the FAMS [20]. Air marshals must be scheduled on tours of flights
that obey logistical constraints (e.g., the time required to board, fly, and disembark).
An example of a schedule is an air marshal assigned to a round trip from New York to
London and back.

Against this background, the IRIS system (Intelligent Randomization In Schedul-
ing) has been developed and deployed by FAMS since 2009 to randomize schedules of
air marshals on international flights. In IRIS, the targets are the set of n flights and the
attacker could potentially choose to attack one of these flights. The FAMS can assign
m < n air marshals that may be assigned to protect these flights.

Since the number of possible schedules exponentially increases with the number
of flights and resources, DOBSS is no longer applicable to the FAMS domain. Instead,
IRTS uses the much faster ASPEN algorithm [11] to generate the schedule for thousands
of commercial flights per day.

Algorithmic Solution — Incremental Strategy Generation (ASPEN). In this section,
we describe one particular algorithm ASPEN, that computes strong Stackelberg equi-
libria (SSE) in domains with a very large number of pure strategies (up to billions of
actions) for the defender [11]. ASPEN builds on the insight that in many real-world secu-
rity problems, there exist solutions with small support sizes, which are mixed strategies
in which only a small set of pure strategies are played with positive probability [24].
ASPEN exploits this by using a incremental strategy generation approach for the de-
fender, in which defender pure strategies are iteratively generated and added to the
optimization formulation.

In ASPEN’s security game, the attacker can choose any of the flights to attack, and
each air marshal can cover one schedule. Each schedule here is a feasible set of targets
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Fig. 2. Strategy generation employed in ASPEN: The schedules for a defender are generated iter-
atively. The slave problem is a novel minimum-cost integer flow formulation that computes the
new pure strategy to be added to P; J4 is computed and added in this example.

that can be covered together; for the FAMS, each schedule would represent a flight tour
which satisfies all the logistical constraints that an air marshal could fly. For example,
{t1,t2} would be a flight schedule, where ¢, is an outbound flight and ¢4 is an inbound
flight for one air marshal. A joint schedule then would assign every air marshal to a
flight tour, and there could be exponentially many joint schedules in the domain. A pure
strategy for the defender in this security game is a joint schedule. Thus for example, if
there are two air marshals, one possible joint schedule would be {{t1,t2}, {t3,t4}},
where the first air marshal covers flights ¢; and 2, and the second covers flights ¢3 and
t4. As mentioned previously, ASPEN employs incremental strategy generation since all
the defender pure strategies cannot be enumerated for such a massive problem. ASPEN
decomposes the problem into a master problem and a slave problem, which are then
solved iteratively. Given a number of pure strategies, the master solves for the defender
and the attacker optimization constraints, while the slave is used to generate a new pure
strategy for the defender in every iteration. This incremental, iterative strategy gener-
ation process allows ASPEN to avoid generation of the entire set of pure strategies.
In other words, by exploiting the small support size mentioned above, only a few pure
strategies get generated via the iterative process; and yet we are guaranteed to reach the
optimal solution.

The iterative process is graphically depicted in Figure 2. The master operates on
the pure strategies (joint schedules) generated thus far, which are represented using the
matrix P. Each column of P, J;, is one pure strategy (or joint schedule). An entry F;;
in the matrix P is 1 if a target ¢; is covered by joint-schedule J;, and 0 otherwise. For
example, in Figure 2, the joint schedule J3 covers target ¢; but not target ¢». The objec-



tive of the master problem is to compute X, the optimal mixed strategy of the defender
over the pure strategies in P. The objective of the slave problem is to generate the best
joint schedule to add to P. The best joint schedule is identified using the concept of
reduced costs, which measures if a pure strategy can potentially increase the defender’s
expected utility (the details of the approach are provided in [11]). While a naive ap-
proach would be to iterate over all possible pure strategies to identify the pure strategy
with the maximum potential, ASPEN uses a novel minimum-cost integer flow problem
to efficiently identify the best pure strategy to add. ASPEN always converges on the
optimal mixed strategy for the defender.

Employing incremental strategy generation for large optimization problems is not
an “out-of-the-box™ approach, the problem has to be formulated in a way that allows
for domain properties to be exploited. The novel contribution of ASPEN is to provide a
linear formulation for the master and a minimum-cost integer flow formulation for the
slave, which enables the application of strategy generation techniques.

3.2 Scale Up with Large Defender & Attacker Strategy Spaces

Whereas the previous section focused on domains where only the defender’s strategy
was difficult to enumerate, we now turn to domains where both defender and attacker
strategies are difficult to enumerate. Once again we provide a domain example and then
an algorithmic solution.

Domain Example — Road Network Security. One area of great importance is securing
urban city networks, transportation networks, computer networks and other network
centric security domains. For example, after the terrorist attacks in Mumbai of 2008 [4],
the Mumbai police started setting up vehicular checkpoints on roads. We can model the
problem faced by the Mumbai police as a security game between the Mumbai police and
an attacker. In this urban security game, the pure strategies of the defender correspond
to allocations of resources to edges in the network—for example, an allocation of police
checkpoints to roads in the city. The pure strategies of the attacker correspond to paths
from any source node to any target node—for example, a path from a landing spot on
the coast to the airport.

The strategy space of the defender grows exponentially with the number of available
resources, whereas the strategy space of the attacker grows exponentially with the size
of the network. For example, in a fully connected graph with 20 nodes and 190 edges,
the number of defender pure strategies for only 5 defender resources is (120) or almost
2 billion, while the number of attacker pure strategies (i.e., paths without cycles) is on
the order of 10'8. Real-world networks are significantly larger, e.g., the entire road net-
work of the city of Mumbai has 9,503 nodes (intersections) and 20,416 edges (streets),
and the security forces can deploy dozens (but not as many as number of edges) of
resources. In addressing this computational challenge, novel algorithms based on incre-
mental strategy generation have been able to generate randomized defender strategies
that scale up to the entire road network of Mumbai [13].

Algorithmic Solution — Double Oracle Incremental Strategy Generation (RUGGED)
In domains such as the urban network security setting, the number of pure strategies of
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Fig. 3. Strategy Generation employed in RUGGED: The pure strategies for both the defender and
the attacker are generated iteratively.

both the defender and the attacker are exponentially large. In this section, we describe
the RUGGED algorithm [12], which generates pure strategies for both the defender and
the attacker.

RUGGED models the domain as a zero-sum game, and computes the minimax equi-
librium, since the minimax strategy is equivalent to the SSE in zero-sum games. Fig-
ure 3 shows the working of RUGGED: at each iteration, the Minimax module generates
the optimal mixed strategies (x,a) for the two players for the current payoff matrix,
the Best Response Defender module generates a new strategy for the defender that is a
best response against the attacker’s current strategy a, and the Best Response Attacker
module generates a new strategy for the attacker that is a best response against the de-
fender’s current strategy x. The rows X; in the figure are the pure strategies for the
defender, they would correspond to an allocation of checkpoints in the urban road net-
work domain. Similarly, the columns A; are the pure strategies for the attacker, they
represent the attack paths in the urban road network domain. The values in the matrix
represent the payoffs to the defender. For example, in Figure 3, the row denoted by X
indicates that there was one checkpoint setup, and it provides a defender payoff of —5
against attacker strategy (path) A, and a payoff of 10 against attacker strategy (path)
As.

In Figure 3, we show that RUGGED iterates over two oracles: the defender best
response and the attacker best response oracles. In this case, the defender best response
oracle has added a strategy X5, and the attacker best response oracle then adds a strategy
Ajs. The algorithm stops when neither of the generated best responses improve on the
current minimax strategies.

The contribution of RUGGED is to provide the mixed integer formulations for the
best response modules which enable the application of such a strategy generation ap-
proach. The key once again is that RUGGED is able to converge to the optimal solution
without enumerating the entire space of defender and attacker strategies. However, orig-
inally RUGGED could only compute the optimal solution for deploying up to 4 resources
in real-city network with 250 nodes within a time frame of 10 hours (the complexity
of this problem can be estimated by observing that both the best response problems



are NP-hard themselves [12]). More recent work [13] builds on RUGGED and proposes
SNARES, which allows scale-up to the entire city of Mumbai, with 10-15 checkpoints.

3.3 Scale Up with Mobile Resources & Moving Targets

Whereas the previous two sections focused on incremental strategy generation as an ap-
proach for scale-up this section introduces another approach: use of compact marginal
probability representations. This alternative approach is shown in use in the context of
a new application of protecting ferries.

Domain Example — Ferry Protection for the US Coast Guard. The United States
Coast Guard is responsible for protecting domestic ferries, including the Staten Island
Ferry in New York, from potential terrorist attacks. here are a number of ferries carrying
hundreds of passengers in many waterside cities. These ferries are attractive targets for
an attacker who can approach the ferries with a small boat packed with explosives at any
time; this attacker’s boat may only be detected when it comes close to the ferries. Small,
fast, and well-armed patrol boats can provide protection to such ferries by detecting the
attacker within a certain distance and stop him from attacking with the armed weapons.
However, the numbers of patrol boats are often limited, thus the defender cannot protect
the ferries at all times and locations. We thus developed a game-theoretic system for
scheduling escort boat patrols to protect ferries, and this has been deployed at the Staten
Island Ferry since 2013 [6].

The key research challenge is the fact that the ferries are continuously moving in a
continuous domain, and the attacker could attack at any moment in time. This type of
moving targets domain leads to game-theoretic models with continuous strategy spaces,
which presents computational challenges. Our theoretical work showed that while it is
“safe” to discretize the defender’s strategy space (in the sense that the solution quality
provided by our work provides a lower bound), discretizing the attacker’s strategy space
would result in loss of utility (in the sense that this would provide only an upper bound,
and thus an unreliable guarantee of true solution quality). We developed a novel algo-
rithm that uses a compact representation for the defender’s mixed strategy space while
being able to exactly model the attacker’s continuous strategy space. The implemented
algorithm, running on a laptop, is able to generate daily schedules for escort boats with
guaranteed expected utility values.

Algorithmic Solution — Compact Strategy Representation (CASS). In this section,
we describe the CASS (Solver for Continuous Attacker Strategy) algorithm [6] for solv-
ing security problems where the defender has mobile patrollers to protect a set of mobile
targets against the attacker who can attack these moving targets at any time during their
movement. In these security problems, the sets of pure strategies for both the defender
and attacker are continuous w.r.t the continuous spatial and time components of the
problem domain. The CASS algorithm attempts to compute the optimal mixed strategy
for the defender without discretizing the attacker’s continuous strategy set; it exactly
models this set using sub-interval analysis which exploits the piecewise-linear structure



Fig. 4. Escort boats protecting the Staten Island Ferry use strategies generated by our system.

of the attacker’s expected utility function. The insight of CASS is to compactly repre-
sent the defender’s mixed strategies as a marginal probability distribution, overcoming
the short-coming of an exponential number of pure strategies for the defender.

CASS casts problems such as the ferry protection problem mentioned above as a
zero-sum security game in which targets move along a one-dimensional domain, i.e.,
a straight line segment connecting two terminal points. This one-dimensional assump-
tion is valid as in real-world domains such as ferry protection, ferries normally move
back-and-forth in a straight line between two terminals (i.e., ports) around the world.
Although the targets’ locations vary w.r.t time changes, these targets have a fixed daily
schedule, meaning that determining the locations of the targets at a certain time is
straightforward. The defender has mobile patrollers (i.e., boats) that can move along
between two terminals to protect the targets. While the defender is trying to protect the
targets, the attacker will decide to attack a certain target at a certain time. The probabil-
ity that the attacker successfully attacks depends on the positions of the patroller at that
time. Specifically, each patroller possesses a protective circle of radius within which
she can detect and try to intercept any attack, whereas she is incapable of detecting the
attacker prior to that radius.

In CASS, the defender’s strategy space is discretized and her mixed strategy is com-
pactly represented using flow distributions. Figure 5 shows an example of a ferry tran-
sition graph in which each node of the graph indicates a particular pair of (location,
time step) for the target. Here, there are three location points namely A, B, and C on a
straight line where B lies between A and C. Initially, the target is at one of these location
points at the 5S-minute time step. Then the target moves to the next location point which
is determined based on the connectivity between these points at the 10-minute time step
and so on. For example, if the target is at the location point A at the 5-minute time step,
denoted by (A, 5 min) in the transition graph, it can move to the location point B or
stay at location point A at the 10-minute time step. The defender follows this transition
graph to protect the target.



Fig. 5. An example of a ferry transition graph

A pure strategy for the defender is defined as a trajectory of this graph, e.g., the
trajectory including (A, 5 min), (B, 10 min), and (C, 15 min) indicates a pure strat-
egy for the defender. One key challenge of this representation for the defender’s pure
strategies is that the transition graph consists of an exponential number of trajectories,
i.e., O(NT) where N is the number of location points and 7 is the number of time
steps. To address this challenge, CASS proposes a compact representation of the de-
fender’s mixed strategy. Instead of directly computing a probability distribution over
pure strategies for the defender, CASS attempts to compute the marginal probability
that the defender will follow a certain edge of the transition graph, e.g., the probability
of being at the node (A, 5 min) and moving to the node (B, 10 min). CASS shows that
any strategy in full representation can be mapped into a compact representation as well
as compact representation does not lead to any loss in solution quality. This compact
representation allows CASS to reformulate the resource-allocation problem as comput-
ing the optimal marginal coverage of the defender over a number of O(NT)) the edges
of the transition graph.

3.4 Scale Up with Boundedly Rational Attackers

One key challenge of real-world security problems is that the attacker is boundedly
rational; the attacker’s target choice is non-optimal. In SSGs, attacker bounded ratio-
nality is often modeled via behavior models such as Quantal Response (QR) [25,27].
In general, QR attempts to predict the probability the attacker will choose each target
with the intuition is that the higher the expected utility at a target is, the more likely
that the adversary will attack that target. Another behavioral model that was recently
shown to provide higher prediction accuracy in predicting the attacker’s behavior than
QR is Subjective Utility Quantal Response (SUQR) [29]. SUQR is motivated by the
lens model which suggested that evaluation of adversaries over targets is based on a
linear combination of multiple observable features [3]. However, handling multiple at-
tackers with these behavioral models in the context of large defender’s strategy space
is computational challenge. In this section, we mainly focus on handling the scalability
problem given behavioral models of the attacker. The problem of handling the attacker’s
bounded rationality (e.g., modeling and learning) is explained in detail in Section 5.



To handle the problem of large defender’s strategy space given behavioral models
of attackers, we introduce yet another technique of scaling up, which is similar to the
incremental strategy generation. Instead, here we use incremental marginal space re-
finement. We use the compact marginal representation, discussed earlier, but refine that
space incrementally if the solution produces violates the necessary constraints.

Domain Example- Fishery Protection for US Coast Guard. Fisheries are a vital nat-
ural resource from both an ecological and economic standpoint. However, fish stocks
around the world are threatened with collapse due to illegal, unreported, and unreg-
ulated (IUU) fishing. The United States Coast Guard (USCG) is tasked with the re-
sponsibility of protecting and maintaining the nation’s fisheries. To this end, the USCG
deploys resources (both air and surface assets) to conduct patrols over fishery areas in
order to deter and mitigate IUU fishing. Due to the large size of these patrol areas and
the limited patrolling resources available, it is impossible to protect an entire fishery
from IUU fishing at all times. Thus, an intelligent allocation of patrolling resources is
critical for security agencies like the USCG.

Natural resource conservation domains such as fishery protection raise a number of
new research challenges. In stark contrast to counter-terrorism settings, there is frequent
interaction between the defender and attacker in these resource conservation domains.
This distinction is important for three reasons. First, due to the comparatively low stakes
of the interactions, rather than a handful of persons or groups, the defender must protect
against numerous adversaries (potentially hundreds or even more), each of which may
behave differently. Second, frequent interactions make it possible to collect data on the
actions of the adversaries actions over time. Third, the adversaries are less strategic
given the short planning windows between actions.

Algorithmic Solution — Incremental Constraint Generation (MIDAS). Generating
effective strategies for domains such as fishery protection requires an algorithmic ap-
proach which is both scalable and robust. For scalability, the defender is responsible for
protecting a large patrol area and therefore must consider a large strategy space. Even
if the patrol area is discretized into a grid or graph structure, the defender must still
reason over an exponential number of patrol strategies. For robustness, the defender
must protect against multiple boundedly rational adversaries. Bounded rationality mod-
els, such as the quantal response (QR) model [27] and the subjective utility quantal
response (SUQR) model [29], introduce stochastic actions, relaxing the strong assump-
tion in classical game theory that all players are perfectly rational and utility maximiz-
ing. These models are able to better predict the actions of human adversaries and thus
lead the defender to choose strategies that perform better in practice. However, both
QR and SUQR are non-linear models resulting in a computationally difficult optimiza-
tion problem for the defender. Combining these factors, MIDAS models a population of
boundedly rational adversaries and utilizes available data to learn the behavior models
of the adversaries using the subjective utility quantal response (SUQR) model in order
to improve the way the defender allocates its patrolling resources.

Previous work on boundedly rational adversaries has considered the challenges of
scalability and robustness separately, in [41, 39] and [38, 10], respectively. The MIDAS
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algorithm was introduced to merge these two research threads for the first time by ad-
dressing scalability and robustness simultaneously. Figure 6 provides a visual overview
of how MIDAS operates as an iterative process. Similar to the ASPEN algorithm de-
scribed earlier, given the sheer complexity of the game being solved, the problem is
decomposed using a master-slave formulation. The master utilizes multiple simplifi-
cations to create a relaxed version of the original problem which is more efficient to
solve. First, a piecewise linear approximation of the security game is taken to make
the optimization problem both linear and convex. Second, the complex spatio-temporal
constraints associated with patrols are initially ignored and then incrementally added
back using cut generation. In other words, we ignore the spatio-temporal constraint that
a patroller cannot simple appear and disappear at different locations instantaneously;
and that a patroller must pass through regions connecting two different regions if the
patroller is go from one region to another. This significantly simplifies the master prob-
lem.

Due to the relaxations, solving the master produces a marginal strategy x which is a
probability distribution over targets. However, the defender ultimately needs a probabil-
ity distribution over patrols. Additionally, since not all of the spatio-temporal constraints
are considered in the master, the relaxed solution x may not be a feasible solution to
the original problem. Therefore, the slave checks if the marginal strategy x can ex-
pressed as a linear combination, i.e., probability distribution, of patrols. Otherwise, the
marginal distribution is infeasible for the original problem. However, given the expo-
nential number of patrol strategies, even performing this optimality check is intractable.
Thus, column generation is used within the slave where only a small set of patrols is
considered initially in the optimality check and the set is expanded over time. Much like
previous examples of column generation in security games, e.g., [11], new patrols are
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added by solving a minimum cost network flow problem using reduced cost information
from the optimality check. If the optimality check fails, then the slave generates a cut
which is returned to refine and constrain the master, incrementally bringing it closer to
the original problem. The entire process is repeated until an optimal solution is found.
Finally, MIDAS has been successfully deployed and evaluated by the USCG in the Gulf
of Mexico.

4 Addressing Uncertainty in Real-world Problems

The standard security game model features a number of strong assumptions includ-
ing that the defender has perfect information about the game payoff matrix as well as
the attacker’s behavorial model. Additionally, the defender is assumed to be capable
of exactly executing the computed patrolling strategy. However, uncertainty is endemic
in real-world security domains and thus is may be impossible or impractical for the
defender to the accurately estimate various aspects of the game. Also, there are any
number of practicalities and unforeseen events that may force the defender to change
their patrolling strategy. These types of uncertainty can significantly deteriorate the ef-
fectiveness of the defender’s strategy and thus addressing uncertainty when generating
strategies is a key challenge of solving real-world security problems. This section de-
scribes several approaches for dealing with various types of uncertainties in SSGs.

We first summarize the major types of uncertainties in SSGs as a 3-dimensional
uncertainty space with the following three dimensions (Figure 7): 1) uncertainty in the
adversary’s payoffs; 2) uncertainty related to the defender’s strategy (including uncer-
tainty in the defender’s execution and the attacker’s observation); and 3) uncertainty
in the adversary’s rationality. These dimensions refer to three key attributes which af-
fect both players’ utilities. The origin of the uncertainty space corresponds to the case
with no uncertainty. Figure 7 also shows existing algorithms for addressing uncertainty
in SSGs which follow the two different approaches: 1) applying robust optimization



techniques using uncertainty intervals to represent uncertainty in SSGs. For example,
BRASS [32] is a robust algorithm that only addresses attacker-payoff uncertainty, RE-
CON [42] is another robust algorithm that focuses on addressing defender-strategy un-
certainty, and Monotonic Maximin [15] is to handle the uncertainty in the attacker’s
bounded rationality. Finally, URAC [28] is a unified robust algorithm that handles all
types of uncertainty; and 2) following Bayesian Stackelberg game model with dynamic
execution uncertainty in which the uncertainty is represented using Markov Decision
Process (MDP) where the time factor is incorporated.

In the following, we present two algorithmic solutions which are the representatives
of these two approaches: URAC — a unified robust algorithm to handle all types of un-
certainty with uncertainty intervals and the MDP-based algorithm to handle execution
uncertainty with an MDP representation of uncertainty.

4.1 Security Patrolling with Unified Uncertainty Space

Domain Example — Security in Los Angeles International Airport. Los Angeles
International Airport (LAX) is the largest destination airport in the United States and
serves 60-70 million passengers per year. The LAX police use diverse measures to pro-
tect the airport, which include vehicular checkpoints, police units patrolling the roads to
the terminals, patrolling inside the terminals (with canines), and security screening and
bag checks for passengers. The application of our game-theoretic approach is focused
on two of these measures: (1) placing vehicle checkpoints on inbound roads that ser-
vice the LAX terminals, including both location and timing, and (2) scheduling patrols
for bomb-sniffing canine units at the different LAX terminals. The eight different ter-
minals at LAX have very different characteristics, like physical size, passenger loads,
international versus domestic flights, etc. These factors contribute to the differing risk
assessments of these eight terminals. Furthermore, the numbers of available vehicle
checkpoints and canine units are limited by resource constraints. Thus, it is challeng-
ing to optimally allocate these resources to improve their effectiveness while avoiding
patterns in the scheduled deployments.

The ARMOR system (Assistant for Randomized Monitoring over Routes) focuses
on two of the security measures at LAX (checkpoints and canine patrols) and opti-
mizes security resource allocation using Bayesian Stackelberg games. Take the vehicle
checkpoints model as an example. Assuming that there are n roads, the police’s strat-
egy is placing m < n checkpoints on these roads where m is the maximum number
of checkpoints. ARMOR randomizes allocation of checkpoints to roads. The adversary
may conduct surveillance of this mixed strategy and may potentially choose to attack
through one of these roads. ARMOR models different types of attackers with different
payoff functions, representing different capabilities and preferences for the attacker.
ARMOR has been successfully deployed since August 2007 at LAX [14].

Although standard SSG-based solutions (i.e., DOBSS) have been demonstrated to
improve the defender’s patrolling effectiveness significantly, there remains potential
improvements that can be made to further enhance the quality of such solutions such
as taking uncertainties in payoff values, in the attacker’s rationality, and in defender’s
execution into account. Therefore, we propose the unified robust algorithm, URAC,



Fig. 8. LAX checkpoints are deployed using ARMOR.

to handle these types of uncertainties by maximizing the defender’s utility against the
worst-case scenario resulting from these uncertainties.

Algorithmic Solution — Uncertainty Dimension Reduction (URAC). In this sec-
tion, we present the robust URAC (Unified Robust Algorithmic framework for address-
ing unCertainties) algorithm for addressing a combination of all uncertainty types [28].
Consider an SSG where there is uncertainty in the attacker’s payoff, the defender’s
strategy (including the defender’s execution and the attacker’s observation), and the at-
tacker’s behavior, URAC represents all these uncertainty types (except for the attacker’s
behaviors) using uncertainty intervals. Instead of knowing exactly values of these game
attributes, the defender only has prior information w.r.t the upper bounds and lower
bounds of these attributes. For example, the attacker’s reward if successfully attacking
a target ¢ is known to lie within the interval [1, 3]. Furthermore, URAC assumes the
attacker monotonically responds to the defender’s strategy. In other words, the higher
the expected utility of a target, the more likely that the attacker will attack that target;
however, the precise attacking probability is unknown for the defender. This monotonic-
ity assumption is motivated by the Quantal Response model — a well-known human
behavorial model for capturing the attacker’s decision making [27].

Based on these uncertainty assumptions, URAC attempts to compute the optimal
strategy for the defender by maximizing her utility against the worst-case scenario of
uncertainty. The key challenge of this optimization problem is that it involves several
types of uncertainty, resulting in multiple minimization steps for determining the worst-
case scenario. Nevertheless, URAC introduces a unified representation of all these un-
certainty types as a uncertainty set of attacker’s responses. Intuitively, despite of any
type of uncertainty mentioned above, what finally affects the defender’s utility is the
attacker’s response, which is unknown to the defender due to uncertainty. As a result,
URAC can represent the robust optimization problem as a single maximin problem.



However, the infinite uncertainty set of the attacker’s responses depends on the
planned mixed strategy for the defender, making this maximin problem difficult to
solve if directly applying the traditional method (i.e., taking the dual maximization
of the inner minimization of maximin and merging it with the outer maximization —
maximin now can be represented a single maximization problem). Therefore, URAC
proposes a divide-and-conquer method in which the defender’s strategy set is divided
into subsets such that the uncertainty set of the attacker’s responses is the same for ev-
ery defender strategy within each subset. This division leads to multiple sub-maximin
problems which can be solved by using the traditional method. The optimal solution
of the original maximin problem is now can be computed as a maximum over all the
sub-maximin problems.

4.2 Security Patrolling with Dynamic Execution Uncertainty

Domain Example — TRUSTS for Security in Transit Systems. Urban transit systems
face multiple security challenges, including deterring fare evasion, suppressing crime
and counter-terrorism. In particular, in some urban transit systems, including the Los
Angeles Metro Rail system, passengers are legally required to purchase tickets before
entering but are not physically forced to do so (Figure 9). Instead, security personnel
are dynamically deployed throughout the transit system, randomly inspecting passenger
tickets. This proof-of-payment fare collection method is typically chosen as a more
cost-effective alternative to direct fare collection, i.e., when the revenue lost to fare
evasion is believed to be less than what it would cost to directly preclude it. In the
case of Los Angeles Metro, with approximately 300,000 riders daily, this revenue loss
can be significant; the annual cost has been estimated at $5.6 million [9]. The Los
Angeles Sheriffs Department (LASD) deploys uniformed patrols on board trains and
at stations for fare-checking (and for other purposes such as crime prevention). The
LASD’s current approach relies on humans for scheduling the patrols, which places a
tremendous cognitive burden on the human schedulers who must take into account all
of the scheduling complexities (e.g., train timings, switching time between trains, and
schedule lengths).

The TRUSTS system (Tactical Randomization for Urban Security in Transit Sys-
tems) models the patrolling problem as a leader-follower Stackelberg game [43]. The
leader (LASD) pre-commits to a mixed strategy patrol (a probability distribution over
all pure strategies), and riders observe this mixed strategy before deciding whether to
buy the ticket or not. Both ticket sales and fines issued for fare evasion translate into
revenue for the government. Therefore the utility for the leader is the total revenue
(total ticket sales plus penalties). The main computational challenge is the exponen-
tially many possible patrol strategies, each subject to both the spatial and temporal
constraints of travel within the transit network under consideration. To overcome this
challenge, TRUSTS uses a compact representation of the strategy space which captures
the spatiotemporal structure of the domain.

The LASD conducted field tests of this TRUSTS system in the LA Metro in 2012,
and one of the feedback comments from the officers was that patrols are often inter-
rupted due to execution uncertainty such as emergencies and arrests.
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Algorithmic Solution — Marginal MDP Strategy Representation. Utilizing tech-
niques from planning under uncertainty (in particular Markov Decision Processes), we
proposed a general approach to dynamic patrolling games in uncertain environments,
which provides patrol strategies with contingency plans[16]. This led to schedules now
being loaded onto smartphones and given to officers. If interruptions occur, the sched-
ules are then automatically updated on the smartphone app. The LASD has conducted
successful field evaluations using the smartphone app, and the TSA is currently evalu-
ating it toward nationwide deployment. We now describe the solution approach in more
detail. Note that the targets, e.g., trains normally follow predetermined schedules, thus
timing is an important aspect which determines the effectiveness of the defender’s pa-
trolling schedules (the defender needs to be at the right location at a specific time in
order to protect these moving targets). However, as a result of execution uncertainty
(e.g., emergencies or errors), the defender could not carry out her planned patrolling
schedule in later time steps. For example, in real-world trials for TRUSTS carried out
by Los Angeles Sheriff’s Department (LASD), there is interruption (due to writing
citations, felony arrests, and handling emergencies) in a significant fraction of the ex-
ecutions, causing the officers to miss the train they are supposed to catch as following
the pre-generated patrolling schedule.

In this section, we present the Bayesian Stackelberg game model for security pa-
trolling with dynamic execution uncertainty introduced by [16] in which the uncer-
tainty is represented using Markov Decision Processes (MDP). The key advantage of
this game-theoretic model is that patrol schedules which are computed based on Stack-
elberg equilibrium have contingency plans to deal with interruptions and are robust
against execution uncertainty. Specifically, the security problem with execution uncer-
tainty is represented as a two-player Bayesian Stackelberg game between the defender
and the attacker. The defender has multiple patrol units while there are also multiple
types of attackers which are unknown to the defender. A (naive) patrol schedule con-
sists of a set of sequenced commands in the following form: at time ¢, the patrol unit
should be at location [ and execute patrol action a. This patrol action a will take the
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unit to the next location and time if successfully executed. However, due to execution
uncertainty, the patrol unit may end up at a different location and time. Figure 10 shows
an example of execution uncertainty in a transition graph where if the patrol unit is cur-
rently at location A at the 5-minute time step, she is supposed to take the on-train action
to move to location B in the next time step. However, unlike CASS for ferry protection
in which the defender’s action is deterministic, there is a 10% chance that she will still
stay at location A due to execution uncertainty. This interactions of the defender with
the environment when executing patrol can be represented as an MDP.

In essence, the transition graph as represented above is augmented to indicate the
possibility that there are multiple uncertain outcomes possible from a given state. Solv-
ing this transition graph results in marginals over MDP policies. When a sample MDP
policy is obtained and loaded on to a smart phone, it provides a patroller not only the
current action, but contingency actions should the current action fail or succeed. So the
MDP policy provides options for the patroller, allowing the system to handle execution
uncertainty. A key challenge of computing the SSE for this type of security problem is
that the dimension of the space of mixed strategies for the defender is exponential in the
number of states in terms of the defender’s times and locations. Therefore, instead of
directly computing the mixed strategy, the defender attempts to compute the marginal
probabilities of each patrolling unit reaching a state s = (¢, ), and taking action a which
have dimensions polynomial in the sizes of the MDPs (the details of this approach are
provided in [16]).

5 Addressing Bounded Rationality in Real-world Problems

Game theory models the strategic interactions between multiple players who are as-
sumed to be perfectly rational, i.e., they will always select the optimal strategy available
to them. This assumption may be applicable for high-stakes security domains such as
infrastructure protection where presumably the adversary will conduct careful surveil-
lance and planning before attacking. However, there are other security domains where
the adversary may not be perfectly rational due to short planning windows or because
the adversary is less strategic due to lower stakes associated with attacking. Security
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strategies generated under the assumption of a perfectly rational adversary are not nec-
essarily as effective as would be feasible against a less-than-optimal response. There-
fore, addressing the boundedly rationality exhibited by human adversaries is a funda-
mental challenge for applying security games to wide variety of domains.

Domain Example — Green Security Domains. A number of our newer applications
are focused on resource conservation, through suppression of environmental crime. One
area is protecting forests [17], where we must protect a continuous forest area from ex-
tractors by patrols through the forest that seek to deter such extraction activity. With
limited resources for performing such patrols, a patrol strategy will seek to distribute
the patrols throughout the forest, in space and time, in order to minimize the resulting
amount of extraction that occurs or maximize the degree of forest protection. This prob-
lem can be formulated as a Stackelberg game and the focus is on computing optimal
allocations of patrol density [17].

Endangered species poaching is reaching critical levels as the populations of these
species plummet to unsustainable numbers. The global tiger population, for example,
has dropped over 95% from the start of the 1900s and has resulted in three out of nine
species extinctions. Depending on the area and animals poached, motivations for poach-
ing range from profit to sustenance, with the former being more common when prof-
itable species such as tigers, elephants, and rhinos are the targets. To counter poaching
efforts and to rebuild the species’ populations, countries have set up protected wildlife
reserves and conservation agencies tasked with defending these large reserves. Because
of the size of the reserves and the common lack of law enforcement resources, conserva-
tion agencies are at a significant disadvantage when it comes to deterring and capturing
poachers. Agencies use patrolling as a primary method of securing the park. Due to their
limited resources, however, patrol managers must carefully create patrols that account
for many different variables (e.g., limited patrol units to send out, multiple locations
that poachers can attack at varying distances to the outpost).

Behavioral Modeling and Learning. Recently, we have conducted some research
on applying ideas from behavioral game theory (e.g., prospect theory [18] and quantal
response [26]) within security game algorithms. One line of approaches is based on



the quantal response model to predict the behaviors of the human adversary, and then
to compute optimal defender strategies against such behavior of the adversary. These
include BRQR [40] which follows the logit quantal response (QR) [26] model, and
subsequent work on subjective-utility quantal response (SUQR) models [29]. The pa-
rameters of these models are estimated by experimental tuning. Data from a large set of
participants on the Amazon Mechanical Turk (AMT) were collected and used to learn
the parameters of the behavioral models to predict future attacks. In real-world domains
like fisheries protection, or wildlife crime, there are repeated interacions between the
defender and the adversary, where the game progresses in “rounds”. We call this a Re-
peated Stackelberg Security Game (RSSG) where in each round the defender would
play a particular strategy and the adversary would observe that strategy and act accord-
ingly. In order to simulate this scenario and conduct experiments to identify adversary
behavior in such repeated settings, an online RSSG game was developed (shown in Fig.
12) and deployed.
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Fig. 12. Interface of the Wildlife Poaching game to simulate an RSSG

In our game, human subjects play the role of poachers looking to place a snare to
hunt a hippopotamus in a protected wildlife park. The portion of the park shown in
the map is actually a Google Maps view of a portion of the Queen Elizabeth National
Park (QENP) in Uganda. The region shown is divided into a 5*5 grid, i.e. 25 distinct
cells. Overlaid on the Google Maps view of the park is a heat-map, which represents
the rangers’ mixed strategy © — a cell ¢ with higher coverage probability x; is shown
more in red, while a cell with lower coverage probability is shown more in green. As
the subjects play the game and click on a particular region on the map, they were given



detailed information about the poacher’s reward, penalty and coverage probability at
that region. However, the participants are unaware of the exact location of the rangers
while playing the game, i.e. they do not know the pure strategy that will be played by the
rangers, which is drawn randomly from mixed strategy = shown on the game interface.
In our game, there were 9 rangers protecting this park, with each ranger protecting one
grid cell. Therefore, at any point in time, only 9 out of the 25 distinct regions in the park
are protected. A player succeeds if he places a snare in a region which is not protected
by a ranger, else he is unsuccessful. Similar to the Guards and Treasures game, here also
we recruited human subjects on AMT and asked them to play this game repeatedly for
a set of rounds with the defender strategy changing per round based on the behavioral
model being used to learn the adversary’s behavior.

While behavioral models like (QR) [26] and SUQR [29] assume that there is a
homogeneous population of adversaries, in the real-world we face heterogeneous popu-
lations of adversaries. Therefore Bayesian SUQR was proposed to learn the behavioral
model for each attack [38]. Protection Assistant for Wildlife Security (PAWS) is an ap-
plication which was originally created using Bayesian SUQR. However, in real-world
security domains, we may have very limited data, or may only have some limited in-
formation on the biases displayed by adversaries. An alternative approach is based on
robust optimization: instead of assuming a particular model of human decision mak-
ing, try to achieve good defender expected utility against a range of possible models.
One instance of this approach is MATCH [34], which guarantees a bound for the loss
of the defender to be within a constant factor of the adversary loss if the adversary
responds non-optimally. Another robust solution concept is monotonic maximin [15],
which tries to optimize defender utility against the worst-case monotonic adversary
behavior, where monotonicity is the property that actions with higher expected utility
is played with higher probability. Recently, there has been attempts to combine such
robust-optimization approaches with available behavior data [10] for RSSGs, resulting
in a new human behavior model called Robust SUQR. However, one question of re-
search is how these proposed models and algorithms will fare against human subjects
in RSSGs. This has been explored in recent research [19] in the ‘first-of-its-kind” human
subjects experiments in RSSGs over a period of 46 weeks with the ‘Wildlife Poaching’
game, a brief summary of which is presented below.

In our human subjects experiments in RSSGs, we observe that: (i) Existing ap-
proaches (QR, SUQR, Bayesian SUQR) [29, 38, 10] perform poorly in initial rounds,
while Bayesian SUQR which is the basis for PAWS [38], perform poorly through-out
all rounds; (ii) Surprisingly, simpler models like SUQR which were originally proposed
for single-shot games performed better than recent advances like Bayesian SUQR and
Robust SUQR which are geared specifically towards addressing repeated SSGs. There-
fore, we proposed a new model called SHARP [19] which addresses the limitations of
the existing models (Stochastic Human behavior model with AttRactiveness and Prob-
ability weighting) in the following way: (i) Modeling the adversarys adaptive decision
making process in repeated SSGs, SHARP reasons based on success or failure of the
adversarys past actions on exposed portions of the attack surface, where attack surface
is defined as the n-dimensional space of the features used to model adversary behavior;
(i1) Addressing limited exposure to significant portions of the attack surface in initial
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rounds, SHARP reasons about similarity between exposed and unexposed areas of the
attack surface, and also incorporates a discounting parameter to mitigate adversarys lack
of exposure to enough of the attack surface; (iii) Addressing the limitation that existing
models do not account for the adversary’s weighting of probabilities, we incorporate
a two parameter probability weighting function. Based on our human subjects exper-
iments highlighted in [19], we observe that SHARP completely outperforms existing
approaches consistently over all rounds, most notably in initial rounds.

6 Addressing Field Evaluation in Real-world Problems

Evidence showing the benefits of the algorithms discussed in the previous sections is
definitely an important issue that is necessary for us to answer. Unlike conceptual ideas,
where we can run thousands of careful simulations under controlled conditions, we
cannot conduct such experiments in the real world with our deployed applications. Nor
can we provide a proof of 100% security — there is no such thing.

Instead, we focus on the specific question of: are our game-theoretic algorithm bet-
ter at security resource optimization or security allocation than how they were allocated



previously, which was typically relying on human schedulers or a simple dice roll for
security scheduling (simple dice roll is often the other automation that is used or offered
as an alternative to our methods). We have used the following methods to illustrate these
ideas. These methods range from simulations to actual field tests.

1.

Simulations (including using a machine learning attacker): We provide simula-
tions of security schedules, e.g., randomized patrols, assignments, comparing our
approach to earlier approaches based on techniques used by human schedulers. We
have a machine learning based attacker who learns any patterns and then chooses to
attack the facility being protected. Game-theoretic schedulers are seen to perform
significantly better in providing higher levels of protections [33, 14]. This is also
shown in Figure 13.

Human adversaries in the lab: We have worked with a large number of human
subjects and security experts (security officials) to have them get through random-
ized security schedules, where some are schedules generated by our algorithms,
and some are baseline approaches for comparison. Human subjects are paid money
based on the reward they collect by successfully intruding through our security
schedules; again our game-theoretic schedulers perform significantly better ([31]).
Actual security schedules before and after: For some security applications, we
have data on how scheduling was done by humans (before our algorithms were
deployed) and how schedules are generated after deployment of our algorithms.
For measures of interest to security agencies, e.g., predictability in schedules, we
can compare the actual human-generated schedules vs our algorithmic schedules.
Again, game-theoretic schedulers are seen to perform significantly better by avoid-
ing predictability and yet ensuring that more important targets are covered with
higher frequency of patrols. Some of this data is published [35] and is also shown
in Figure 14.

“Adversary” teams simulate attack: In some cases, security agencies have de-
ployed adversary perspective teams or mock attacker teams that will attempt to
conduct surveillance to plan attacks; this is done before and after our algorithms
have been deployed to check which security deployments worked better. This was
done by the US Coast Guard indicating that the game-theoretic scheduler provided
higher levels of deterrence [35].

Real-time comparison: human vs algorithm: This is a test we ran on the metro
trains in Los Angeles. For a day of patrol scheduling, we provided head-to-head
comparison of human schedulers trying to schedule 90 officers on patrols vs an au-
tomated game-theoretic scheduler. External evaluators then provided an evaluation
of these patrols; the evaluators did not know who had generated each of the sched-
ules. The results show that while human schedulers required significant effort even
for generating one schedule (almost a day), and the game-theoretic scheduler ran
quickly, the external evaluators rated the game theoretic schedulers higher (with
statistical significance) [7].

Actual data from deployment: This is another test run on the metro trains in LA.
We had a comparison of game-theoretic scheduler vs an alternative (in this case a
uniform random scheduler augmented with real time human intelligence) to check
fare evaders. In 21 days of patrols, the game-theoretic scheduler led to significantly
higher numbers of fare evaders captured than the alternative [7, 8].



7. Domain expert evaluation (internal and external): There have been of course
significant numbers of evaluations done by domain experts comparing their own
scheduling method with game theoretic schedulers and repeatedly the game the-
oretic schedulers have come out ahead. The fact that our software is now in use
for several years at several different important airports, ports, air-traffic, and so on,
is an indicator to us that the domain experts must consider this software of some
value.

7 Conclusion

Security is recognized as a world-wide challenge and game theory is an increasingly
important paradigm for reasoning about complex security resource allocation. We have
shown that the general model of security games is applicable (with appropriate vari-
ations) to varied security scenarios. There are applications deployed in the real world
that have led to a measurable improvement in security. We presented approaches to ad-
dress four significant challenges: scalability, uncertainty, bounded rationality and field
evaluation in security games.

In short, we introduced specific techniques to handle each of these challenges. For
scalability, we introduced three approaches: (i) incremental strategy generation for ad-
dressing the problem of large defender strategy spaces; (ii) double oracle incremen-
tal strategy generation w.r.t large defender & attacker strategy spaces; (iii) compact
representation of strategies for the case of mobile resources and moving targets; and
(iv) cutting plane (incremental constraint generation) for handling multiple boundedly
rational attacker. For handling uncertainty we introduced two approaches: (i) dimen-
sionality reduction in uncertainty space for addressing a unification of uncertainties;
and (ii) Markov Decision Process with marginal strategy representation w.r.t dynamic
execution uncertainty. In terms of handling attacker bounded rationality, we propose
different behavioral models to capture the attackers’ behaviors and introduce human
subject experiments with game simulation to learn such behavioral models. Finally, for
addressing field evaluation in real-world problems, we discussed two approaches: (i)
data from deployment; and (ii) mock attacker team.

While the deployed game theoretic applications have provided a promising start,
significant amount of research remains to be done. These are large-scale interdisci-
plinary research challenges that call upon multiagent researchers to work with researchers
in other disciplines, be “on the ground” with domain experts and examine real-world
constraints and challenges that cannot be abstracted away.
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