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Abstract. The Concurrent Systems Architecture Group (CSAG) has been inves-
tigating high-performance clustering of commodity PCs with gigabit interconnects
and a commodity OS (Windows NT). This paper describes several of the major en-
hancements in the latest release of HPVM 1.9 (High Performance Virtual Machine).
The first two of these are concurrent support of multiple gigabit fabrics and shared
memory transport, and a self-tuning I/O scheme that manages performance dispar-
ities of various PCI implementations. In addition to these innovations, HPVM 1.9
also delivers both lower-latency (8.8 µs) and high-bandwidth (100+ MB/s) messag-
ing. Another major contribution of HPVM 1.9 is the design and implementation a
new unified polling strategy that allows simultaneous use of several networks (ei-
ther VIA or Myrinet) and a shared memory transport without resorting to complex
adaptive polling schemes. The implementation of our new high-performance shared
memory transport is described in detail. Finally, several system and application
benchmark results are given and interpreted to assess the value of these changes.

1 Introduction

High-performance PC clusters are rapidly becoming mainstream because of
their favorable cost-to-performance ratios. Indeed, clusters of commodity PCs
with gigabit networking (especially Myrinet, VIA, and to a lesser extent giga-
bit Ethernet) perform on par with significantly more expensive supercomput-
ers. One focus of the CSAG group has been to explore methods for extracting
high performance (100+ MB/s, 8.8 µs latency) out of the available hardware,
and then translating that capability to applications through efficient layer-
ing of software. The hardware landscape has changed significantly during the
past three years of this project. Low-latency gigabit hardware has achieved
standardization through the Virtual Interface Architecture (VIA); SMPs (at
least two-way) are increasingly attractive as nodes; and commodity mother-
boards with greater integration have significantly increased I/O performance
variances across generations. Because of these rapid changes, greater flexi-
bility and tunability was needed in the Fast Messages (FM) core messaging
substrate of HPVM. This paper describes four enhancements to the latest
version of HPVM, which improve its overall performance and increase per-
formance stability over generations of motherboards.
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Older versions of HPVM used the messaging hardware even for processes
communicating on the same physical machine. Similar to older message pass-
ing machines like the Intel Paragon, this meant that node-to-node messaging
performance was faster than on-node messaging performance. Furthermore,
as the processor count per SMP increases, this design becomes increasingly
disadvantageous. Instead of using the network hardware for every message,
shared memory should be used for intra-machine transfers. While this opti-
mization had been explored by other researchers [16], they employed com-
plex adaptive polling schemes to manage the large cost differential between
polling for intra- and inter-machine messages. The method presented here
reduces the polling cost for inter-machine messages, eliminating the need for
adaptive schemes without sacrificing performance on either transport. The
resulting shared memory transport for FM is very efficient (delivering 3 µs
latency, 200+ MB/s, see Sect. 5), with a poll cost of approximately 150 ns. A
memory-based notification scheme for Myrinet network reduces polling cost
to 100 ns, reducing FM point-to-point latency by nearly 15 percent. Parity
in polling costs means that multiple interfaces can be polled in succession,
eliminating the need for adaptive schemes and allowing additional transports
to be easily incorporated. Section 4 describes the memory-based notification
scheme and support for multiple network transports. Section 5 describes the
design of FM’s shared memory transport in detail.

Over the past few years, motherboard and specifically PCI chipset imple-
mentations have proliferated. In some cases, recent chipsets can deliver poorer
programmed I/O performance than their predecessors. Because FM relies on
efficient write combining and programmed I/O, these differences were directly
reflected (negatively) in FM performance. To address this problem robustly,
HPVM 1.9 includes self-tuning I/O code that empirically selects the opti-
mum data burst size to obtain peak programmed I/O throughput. Section 6
describes this strategy and its associated performance.

In this paper, we summarize the relevant HPVM background and design
in Sect. 2 and Sect. 3. We then describe the memory notification and shared
memory implementation in Sect. 4 and Sect. 5. The observed performance
differences across chipset generations and our adaptive I/O solution is de-
scribed in Sect. 6, and Sect. 7 closes with a summary of our perspective on
these results and conclusions.

2 Background

The plummeting price and increasing performance of both desktop comput-
ing systems and high-speed networks have made the use of cluster comput-
ing systems increasingly desirable. The Beowulf cluster approach [3], which
relies on the pervasive Fast Ethernet technology (and essentially zero incre-
mental cost) produces clusters that support coarse-grained, loosely coupled
parallelism. The faster system-area network (SAN) technologies [1,2,4,10,13]
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provide hardware enablers for tightly coupled clusters. Significant advances
from the research community in the past five years have made it possible to
deliver hardware communication performance to the applications Fast Mes-
sages (FM) [17], Active Messages (AM) [5] U-Net [22], VMMC-2 [8], PM [20],
BIP [18], MINI [12], and Osiris [7]. These efforts have forged a consensus on
core requirements for network interfaces that was eventually crystallized in
the Intel/Compaq/Microsoft standard for cluster interfaces—the Virtual In-
terface Architecture [21]. We briefly survey highlights from our efforts in this
area during this period.

The HPVM research project has focused on crucial aspects of the de-
sign of high-performance messaging layers such as the trade-offs between
protocol processing overhead and the functionalities exposed in the program-
ming interface. The key design decisions taken for the original Fast Mes-
sages (FM) [17] for Myrinet implementation provided key communication
services while retaining microsecond-level overhead. In April of 1995, Fast
Messages 1.1 achieved short message latencies of 14 µs and a peak band-
width of 17.6 MB/s Myricom’s Myrinet. This performance represented 75
percent of the available 23 MB/s of I/O bandwidth on the Sparcstation 20
platform, as well as a performance improvement in both dimensions of ap-
proximately 5–10 times. The FM 1.1 implementation achieved N 1

2
of 54 bytes

with a bandwidth of 17.5 MB/s available for messages as small as 128 bytes.
FM 1.1 implemented the Berkeley Active Messages API [5].

Designed and implemented in autumn of 1996, Fast Messages 2.0 and 2.1
improved the API based on lessons learned from a Sockets-FM and MPI-
FM implementation [14]. The new API provided streamed gather-scatter at
both sender and receiver; per-message threaded handlers; and per-message
flow control, which enabled the full performance of FM to be delivered to a
wealth of application API’s (MPI [14,15], Shmem Put/Get [11], Global Ar-
rays, BSP). The performance achieved by FM 2.1 on 300 MHz Pentium II’s
and Myricom’s Myrinet is 9 µs minimum latency, 92 MB/s peak bandwidth,
with N 1

2
≈ 256 bytes. These values represent high absolute performance,

comparing to MPP interconnect performance and internal memory band-
width.

Fast Messages 2.1 (as part of the HPVM 1.0 release) was used to build
the 256-processor NT Supercluster, the world’s largest Windows NT cluster.
This system was demonstrated in April 1998, at the NCSA Alliance kickoff
meeting, and has been in production use since autumn of 1998. The cluster
has been upgraded several times, and current aggregate performance is ap-
proximately 200 gigaflops, 128 gigabytes of memory, and 2 terabytes of disk.
Network bisection bandwidth delivered by Fast Messages running on Myrinet
is 64 ∗ 160 MB/s = 10 GB/s.

The release of HPVM 1.2 in February 1999 added several important new
functionalities to the system. First, we incorporated multiprocess and multi-
processor threading support, which allows FM to be used effectively in multi-
processor PC boxes. Separate processes using FM are safely isolated from each
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other. Second, peak bandwidth was increased from 92 MB/s to more than
100 MB/s. Third, improved dynamic configuration facilities (for messaging
buffer pools) and an Installshield packaging made the entire system dramat-
ically easier to install, manage, and use. Fast Messages and HPVM have also
been used as a testbed for research on novel mechanisms for co-scheduling
on a network of workstations [19], and for research on the introduction of
QoS guarantees in a wormhole-routing interconnect [6]. HPVM is available
for download on our Web site at <http://www-csag.ucsd.edu/>. The re-
mainder of this paper summarizes the improvements to the HPVM system
in HPVM 1.9.

3 HPVM Low-Level Design Review

Overall, the structure of FM is straightforward. Packets must traverse a
pipeline across multiple I/O busses. Data integrity is ensured by guarantee-
ing that a receiving host has free memory for every incoming packet and by
taking advantage of the hardware reliability of the network. Active-message–
like semantics require that application programs are able to handle incoming
messages while sending an outgoing message.

Reviewing the low-level architecture of the Myrinet LANai network in-
terface and the basic structure of FM, the Myrinet LANai NIC houses a
programmable 66 Mhz (Version 4.x) custom processor, and the code that
runs on this processor is often called the LCP (LANai Control Program) or
MCP (Myrinet Control Program). FM uses a custom LCP that only pro-
cesses FM-formatted packets. The Myricom-supplied GM code also supports
a TCP encapsulation. Working in conjunction with the LCP, a host library
runs on the machine’s CPU (x86 in this paper) to complete the software
layout. Because the LANai is physically located on the PCI bus, memory
transfers can occur in two ways: data can be DMAed to/from the LANai
memory, or data can be PIOed (programmed I/O) to the NIC. The FM li-
brary always uses PIO for sending data to the LANai. DMA is always used
to send data from the LANai to the host. One further feature/structure of
the Myricom LANai is that packets must be DMAed to/from the physical
network from NIC-local memory. This implies that a message packet must
traverse a pipeline as shown in Fig. 1.

With proper software design, this entire process can be pipelined for high
performance. All high-performance messaging implementations on Myrinet
hardware must manage this pipeline to achieve their goals.

Data coming from the LANai to Host2 must use DMA to move data
to host memory. DMA engines require that target memory be paged-in by
the operating system. Usually, host memory is page-pinned so that the host
operating system never pages-out this memory. While a variety of methods
are possible, FM uses a static pinning policy. That is, the device driver pins
one large region of memory when the device is loaded. The size of this region

http://www-csag.ucsd.edu/
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Fig. 1. Message packet traversing a pipeline.

is specified as a combination of maximum number of hosts in the cluster, the
size of an FM packet (currently 2048 bytes of data for a total of 2080 bytes,
including header), and the number of communication contexts. FM uses the
term communication context to specify how many independent processes on a
host must have simultaneous access to the high-speed network device. Special
care (using the virtual memory protection mechanism of the host OS) keeps
these contexts from interfering with each other. This is especially important
because access to the LANai memory is memory-mapped into user space,
allowing OS-bypass for common network interactions.

Because LANai memory is memory-mapped into one of multiple com-
munication contexts, the LCP must distinguish incoming packets and place
them in the correct location. This is accomplished by having the LCP inspect
the FM header for a program ID. When a context first gains access to the
device, its program ID (assigned from a global resource manager) and the
instance number of that ID are placed into LANai memory.

The Myrinet network (and Giganet VIA networks) are considered to be
hardware reliable, with very low bit-error rates (equivalent to memory bit-
error rates). Taking advantage of this hardware reliability, FM is able to
eliminate the software overhead of timeout/retransmission strategies. How-
ever, to ensure that data are received correctly, there must be available host
memory at the receiver for every incoming packet. To ensure that memory
is available, FM uses a credit-based flow control scheme. At startup, every
node in a computation is assigned a certain amount of credit (measured in
FM packets). All packets (full or partial) consume one credit. When a sender
runs out of credit, it must wait for a credit refill. FM currently uses a static
allocation policy, but the pinned receive region is actually a shared allocation.
That is, the sum of all assigned credit across all nodes is shared from a single
region. Changes to the FM credit allocation policy can be implemented with-
out changing the MCP operation. In fact, the MCP knows nothing of credit,
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and dutifully acts as a packet forwarder. Incoming packets are placed in the
next slot of the pinned memory region (with wrap at the region boundary).
The FM credit policy ensures that packets will not be overwritten before
being extracted from the network.

The FM library requires programs to extract packets from the network.
FM is a handler-based system, so the packet type is associated with a “han-
dler” code run on the destination host (active-message–like). The FM API
call FM Extract() allows the host library to examine packets that have ar-
rived in the host’s pinned memory region and to call the correct message
handler. Because of this structure and in conjunction with the credit-based
flow control scheme, when a sender runs out of credit, it is required to call
FM Extract(). This ensures message progression when two hosts are per-
forming a head-to-head send. FM is completely thread-safe, so that multiple
messages streams (say from different senders) can be handled safely.

4 Memory-Based Notification and Supporting Multiple
NICs

4.1 Memory-Based Atomic Notification

In the previous versions of HPVM, applications detected the arrival of a new
FM packet by calling an FM function that polled a memory location on the
LANai interface. This is an expensive operation, because the request has to
arbitrate for the CPU/memory bus, arbitrate for the PCI bus, then extract
the value from the LANai’s local memory and return it all the way back to
a CPU register.

As described in Sect. 3, after the LANai control program receives a new
packet from the network, it moves it into a main memory location, then the
FM user-level library code extracts the packet from this location. The key
is that the FM user-level library code and the LANai control program agree
on the main memory location where the next packet is to be delivered. With
this fact, it seemed clear that we could detect (atomic notification) by polling
that location in memory rather than poll a control register across the PCI
bus. This strategy has two key benefits. After the first poll, all subsequent
polls can be satisfied in-cache; subsequent polls need not arbitrate or use the
CPU/memory bus. The second benefit is that polling for FM packets doesn’t
require arbitrating for the PCI bus, so polls will not disturb any ongoing
DMA transfers. The former ensures that polling scales on large SMPs, and
the latter ensures fewer “turns” of the PCI busses, which is a critical factor
when utilizing them at close to 100 percent (as FM does).

In essence, the hardware’s cache coherence mechanism is used to signal the
arrival of new packets. For example, if an application is actively polling for a
new packet, on the first poll, the application will cache the poll value (which is
a location in main memory where the LANai control program will deposit the
next new packet). Subsequent polls will be satisfied by the cache—these polls
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will not generate any traffic outside the CPU the application is running on.
When the LANai control program moves a new packet into the expected main
memory location, the computer system’s memory controller will determine
that the application is caching the poll value and use the hardware-cache-
invalidate mechanism to flush the poll value from the CPU cache. The next
poll will cause the CPU to fetch the updated poll value from main memory.
This value will be changed, thus indicating a newly arrived packet. This
allows an application to actively poll for new packets in an efficient manner;
regardless of the number of polls, at most two transfers from CPU to main
memory will occur.

Finally, we achieve atomic notification with a single DMA transfer for
variable-sized packets by using a novel custom packet layout. When a new
packet arrives at the LANai, the LANai control program determines the
packet’s length and appends the length to the packet. The LANai control
program then calculates the offset into the frame in main memory so that
the newly appended packet length is aligned at the bottom of the frame. This
allows applications to poll a common flag location at the end of the frame,
regardless of the packet size. The use of the packet length allows the packet
data to be contiguous with the flag, allowing all of it to be moved in a single
DMA transfer. When the last value in the packet is written to main mem-
ory, the application knows that the entire DMA operation is complete. This
simple optimization has a major impact on performance, improving latency
for a zero-byte FM message over the previous HPVM implementation by 15
percent (10.4 µs vs. 8.8 µs).

4.2 Supporting Multiple NICs

HPVM 1.9 also allows several FM transports to be used concurrently: a
shared memory transport (described in the next section) either a Myrinet
transport or a GigaNet transport. In our current implementation, switch-
ing between the Myrinet and GigaNet transports only involves changing a
registry variable and restarting the FM context manager service.

The shared memory transport enables efficient communication when FM
tasks send messages to other FM tasks within the same SMP. The shared
memory transport uses the same “memory notification” polling strategy as
described above for the Myrinet interface. This has a subtle side effect, which
is that polling for new packets costs the same for the shared memory and the
Myrinet transports. The parity in polling costs allows multiple transports to
be supported simply, and this architecture scales well for large SMPs, many
network interfaces, and many different network types all within the same
machine.
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5 Shared Memory Transport

A deficiency of HPVM 1.2 was the implementation of the loopback message
path, which traversed down to the Myrinet hardware layer. Although peak
bandwidth between two Myrinet connected machines approached 100 MB/s,
the bandwidth for two processes on the same machine was under 40 MB/s.
The simple loopback design simplified the message layer; however, to better
support larger SMP machines, we have designed and implemented a shared
memory transport. In HPVM 1.9, each FM process is connected to Myrinet
for inter-node communication, and to a shared memory region for intra-node
communication. Both transport layers are supported concurrently, and be-
cause the FM design requires a central authority to map virtual node iden-
tifiers to physical nodes, each process can look up in the Global Resource
Manager to decide which transport to use for peer communication. Further,
due to the efficient receiver polling of the Myrinet transport, nothing more
than adding a poll of shared memory is require to preserve low-latency com-
munication for both transport layers.

The shared memory transport (hereafter referred to as SMT) uses the
shared memory IPC mechanism provided by the host operating system. Al-
though shared memory is straightforward, it does introduce the complication
that pointer operations are unsafe, because there is no guarantee that sepa-
rate processes will map the same memory region into the same address space.
For this reason, all data structures used in SMT are array based. The basic
design of SMT is for each process to control a message queue and permit
other processes to atomically insert data into the queue. The implementation
does not support any zero-copy IPC mechanism.

Mutual exclusion into shared message passing queues is low-latency and
lock-free. The primary synchronization in SMT is a fetch-and-increment
operation, which atomically fetches a value from memory and increments
the value in place. By using a fetch-and-increment on the head and tail
indices of a queue, lock-free mutual exclusion is guaranteed. The constraint
that the queue length is a power of two removes any length overflow checks
on indices when an appropriate bit mask is applied during index calculations.
Fetch-and-increment is relatively inexpensive; on a 300 MHz Pentium II,
our measurements show a single operation takes 85 nanoseconds (about 28
processor cycles).

The ordering property of fetch-and-increment is also used to assign
SMT identifiers to processes. As processes attach to the shared memory re-
gion, they all fetch-and-increment a shared variable to determine their
unique SMT identifiers. Just as a map of virtual node identifiers to physical
node addresses is stored by the Global Resource Manager, a map of SMT
identifiers to message queue locations is stored in the shared memory region.
The map is used by senders to determine the message queue used by an SMT
peer process.
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Copying data into a frame in the message queue can be an expensive
operation, and the host operating system may deschedule a process during
this step. To allow for scheduler intervention without disrupting the sending
and receiving in a message queue, the buffer filling and buffer pass-off steps
are separated. Further, to allow for simple buffer reclamation, all buffers are
controlled by the receiving process. Each process owns a free list and a receive
queue. The free list is a ring buffer of 2K message frames, and the receive
queue is a ring buffer of indices into the free list.

To send a message, a process must do the following.

1. Look up the receiving peer queue location using the SMT ID to queue
location map.

2. Fetch-and-increment the head of the receiver’s free list to consume a
message frame.

3. Test-and-set an inuse flag in the frame. If the fetched value is non-zero,
then go to step 2.

4. Copy data into the frame.
5. Fetch-and-increment on the tail of the receiver’s receive queue.
6. Set the index at the fetched receive queue tail to the index of the con-

sumed free list frame.

Note that under unfair scheduling, the sending process may traverse the
free list in worst-case O(N) time, where N is the number of frames in the free
list. The finite worst-case bound is a consequence of the fact that SMT is built
on top of FM’s credit-based flow control, which guarantees that a message
frame will be present in the free list. However, assuming fair scheduling, or a
single sender, the traversal time is O(1).

To receive a message a process must do the following.

1. Poll until the frame at the head of the receive queue is marked in-use.
2. Fetch-and-increment the head of the receive queue.
3. Index into the free list, and copy the data into the upper message layer

if needed.
4. Unset the frame-in-use flag.

Although this scheme effectively reorders the receive queue according to
the scheduling priority of the senders, it requires an additional fetch-and-increment
and test-and-set operation, and adds some complexity to a single-queue
scheme. This scheme will not protect from starvation when different pro-
cess priorities are used. If a sender is scheduled at a higher priority, a lower
priority sender may never acquire a message frame from the free list. The
key advantage of this scheme is the reordering of senders to allow a sending
process to effectively leapfrog over another, which keeps the receiver’s mes-
sage queue flowing. Without this property, a descheduled sender can block
the receiver’s message queue, thereby inducing bursts of high-latency com-
munication directly correlated to the behavior of the host operating system
scheduler.
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To provide scalability to large SMP machines, the number of message
queues a receiver owns is a parameter that can be adjusted to the amount
of queue sharing desired. If the number of queues is set to one per receiver,
then SMT has the same queuing structure as the Myrinet connectionless
transport, where all senders transmit to the same device. The advantage of
this scheme is that the receiver need only poll one receive queue, yielding
low latency on the receiver side. The disadvantage is high contention due to
numerous fetch-and-increment operations at the end points of the queue,
which can result in high latency on the sending side. If the number of queues
is set to 1 per receiver/sender pair, then SMT has the same queuing structure
as the Giganet connection-oriented transport. The advantage of this scheme
is that no synchronization primitives are needed in the queues, because this
is a single writer/single reader scenario. The disadvantage is wasted memory,
unless every permutation of process pairs communicates. More significantly,
a receiver must poll a queue for every sender in order to extract messages,
resulting in high latency on the receiver side.

If the number of queues can be set anywhere from one per receiver to N
per receiver—where N is the number of SMT processes—then the amount
of queue sharing, memory usage, and contention can be tuned for a given
platform. If the number of receive queues is set at M—where 1 ≤M ≤ N—
then the procedure for sending a message is the same as above, except that the
receiver’s free list and receive queue are now found as the receiver’s I mod M
free list and receive queue. Further, the receiver must now poll M receive
queues.

The resulting performance of HPVM 1.9 with SMT improves on that of
HPVM 1.2, both in delivered bandwidth (see Fig. 2) and in message latency
(see Fig. 3). Incorporating the SMT into the FM system not only improves
intranode communication performance, as discussed in Sect. 4, but it also
does so with no penalty for internode communication.

Finally, to allow the SMT to run without a Myrinet network, we created a
NULL transport to replace the Myrinet transport. This allows HPVM to run
on a single workstation without any external transport hardware, resulting
in a shared-memory-only implementation of HPVM. We envision this mode
of operation becoming very common for HPVM users, because it allows them
to develop HPVM software on their desktops.

6 PCI Chipset Pacing

HPVM (and FM in particular) was carefully tuned to use processor I/O and
DMA asymmetrically to give highest performance. However, as PCI imple-
mentations have proliferated, we have found that PIO performance can be
unpredictable. The following describes our experience and the adaptive tun-
ing software we developed, which tests and selects good burst-size parameters
to achieve good PIO performance.
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Fig. 2. Intranode FM messaging bandwidth, HPVM 1.2 vs. HPVM 1.9
(SMT).

Fig. 3. Intranode FM messaging latency, HPVM 1.2 vs. HPVM 1.9 (SMT).
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In December of 1998, we received a new 32-node cluster. Each node is
an HP Netserver LPR that contains two 450 MHz Pentium IIs that are con-
nected to a 100 MHz front-side bus and are coupled to main memory and
I/O interfaces via the 440 BX chipset. Our previous cluster consisted of HP
Kayak nodes. A Kayak node contains two 300 MHz Pentium IIs that are
connected to a 66 MHz front-side bus and are coupled to main memory and
I/O interfaces via the 440 LX chipset.

We were eager to compare FM performance for the clusters because the
new cluster’s processors and front-side buses are 50 percent faster (66 to
100 MHz). Preliminary FM micro-benchmarks (see Fig. 4) showed that the
newer machines performance was better for smaller messages, but it also
revealed that the newer machines performed worse for larger messages. The
root of this behavior was inefficiencies of the PCI chipset at saturation, even
though peak performance of the newer chipset is indeed higher than its older
cousin. After adding sufficiently heavy instrumentation to the FM internals,
it was discovered that the newer machines have worse PIO performance than
the older machines for messages larger than 160 bytes. The slower machines’
performance is robust, and performance continues to increase as message
sizes increase; but the newer machines peak at 115 MB/s, and performance
falls for messages of 160 bytes and greater. We verified that all configuration
parameters (BIOS, chipset, and OS) between the two machines were identical.

Our working theory is that the queuing mechanism inside the 440 BX does
not gracefully handle high-volume PIO scenarios (the queue in the 440 BX is
5 cache lines deep, that is, 160 bytes). With this theory, the following strategy
was implemented: for messages more than 160 bytes, packets are “paced” so
that the 440 BX chipset can perform optimally—that is, for messages larger
than 160 bytes, data is PIOed across the bridge at 160 byte chunks. For
example, if an application is sending a 400-byte message, the FM internal
pacing code will PIO the message to the LANai in three transactions: two
160-byte chunks followed by an 80-byte chunk. This technique conditioned
the newer machines’ performance curves and expected performance as shown
in Fig. 5.

To ensure that this performance is robustly attained in other systems,
we inserted a PIO micro-benchmark in the distributed code (the same code
used to uncover the 440 BX problem) that runs at boot time. This code
analyzes the system’s performance and chooses a pacing size for the system
that attains the highest PIO performance.

7 Summary and Future Directions

The design of HPVM 1.9 builds on several generations of high-performance
cluster software systems from the Concurrent Systems Architecture Group,
originally at the University of Illinois and now at the University of California,
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Fig. 4. FM micro-benchmarks without packet “pacing.”

Fig. 5. FM micro-benchmarks results with packet “pacing.”
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San Diego. These previous systems have been used to build large produc-
tion clusters and to deliver a wealth of application computational science.
HPVM 1.9 adds a number of capabilities that further increase the flexibility,
performance, and potential impact of the tools. Our efficient integration of
multiple transports with high performance in a robust structure (a structure
that is self-tuning and has low overhead) represents a new solution to an
old problem [16,9]. Other specific new capabilities in HPVM 1.9 include sup-
port for multiple hardware network types (Giganet and shared memory), a
workstation configuration for convenient software development, support for
the Bulk-synchronous Programming API, and improved performance (8.8 µs
latency, 100+ MB/s, see Fig. 2 and Fig. 3).

Currently, the NCSA Alliance NT Supercluster, which comprises more
than five hundred processors, is using HPVM 1.9 (replacing HPVM 1.2 on
that cluster). This cluster will continue to expand rapidly, because its de-
livered performance, reliability, and reasonable cost make it a compelling
vehicle for computational science. We are exploring the use of HPVM 1.9 as
a basis for a wide-area cluster federation (coupling over networks from OC-12
to OC-192, 10 gigabits/s and faster). We have successfully coupled the 128
processors of the UCSD cluster with the 256 processors of the NCSA NT
Supercluster, using the OC-12 vBNS. We are exploring higher-speed network
experiments, as well as the use of high-speed clusters to build a cost-effective
network storage server. We have integrated a five-terabyte server and demon-
strated a gigabyte per second of sustained external network bandwidth. We
are working with other researchers to use this in computational grid applica-
tions.
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