On Integration of Congestion Control with Internet
Streaming Applications

Reza Regjaie
Computer Science Department
University of Oregon
reza@cs.uoregon.edu

Abstract— During recent years, the importance of inte-
grating congestion control (CC) into streaming application
has been frequently justified and several CC mechanisms for
streaming applications have been proposed. However, many
of existing streaming applications either do not incorporate
any CC mechanism at all or do not integrate an existing CC
mechanism properly, or implement their own untested CC
mechanism. We believe that lack of a well-defined and flexi-
ble interface for CC mechanism has been a main obstacle in
proper integration of CC into streaming application.

In this paper, first we discuss various design choices, chal-
lenges and tradeoffs in devising a flexible interface for a CC
module. This discussion leads us to a set of requirements for
such an interface. Then we present cclib, an application-
level library for congestion control that provides a flexi-
ble interface. Design and implementation of cclib is pre-
sented. We use cclib to illustrate proper integration of CC
into streaming applications and address various practical is-
sues.

Keywords— Congestion Control, Internet Streaming Ap-
plications, Integration.

I. INTRODUCTION

Shared nature of Internet resources requires all applica-
tions to behave in a network-friendly fashion and perform
congestion control (CC). Performing CC ensures network
stability and improve fairness among coexisting flows [1]
but could result in unpredictable and potentially wide vari-
ations in transmission rate.

The need for integration of CC into Internet streaming
applications have inspired design and evaluation of several
new CC mechanisms (e.g., [2], [3], [4], [5]). These new
rate-based CC mechanisms often regulate transmission
rate by adjusting inter-packet-gap (IPG) based on observed
round-trip time (RTT) and loss rate for a given connec-
tion. Therefore, in design and evaluation of these new CC
mechanism, the ideal scenario is implicitly assumed where
packet payload is always ready and evenly spaced packets
are sent once every IPG, i.e., the CC mechanism fully con-
trols packet transmission schedule. In practice, however,
to integrate a CC mechanism into streaming applications,
the CC mechanism is usually implemented as a module

that periodically determines available bandwidth and re-
ports it to the application. Then the application is expected
to match its transmission rate with the reported available
bandwidth. While this framework seems straightforward,
to properly integrate CC module into streaming applica-
tions, the following key issues should be addressed:

1) How should the available bandwidth be defined by
the CC module and how often it should be reported to the
application? Available bandwidth is not a clearly-defined
term. There should be a close relationship between defi-
nition of available bandwidth and frequency of reporting
available bandwidth to the application. When the avail-
able bandwidth is reported to the application once every
interval 7 (e.g., 5*RTT), it usually presents the average
bandwidth over the next interval. Therefore, the CC mod-
ule should associate available bandwidth with a timescale
(7) over which it is averaged, and also specify frequency
of reporting bandwidth. Obviously, if the available band-
width is not defined properly or it is not reported to the
application frequently, the resulting flow will not be well-
behaved.

2) How closely should the application’s transmission
rate over short timescale match with available bandwidth?
i.e., How bursty can the application’s transmission rate
become?. The application can control micro-level packet
departure time within the interval 7 as long as its av-
erage transmission rate matches average available band-
width. However, changing packet transmission sched-
ule could affect performance of underlying CC mecha-
nism. For example, if the application is allowed to send
10 packets during the next interval 7, it can send either 10
evenly spaced packets or a burst of 10 back-to-back pack-
ets. In both of these transmission schedules, the average
transmission rate matches the average available bandwidth
over interval . However, the bursty schedule could re-
sult in a significantly higher transmission rate over shorter
timescales. The more the application changes packet trans-
mission schedule from an evenly-spaced to a bursty packet
transmission schedule, the more the observed loss rate and
RTT of the connection could be affected. This in turn

changes behavior of the underlying CC module from the
ideal scenario where the CC module is in full control of
packet departure schedule.

Streaming applications often tend to send bursty data
stream Therefore, it is important to accommodate small
bursts over shorter timescale as long as this bursty trans-
mission schedule does not significantly change behavior of
the underlying CC mechanism.

3) Should the CC module operate in a passive or active
mode? The CC module could passively monitor connec-
tion behavior and report available bandwidth to the appli-
cation. This passive rate control scheme solely rely on the
application to properly adapt its transmission rate. There-
fore, a misbehaved application (that does not integrate the
CC module properly, or does not properly match its trans-
mission rate with available bandwidth, or is simply buggy)
could easily result in a misbehaved flow. To prevent this,
the CC module can not only report available bandwidth,
but also can actively control packet departure schedule.
For example, when application’s transmission rate exceeds
available bandwidth, the CC module in active mode can
either buffer excess data or signal the application to slow
down. This active CC mechanism could protect the net-
work from misbehaved flows. However if the CC mod-
ule does not provide a flexible interface to exchange band-
width information with the application effectively, appli-
cation developers will not have any incentive to integrate a
CC module in active mode within their adaptive streaming
applications.

4) Should the CC machinery be implemented within the
kernel or at the application level? Clearly, each case has
certain benefits and drawbacks. The location of the CC
module also affects its interactions with the application.
For example, an in-kernel CC module can signal the ap-
plication to send a packet at proper time. However, an
application-level CC module may need to be invoked by
the application to examine whether next packet departure
time has arrived.

Finally, there are several functions (e.g., loss detection
or RTT measurement) that are required by many adap-
tive streaming applications as well as CC mechanisms. To
avoid duplicating these functionalities, a CC module can
implement these functions and provide a proper interface
for the applications to access updated information.

The above discussion illustrates that effective integra-
tion of CC mechanism into streaming application requires:
1) a well-defined and flexible interface for the CC mod-
ule, and 2) a clear methodology for integrating CC module
into the application. Defining such an interface for the CC
module can decouple design of the CC mechanism from
design of streaming applications to a large extent.

Despite extensive work on design of new CC mecha-
nisms for streaming applications, various issues related to
integration of CC into streaming applications have not re-
ceived sufficient attention. The congestion manager (CM)
architecture [6] appears to be the only work that presents
an interface between congestion manager (an entity that
performs congestion) and streaming applications. But as
we discuss in section IV their proposed interface is not
appropriate for adaptive streaming applications. Due to
the lack of a well-defined and flexible interface for the
CC module, application designers were not able to prop-
erly integrate new CC mechanisms (e.g., [3], [2], [5]) that
have been carefully designed and extensively evaluated,
into their streaming applications. Instead, many applica-
tion designers either do not incorporate any CC mecha-
nism into their streaming applications, or even implement
their own CC mechanism without sufficient evaluations.
Design of a network-friendly CC mechanism is not a trivial
task and requires a good understanding of network dynam-
ics and extensive evaluation under various network con-
ditions. Therefore, to leverage previously designed CC
mechanisms, it is important to define a good interface for
CC module.

In this paper, we study the above key design issues for
integration of CC into streaming applications and discuss
implications of various design choices. Our discussion
leads us to a set of required features for an interface be-
tween he CC module and streaming applications. We then
present a prototyped CC module called cclib. cclib is an
application-level library with a flexible interface that sup-
ports all the required features. We describe cclib’s inter-
face along with a simple methodology for its integration
into streaming applications. Although the library imple-
ments a specific CC algorithm, its interface and integra-
tion methodology is generic and should be applicable to
other CC mechanisms with minor or no modification. Fi-
nally, we address several practical considerations in design
of such a CC module and describe our solutions.

Note that our goal in this paper is to explore various de-
sign issues to design an interface for a CC module, and
present a CC module with such a flexible interface. How-
ever, we do not intend to find the optimal setting for such
an interface. For example, we show how our proposed
interface allows the application to accommodate a given
burst size, but we do not examine what the optimal burst
size should be.

A. Target Applications

Our target applications in this paper are adaptive stream-
ing applications, ranging from playback streaming to live
but non-interactive multimedia (i.e., lecture mode) ses-

sions. This class of streaming applications perform qual-
ity adaptation by adjusting quality of delivered stream to
match with available bandwidth. To effectively perform
quality adaptation, the application requires information
about available bandwidth over short timescales. We as-
sume that the application fully utilizes the available band-
width that is reported by the CC module (instead of send-
ing only at certain rate as was assumed by the CM interface
[7].

The rest of this paper is organized as follows: in section
11, we explore various issues for designing a flexible inter-
face for a CC module and derive a set of required feature
for such an interface. Section Il presents cclib, a proto-
typed application-level CC module that supports all the re-
quired features. We describe how cclib implements these
features. Section IV reviews related work on this topic.
We conclude the paper in section V and presents our fu-
ture directions.

Il. INTEGRATING CC INTO STREAMING
APPLICATIONS

The primary function of CC mechanism is to estimate
available bandwidth as the network condition changes.
The CC module maintains state of a connection by mon-
itoring packet departure and ACK arrival times to deter-
mine individual packet losses (or loss rate) as well as RTT
samples. Each rate-based CC mechanism deploys an in-
crease/decrease algorithm (e.g., AIMD, TCP-equation) to
adjust inter-packet-gap (IPG) to regulate transmission rate
based on observed connection loss rate and RTT.

When a CC module is integrated into an application, it
determines and reports available bandwidth (BW,.) to
the application. Then the application should match its
transmission rate (BW,p,) with available bandwidth as
shown in Figure 1. In this section, we explore key de-
sign issues in such a framework, present a set of preferred
design choices and justify our choices.

A. Reporting Bandwidth Information

If the application is allowed to send at the rate of
BW,efor T seconds, it can send n packet of size b bytes
where n = ZxBVave Therefore, for a given interval T and

[Application]

Fig. 1. Interactions between the CC module and application

BW

I
|
- -
avgb’ s 1L, -
I
I
t

Fig. 2. Average bandwidth over different timescale

packet size b, available bandwidth can be presented as ei-
ther actual bandwidth (BW,.in terms of byte per second)
or number of packets to be sent (i.e., n). Throughout this
paper, we present available bandwidth in one of these two
forms.

When the CC module reports BW,,to the application
once every period 7, the most useful definition of available
bandwidth to report is average bandwidth over each pe-
riod. If the available bandwidth is reported less often (i.e.,
long 7), the application needs to adapt to potentially vari-
able bandwidth less frequently. Furthermore, the applica-
tion might be able to plan packet transmission schedule
for each period more efficiently. For example, the applica-
tion requires to be less adaptive if it determines next 100
packets (rather than next 5 packets) to be sent during the
next 10 RTTs at once. However, reporting available band-
width less frequently has the following two major draw-
backs. First, by reporting average available bandwidth dur-
ing each period, the CC module has to ignore details of
bandwidth variations that are important for quality adapta-
tion. To illustrate this point, Figure 2 shows two different
patterns of variation in available bandwidth that have the
same average bandwidth. If BW,,.is reported once every
T, both patterns have the same average bandwidth whereas
reporting the bandwidth more frequently reveals differ-
ences among these patterns. Quality adaptive streaming
applications require details information about variations of
available bandwidth to adapt effectively. For example, pat-
tern S1 exhibits a wider variations in bandwidth, therefore
a layered quality adaptation mechanism (e.g., [8]) requires
more total buffered data at the client, and different buffer
distributions among active layers. Second, when reporting
only an average bandwidth from the CC module, the appli-
cation can modify packet departure schedule during each
period 7 in any arbitrary way (e.g., sending evenly-spaced
packets or burst of packets). Obviously, the longer the pe-
riod tau, the more freedom the application has to arbitrar-
ily change packet departure schedule and become bursty.
As we discuss in subsection 11-B, this is not a desirable
property and could easily lead to misbehaved flows.

The unpredictable and potentially wide variations in
congestion controlled bandwidth motivate the need for fre-

‘
| |
Bursty App. | !
TX Schedule > 1 u} oooo o :

Evenly-spaced App. |
0o o

TX Schedule —
CC signalsto APR t

tosend N packets

time

Fig. 3. per-interval bandwidth reporting

I I I | | |
I I I I | | |

Bursty App.

TXshewe = 1 O OO OO0
I | | I | I

Evenly-spaced App. ' ! ! ! ! ! !

TXschele — |+ 0,0 0 | 0,0 0O |

I
CC signalsto Apg- t
to send a packet

time

Fig. 4. Per-packet bandwidth reporting

quently reporting BWg,.to the application. Reporting
BW,,.once every RTT seems to be the lowest accept-
able frequency for adaptive applications since many CC
mechanisms do not increase their bandwidth faster than
once per RTT. Besides periodic reporting, the CC module
should still inform the application when BW,.suddenly
reduces due to a congestion. To provide detailed varia-
tions of available bandwidth to the application, the CC
module can signal the application on each departure time
i.e., reporting per-packet or instantaneous available band-
width as %Cfg)m. In this case, the CC module essen-
tially presents the ideal evenly-spaced transmission sched-
ule to the application by signaling the application on each
packet departure time. However, the application may (or
may not) strictly follow the reported transmission sched-
ule within shorter timescales Note that in both bandwidth
reporting schemes, the application has the freedom to ar-
bitrarily control packet departure schedule. However, in
the later case, the application 1) has more info about band-
width variations over short timescales, and 2) is able to fol-
low the ideal schedule if it is desired. Figure 3 and 4 illus-
trate application transmission schedules with a per-interval
and per-packet bandwidth reporting schemes respectively.
It clearly shows that per-packet bandwidth reporting pro-
vides more details, and thus better hints, for the application
to adjust its transmission rate over short timescales.

We believe that per-packet bandwidth reporting is the
most appropriate scheme for adaptive streaming applica-
tions because it provides fine-grained details about avail-
able bandwidth. The key question in per-packet bandwidth
reporting is how “closely” the application follows the re-
ported transmission schedule. We address this issues in the
next subsection.

|
Bursty App. |
TX Schedule 1

!
Evenly-spaced App. | ! !
oo g

TX Schedule —»
CC signalsto App t

to send a packet

O 0 !ooo o)
‘oo o

>
time

Fig. 5. Allowing bursty streams

B. Supporting Bursty Transmission Schedule

Streaming applications often tend to send bursty data
stream. Various factors could result in a bursty data stream.
For example, efficient encodings often generate bursty data
stream, or a non-realtime operating system could easily
fall behind a transmission schedule and sends a burst of
packets at once. Even when the application limits its av-
erage transmission rate to the reported bandwidth over
longer timescale, variation of application’s transmission
rate over shorter timescales could affect behavior of un-
derlying CC module. The burstier the transmission sched-
ule becomes, the more likely the resulting flow observes
different loss rate and RTT samples which in turns affects
the behavior of the underlying CC module. Therefore, it
is important to allow streaming applications to send bursts
of packets over shorter timescales as long as this bursti-
ness does not significantly affect observed behavior of the
underlying CC module.

When the CC module reports available bandwidth at a
per-packet granularity, it allows the application to prop-
erly match its transmission rate even at shorter timescales
while limiting its level of burstiness. Figure 5 illustrates
transmission schedule of a well-behaved applications that
uses per-packet available bandwidth reports but control its
level of burstiness to 3 packets. This figure clearly shows
how the application can micro-manage (mainly postpone)
departure time of individual packets to accommodate a po-
tential bursty transmission. In practice the CC module
should keep track of maximum burst size that the applica-
tion is allowed to send at any point of time. This would
simplify application design since it does not require to
maintain timing information for individual packets.

C. Up-call vs Probe Approach for Bandwidth Reporting

There are two ways to exchange bandwidth informa-
tion between application and CC module. Application can
probe the CC module to obtain available bandwidth, we
call this probe approach. This approach is similar to the
request/callback interface in the CM architecture [6]. The
application request the CC module for permission to send
a packet, then the CC module grant the permission, before
the application sends a packet.

Application)

BWaye T lBWapp T
(cc ; :
& lBthr ﬁ

B S
Q <

Fig. 6. The Confi guration for the CC modulein active mode

Alternatively, the CC module can pro-actively report
available bandwidth to the application. This is called up-
call approach. As we mentioned earlier, available band-
width can be exchanged at different granularities (e.qg., per-
interval or per-packet) in both approaches.

We believe that the up-call approach for bandwidth is
more appropriate for quality adaptive streaming applica-
tions than probe approach due to the following reason.
Since the application can probe the available bandwidth
at an arbitrary pattern, the reporting interval in probing ap-
proach is not known a priori. Thus it is hard for the CC
module to properly define average available bandwidth.

D. Passive vs Active CC

The CC module can passively monitor packet departure
and ACK arrivals to determine loss rate and RTT and re-
port available bandwidth as shown in Figure ??. Then the
application is expected to implement various functions 1)
to match its transmission with available bandwidth (over
different timescale), 2) to limit degree of burstiness, and
3) to frequently receive bandwidth information from the
CC module. This framework solely depends on the appli-
cation to correctly implement these functions. Therefore,
any application-level error in these functions could eas-
ily lead to a misbehaved flow. To avoid this problem, the
CC module can actively regulate transmission rate by de-
coupling application’s transmission schedule (i.e., BW 4y¢)
from actual transmission departure schedule (i.e., BWy,)
as shown in Figure6. When the application does not im-
plement the above functions properly, its transmission rate
(over a certain timescale) exceeds the available bandwidth
(BWgpe< BWgpp). This in turn triggers the CC mod-
ule to actively modify the transmission schedule to fit it
into the acceptable range of transmission schedules. How-
ever, the key point is that an adaptive application should
be aware of such a modification to behave properly, other-
wise any modification of application’s transmission sched-
ule will confuse the application and adversely affect adap-
tation mechanism.

The CC module has the following two alternative ways
to actively control application’s transmission rate:

1) Reshaping application’s transmission rate: The CC

module can buffer extra packets, inform the application
about the volume of buffered data and send the buffered
data with the rate equal to available bandwidth. This
approach essentially reshapes application’s transmission
schedule 1. Such server-side buffering scheme adds a ran-
dom component to the end-to-end delay that could not be
easily tolerated by quality adaptive streaming applications.
Note that the amount of buffering delay depends on the dif-
ference between application’s transmission rate and avail-
able bandwidth which could be high when the application
does not slowdown. Such a random delay could easily
cause an important packet to arrive after its playout time.
Obviously, the application can use the amount of buffered
data as a signal to adjust its transmission rate as suggested
by Jacobs et al. [9] (e.g., if the volume of buffered data
in the CC module is more than a threshold, then reduce its
transmission rate in a certain way). However, such adapta-
tion scheme only reacts to “smoothed” variations of band-
width, thus it is unable to perform quality adaptation ef-
fectively 2.

2) Clipping Application’s transmission rate: Alterna-
tively, the CC module can simply return an error (in re-
spond to application’s send request) whenever applica-
tion’s transmission rate exceeds available bandwidth with-
out buffering any packet. Acceptable bursts are sent
through the CC module without any reshaping. In essence,
the application can fully control transmission departure
schedule, and the CC module only performs a policing
function to ensure that application’s behavior (in terms of
rate, burstiness, etc) is within an acceptable range. This
approach works really well with the per-packet bandwidth
reporting scheme since the CC module passes the band-
width budget (i.e., number of packets that can be currently
sent) as a hint to the application.

E. Kernel-level vs Application-level CC

CC functionality can be implemented within the kernel
or at the application level. Kernel-level CC (e.g., conges-
tion manager [6]) has two benefits: 1) an in-kernel CC
module would be able to better meet a specific packet de-
parture time since it does not depend on proper invocation
by the application, and 2) an in-kernel CC module can eas-
ily interrupt the application to report available bandwidth.
Furthermore, an in-kernel CC module can easily operate
in active mode.

Placing the CC module in the kernel has its own draw-
backs: 1) the first issue is incremental deployment. A

'This is somewnhat similar to the way TCP socket works inside the
kernel.

2This is similar to reporting average bandwidth over long intervals
that ignores details of bandwidth variations as we discussed in sec ??.

kernel-level CC module should be available within the ker-
nel on both end-systems. 2) this would discourage re-
search and development on design of new CC modules
because adding new modules to a kernel requires special
privilege that an average user does not usually have. 3)
kernel-level CC modules may not be easily ported to other
operating systems.

In contrast, an application-level CC module could fall
behind a given packet departure schedule due to 1) lack of
sufficiently fine-grain timers by most operating systems, or
2) improper integration of the CC module into the appli-
cation. Furthermore, an application-level CC module can
work properly if the application properly and frequently
passes the control of execution to the CC module. This
requires that the CC functions would be included in the
main application event loop as we discuss in section I11-A.
Proper integration of the CC module into the application is
crucial not only to closely control packet departure sched-
ule but also to quickly read ACK packets and measure RTT
samples accurately. The CC module should quickly per-
form time-sensitive functions and return the control to the
application. An application-level CC module can be easily
ported to any operating systems and allows incremental
deployment. Both kernel and application-level CC mod-
ules could be used in active or passive mode.

F. Supporting Aggregate CC

A multimedia application may require to maintain sev-
eral sessions between two end points. For example, many
streaming applications require an audio sessions and a sep-
arate video session. Another example is a streaming appli-
cation that delivers layered encoded streams where each
layer is sent to a separate session®.

The CC module should be able to map all these related
sessions between two endpoints into a single CC flow and
perform CC over all these sessions collectively. In other
words, overall transmission rate of all these sessions are
regulated by the CC module[6]. The application can de-
termine what portion of the available bandwidth should be
allocated to each flow (i.e., perform quality adaptation).
The CC module should also allow the application to group
the sessions into separate CC flows based on their seman-
tics. For example, if an application supports two video
sessions, each video session could be delivered through a
separate CC flow.

G. Duplicating Functionalities

A CC module requires to derive path properties (mainly
RTT and loss rate, or individual packet losses) to deter-

3Each session is sent to a separate port

mine available bandwidth. Adaptive streaming applica-
tions also need this information and should implement re-
quired functions to work properly. For example, some en-
codings can gracefully tolerate up to certain loss rate but
higher loss rate significantly degrades observed quality. It
would be crucial for such streaming application to con-
tinuously monitor observed loss rate. In many encodings,
some frames have a bigger impact on quality (e.g., | frames
in MPEG, or frames of base layer in layered encoding) and
thus it is crucial to deliver these frames. Streaming appli-
cations should keep track of individual losses to ensure that
the important frame have been delivered.

To avoid duplicating these functionalities (i.e., RTT and
loss-rate measurement) in both CC module and the appli-
cation, the CC module should implement these functions
and provide a flexible interface to the application.

H. Role of Client Buffering

It is important to clarify that client buffering does not
compensate for inaccurate implementation of a CC mech-
anism or improper integration of a CC module into the ap-
plication. Our goal is to properly integrate CC into stream-
ing application such that the application has some free-
dom to change the packet departure time and possibly send
bursts, but these changes should not significantly modify
overall behavior of the CC mechanism so that the resulting
flow no longer behave in a network-friendly fashion (and
may receive less bandwidth share). Client buffering only
allows the application to cope with variations of available
bandwidth due to congestion control which is an orthogo-
nal issue.

I. Summary of Desired Features for CC module

Here we summarize our desired features for a CC mod-
ule from the above discussion:
« Available bandwidth should be reported at per-packet
granularity.
« Bursty transmission schedule should be accommodated.
« Up-call bandwidth reporting should be supported.
« The module should be able to operate in both active and
passive modes. However, active mode is preferred.
« Application-level implementation is preferred.
« A flexible interface for reporting link characteristics
should be provided.
o Aggregate CC should be supported with flexibility for
the application to group active sessions in any arbitrary
manner.
« The CC module should provide a flexible interface to be
easily integrated into an application.

In the following section, we present an application level
library that implements such an interface.

Application

C)
C CC Module j
C)
C

RTP
UDP)

Fig. 7. Location of CC modulein active mode

I11. cclib: AN APPLICATION-LEVEL CC LIBRARY

In this section, we describe cclib. cclib is an application-
level CC library that supports all the desired features listed
in section Il1-1. cclib can be used in both active and pas-
sive mode. However, throughout this paper we present its
operation in active mode since it is more comprehensive.
Figure? illustrates how cclib is layered on top of RTP[10]
and below the application. 4. We have prototyped cclib
as a C library and evaluated it on top of UCL RTP li-
brary [11]. Current version of cclib implements an AIMD-
based CC algorithm, but its interface as well as integration
methodology are rather generic and can be used with other
CC algorithms with minimal or no modification.

cclib allows congestion control on a per-flow basis, i.e.,
the library maintains state information for each active flow.
Table | shows some of the state information that are kept
for each flow. A flow consists of one or more RTP ses-
sions where each RTP session could be a separate layer of
a layered encoded stream, or a video (or audio) stream in
a multi-stream application between two hosts. To open a
new flow, the application calls cc_open(dst, ns, callback)
and specifies destination address (dst), number of sessions
(ns) and a callback function (callback()) among other
things. The cclib then opens ng RTP sessions and group
them into a single flow and returns a fid. These RTP ses-
sions are multiplexed into a single congestion controlled
flow (fid) and are directly managed by cclib.

The callback function is used by the cclib to notify the
application on a packet departure or an ACK arrival event.
Since cclib in an application level library, it is crucial to
properly integrate it into the application’s main event loop
so that the control of execution is frequently exchanged
between the application and the library. This allows the
cclib to function properly. More specifically, the library
can 1) examine transmission schedule of all active flows
to signal each flow on its next departure time and 2) read
any arrived ACK as soon as possible to accurately measure
RTT samples.

Figure 8 depicts interactions between the application
and the CC module for sending data packet and receiv-

“Note that for non realtime application, cclib can similarly operate
on top of UDP.

|
|
1

- -
— Appllpatlon =
: w :
= 1 cc_send(vz : 2%
< B
8 I (@]
= CC Module =
f 8
rtp_send()| 3 ! 1] rtcp read()5
— A 4 | v —
|

[RTP Lib. j

Fig. 8. Packet transmission and ACK arrival process

ing ACK packets. When the next packet departure time
for flow fid arrives, cclib invokes its callback function
to notify the application to send a packet to this flow.
The callback function should determine 1) content of
the next packet (pkt), and 2) the session that the packet
is sent to (sid), °> and then send the packet by calling
cc_send(fid, sid, pkt,..) interface of the CC module in
the active CC mode. This allows the application to multi-
plex contributing sessions of an active flow at a per-packet
granularity. When an ACK packet arrives, cclib reads
the ACK as soon as possible, measures RTT sample, per-
forms ACK-based loss detection, and then passes the ACK
packet to the application via the callback function because
the application may still use the ACK packet as its own
end-to-end feedback. For example, the receiver can report
its most recent playout time to allow the sender to deter-
mine amount of buffered data at the receiver. Furthermore,
the CC module passes the callback function to the RTP
library to notify the application when it parses an RTCP
message.

cclib provides access to main characteristics of each ac-
tive connection including: exponentially weighted mov-
ing average (EWMA) RTT, last RTT sample, loss rate,
and individual packet losses for different RTP ses-
sions. The application can obtain updated value for all
of these variable (except individual losses) by calling
cc_getopt(optname, &optval) where optname specifies
the information of interest and optwval is the return value
of the requested variable. Individual losses are maintained
and presented through a separate interface that is described
in section 111-C

A. Integration into Application

As we mentioned earlier, an application-level CC mod-
ule should be properly integrated into the application’s

5The callback function should in fact implement both quality adapta-
tion and adaptive loss repair functions

State Parameter Definition

cc_seqno a unique segno per flow
last_depart_t departure time of last pkt
ipg current inter packet gap
lossrate loss rate

ewma_rtt EWMARTT

last sample RTT

sample_rtt

app_callback ptr to app. callback func.

NoLayer No of rtp_session

lossg[MAXLAYER] lost packet per session

rtp_session[MAXLAYER] | pointer to RTP sessions

TABLE |
PER-FLOW STATE INFORMATION BY cclib

main event loop. The event loop for most networking ap-
plications is formed around a select() call. cc_lib provides
two simple and intuitive functions to be called before and
after the select call in the main event loop as follows:

/[* event |oop */
VWHI LE(Endof Sessi on ==
FOR(al | active fids)
cc_select _info(fid, &muaxfd, &rfds,

& imeout,..);

FALSE) {

SELECT(rmaxfd, rfds, wfds, tinmeout);
FOR(all active fids)
cc_sel ect _handl e(now, fid,
rfds,..);

}

The application should call cc_select_info() for each
flow prior to select. This function updates all the select in-
put parameters to include all the rtp session (i.e., sockets)
that are associated to a flow and managed by cclib. fdset
bitmap is updated for all file descriptors of active sessions
and max f ds is updated only if one of the new file descrip-
tors has a higher value than current fdset value. If the time
interval between the next departure time (next_deprt_t)
and current time (now) is less than the current timeout
value, timeout is reduced accordingly, more specifically

| F(next _depart_t - now < timeout)
ti meout = next _depart _t - now

cc_select_handle() examines state of an active flow af-
ter select. If nextzepart,; for a flow has arrived, that flow
is notified through its registered callback function to send
a packet. If an ACK has arrived for a flow, cclib uses the

ACK to measure a sample RTT and perform loss detec-
tion, then the ACK is passed to the application through the
callback function as shown in Figure 8.

B. Supporting Bursty Streams

As we argued in the previous section, it is important
that a CC module allows bursty flows while limits their
burstiness below the acceptable degree. In other words, an
application should be able to micro-manage its transmis-
sion schedule as long as its transmission schedule does not
significantly diverge from per-packet available bandwidth
(i.e., CC’s transmission schedule). Thus, the CC module
should implement a policing mechanism that detects any
unacceptable change in per-packet available bandwidth,
and prevents it.

To devise such a policing mechanism, cclzb should limit
the following two basic change in packet transmission
schedule: 1) maximum burst size (M AX BURST), 2)
maximum delay in sending a packet i.e., maximum shift of
schedule in time (7). MAXBURST simply limits num-
ber of back-to-back packets that can be sent by the appli-
cations whereas tau determines how long the application
can postpone transmission of a packet. To implement such
a mechanism, cclib uses a sliding window of length tau to
implement such a mechanism. Furthermore, cclib main-
tains a variable mbs which keeps track of maximum burst
size that the application can send at any point of time. mbs
is increased by one before the callback function notifies the
application to send a packet, and decreased by one after
the application sends a packet via cc_send(). To reduce
the book-keeping overhead for the application, the recent
value of mbs (i.e., current bandwidth budget) is reported
to the application in the callback function for transmission.
Reporting the bandwidth budget allows the application to
effectively match its transmission schedule with available
bandwidth over short timescale. Furthermore, the applica-
tion can probe cclib to obtain the updated value of msb.

Clearly, if the application does not send a packet when
it is notified, msb could increase up to the M AX BURST
limit. However, to ensure that the application does not shift
the per-packet available bandwidth (i.e., ideal transmission
schedule), a credit for sending a packet is expired after pe-
riod 7, i.e., msb is decreased by one if the application does
not send any packet within period 7. This is somewhat
similar to the idea of aging TCP congestion window when
no feedback is received from the channel for a certain pe-
riod.

Figure 9 illustrates how mbs is updated by these two
mechanisms in parallel. Besides simple decrease of
mbs before each packet transmission in cc_send(), the
following pseudo code illustrates main modifications in

cc_select_handle() to implement the above sliding win-
dow mechanism:

CC_SELECT_HANDLE(now, ...){
<...>
/* check for expired pkt tx */
| F(fst _depart t < now- T)
nbs- -;
fst _depart_t +=ipg;

[* update nbs */
| F(++nbs > MAXBURST)
nmbs = MAXBURST
cal | back(SEND, nbs, ...)

Both 7 and M AX BURST are configuration param-
eters that both limit max burst size in different ways.
MAXBURST limits the absolute value of the burst size
whereas 7 limits the interval over which these mbs can be
accumulated. Depending on source transmission rate one
of these two parameters would be a limiting factor. For ex-
ample, in high transmission rate, M AX BURST is more
likely to be a limiting factor while in low transmission rates
7 could limit the level of freedom for the application to
control packet departure. Therefore, for proper operation
of the sliding window scheme, it is essential to set these
parameters appropriately. In the current implementation
of cclib, 7 is set to smoothed RTT (i.e., EWMA RTT) and
MAXBURST issetto 3.

We are currently conducting more investigations to un-
derstand how these parameters adversely affect the behav-
ior of different congestion control algorithms to the point
where a CC algorithm is no longer behave in a network-
friendly fashion. We should add that the sensitivity of
various congestion control algorithms to these parameters

T: Length of Sliding Window

. T R
L T "
| T
Evolution of mbs 1 2 3 3 433]I'g 3
Per-Packet _ 1 1 1 1 t 1{”“9
Upcallsfrom
cclib

Fig. 9. Controlling burstiness and shift of transmission schedule
by application

could be different. Our goal in this paper is not to find
proper values for these configuration parameters. Instead,
we present a mechanism that allows the CC module to reg-
ulate application’s transmission schedule for given config-
uration parameters.

Note that a misconfigured cclzb could lead to a misbe-
have flow which is the original problem that we are trying
to avoid. There are two points to notice. First, the dam-
age that is caused by a bad CC implementation or buggy
application that does not integrate a passive CC module
properly, is worse than a carefully designed but misconfig-
ured cclib. Second, as we learn more about the impact of
these configuration parameters, we reduce the side effects
of misconfiguration.

C. Support for Loss Repair

To avoid duplicating the same functionalities by both
applications and the CC module, cclib keeps track
of various path variables including EWMA RTT, loss
rate, individual packet losses. The application an use
cc_getopt(optname, &optval) to query these value ex-
cept for individual loss packets. Keeping track of indi-
vidual losses are specially important for those streaming
application that perform retransmission-based loss repair.
cclib deploys both a timer-based and an ack-based loss de-
tection mechanisms in parallel to detect individual losses.
cclib also adds some redundancy to the ACK stream to
cope with some degree of packet reordering[5]. Detected
losses for each RTP session of an active flow are kept in a
separated link-list (called lossq(i)) where they are sorted
by their RTP timestamp.

The application can call cc_get_lossq(fid, sid, &pkt)
to get a pointer to the first lost packet for RTP session num-
ber sid. The application can later remove this lost packet
from the cclib list by calling cc_rm_lossq(fid, sid, pkt)
when the packet is no longer considered for repair. (i.e.,
the packet is not sufficiently important to retransmit or it
is too late to retransmit the packet). cclib also controls the
length of lossq(i) in cases where a buggy application does
not effectively free up old loss packets. Clearly, this is not
the only way that a loss queue can be implemented.

D. Practical Considerations

An operational CC library should be able to cope with
a couple of practical limitations. One key issue on most
existing operating systems is a lack of fine-grained timers.
The best timer granularity in many existing operating sys-
tems is around 10ms. Thus, a naive implementation of
cclib can delay a packet departure by as much as 10ms
just due to bad scheduling. A similar problem might occur

when a system is heavily loaded or the application spends
a relatively long time for its book-keeping activities.

cclib incorporates two simple mechanisms to minimize
the negative impact of coarse timers or ill-behaved (or
busy) application on packet scheduling. First, cclib per-
forms loose scheduling by assigning a departure window
instead of a departure time to each packet. Packet n is
assigned an ideal departure time (¢5,4(n), but it could be
sent any time during the window ¢ < t4,4(n) - §*ipg(t)
where 0 < delta leq 1. This means that a packet can be
sent up to one ipg earlier than its ideal departure time.
Second, arrival of an ACK packet provides an opportu-
nity for the application to pass the control to cclib (by call-
ing cc_select_handle()) which in turns allows the library
to follow packet departure schedule more closely. Thus a
server with a few active flows (to different end points), is
“clocked” sufficiently by the incoming ACKSs so that any
packet departure deadline can be closely met. A combina-
tion of loose scheduling and ack-clocking © significantly
limit the negative impact of coarse timers on accuracy of
packet scheduling by cclib.

IV. RELATED WORK

The benefits of implementing CC for streaming appli-
cations have been discussed in [12], [13] where the main
motivation for performing CC was to improve quality of
delivered stream rather than achieving inter-protocol fair-
ness and network stability. The importance of integrating
CC into streaming applications was illustrated by Floyd et
al. in [1]. During the past few years, design and evalu-
ation of new CC mechanisms for streaming applications
has been an active area of research (e.g., [5], [2], [3].
[4]). These new CC mechanisms were carefully designed
and extensively evaluated to achieve inter-protocol fairness
(i.e., tcp-friendliness) under various network conditions.
However, in design and evaluations (often with simulation)
of these new CC mechanisms, it is implicitly assumed that
these CC mechanism can fully control and achieve ideal
packet departure schedule,i.e., packets are evenly spaced
and sent once every inter-packet-gap. Therefore, the fol-
lowing practical are not often addressed: “how available
bandwidth should be reported to applications?, and “how
is the behavior of a congestion controlled flow affected
when the application changes packet departure time?”

Jacobs et al. [9] uses a window-based CC scheme sim-
ilar to TCP to regulate transmission rate. Rejaie et al.
[8] presents a quality adaptation mechanism for layered
encoded stream over Rate Adaptation Protocol [5]. This

SHere by ack-clocking, we refer to the fact that the application is

clocked by any ACK arrival. This does not necessarily mean that a
packet is sent upon each ack arrival similar to TCP ack-clocking

10

work is extended to Binomial congestion control by Feam-
ster et al. [14]. In these schemes the CC machinery is
implemented within the application. Therefore, there is
not separate modular CC mechanism that can be reused in
other applications.

There have been several application-specific solutions
that added CC into streaming applications (e.g., [9], [8],
[14], [15], [16], [17]. Tan et al. [16] uses TCP equa-
tion [18] to estimate TCP-equivalent available bandwidth.
Their work is probably the first attempt to use TCP-
equation for rate control in streaming applications. [17]
uses TCP-equation to sample available bandwidth and
further smooth out sample bandwidth estimates from the
equation. Clearly, applying such a sampling and smooth-
ing functions on estimated bandwidth could significantly
affect behavior of an equation-based CC mechanism and
could result in a non-TCP-friendly CC mechanism. The
above two solutions only examine overall performance
(i.e., quality) of their congestion controlled streaming ap-
plications and does not evaluate fairness of their proposed
CC mechanism at all. Merely using TCP-equation to es-
timate bandwidth does not necessarily imply that applica-
tion’s behavior would be network friendly. As discussed
by Floyd et al. in [3], to engineer an equation-based CC
mechanism, several important design issues (e.g., proper
calculation of loss event rate) must be properly addressed.
But even a carefully-engineered CC mechanism like TFRC
could exhibit some undesirable behavior in certain cir-
cumstances[19]. Work in [20] and [21] proposed new
CC mechanisms for streaming applications without suf-
ficiently evaluating performance of their proposed CC
schemes.

Several solutions have shown how carefully integrated
CC mechanism into streaming applications (e.g., [9], [8],
[14]); Jacobs et al. [9] uses a window-based CC scheme
similar to TCP to regulate transmission rate. Rejaie et al.
[8] presents a quality adaptation mechanism for layered
encoded stream over Rate Adaptation Protocol [5]. This
work is extended to Binomial congestion control by Feam-
ster et al. [14]. In these solutions, the CC machinery is im-
plemented within the application. Therefore, there is not
a separate modular CC mechanism that can be reused in
other applications.

Researchers who study encoding scheme for streaming
over the Internet (e.g., [22] and [23]) often model an Inter-
net connection as fix-bandwidth channel with a known loss
distribution. Then, they formulate the problem as an opti-
mization problem to minimize distortion. These studies
nicely relate channel characteristics with delivered quality,
however, the dynamics of congestion control which is ad-
mittedly hard to model, is not incorporated in these studies.

There has also been efforts at IETF to present a new
end-to-end protocols to encourage streaming applications
to deploy congestion control. Streaming Control Trans-
mission Protocol (SCTP) [24] is a transport protocol suited
for PSTN signaling across the IP network. SCTP deploys a
window-based congestion control scheme and implements
error control mechanism among other things. Datagram
Congestion Control Protocol (DCCP) [25] is a hew proto-
col to the family of TCP, UDP, SCTP. DCCP implements
a congestion-controlled, unreliable flow of datagrams for
streaming applications but it allows applications choose
among several forms of CC. As of the current version,
DCCEP still neither presents any API for application nor
discusses its relationship with RTP.

The most relevant previous work to our work is the
Congestion Manager (CM) by Balakrishnan et al. [6].
CM is an operating system module with a convenient pro-
gramming interface that implements CC functionality[7].
CM allows multiple concurrent streams between two end-
points to share a congestion controlled connection. The
current version of CM can be used with those applications
that implement their own end-to-end feedback to deter-
mine packet loss. However, many of today’s streaming
applications either do not implement any CC mechanism
at all or at least do not implement it properly. According
to our simple taxonomy, CM is a passive Kernel-level CC
module that

CM presents two interfaces for streaming applications.
The rate-control interface is intended for layer encoded
stream where the application specifies a minimum band-
width changes for which it should be notified by the CM.
The assumption is that the source can only send at dis-
crete rate depending on number of layers. However, qual-
ity adaptive application can send at any rate and use extra
bandwidth to send more important layers faster (e.g., [8]).
For example, when the available is equal to 2.7 layer band-
width, although the available bandwidth is never sufficient
for delivery of three layers, but the server can still deliver
he third layer 70% of the time.

The second interface is request/callback interface for
adaptive applications. In this interface the application
first requests from CM for permission to send a packet,
then CM calls back the application to send a packet. Fi-
nally, the application informs CM that a packet was sent.
There seems to be two problems with this probe interface.
First, the CC module requires to send sufficient number of
packets in order to probe the channel for excess capacity.
Therefore, if the application does not aggressively request
for packet transmission, it may not receive its fair share of
bandwidth. Second, such an aggressive adaptive applica-
tion should continuously request for packet transmission

11

in a busy-waiting-like manner to probe the connection for
excess capacity. As we argued in section 11-C, up-call in-
terface or CC module would eliminate this problem. To
the best of our knowledge, no other work has addressed is-
sues and challenges for integration of CC mechanism into
streaming applications.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated how a CC mechanism
should be effectively integrated into adaptive streaming
applications. We addressed challenges for such integra-
tion and argued that CC module should be designed and
evaluated independent of applications, and therefore it
should provide a well-defined and flexible interface to fa-
cilitate the integration process. Then, we explored de-
sign space for defining such an interface and presented a
set of preferred features. Finally, we described a proto-
typed application-level CC library that implements a well-
defined and flexible interface, and supports all the pre-
ferred features.

We plan to continue this work in a couple of directions.
First, we plan to examine the effect of bursty transmis-
sion schedule and shift in transmission schedule on ob-
served channel behavior. Our findings allows us to select
better configuration parameters for our propose CC inter-
face. Second, we need to evaluate performance of cclib
to ensure that various proposed mechanisms can perform
effectively under various adaptive streaming applications.

REFERENCES

[1] S. Floyd and K. Fall, “Promoting the use of end-to-end conges-
tion control in the internet,” ACM/I EEE Transactions on Networ k-
ing, 1999, http://www-nrg.ee.lbl.gov/floyd/papers.html/end2end-
paper.html.

[2] D. Bansal and H. Balakrishnan, “Binomial congestion control
algorithms,” in Proceedings of the IEEE INFOCOM, 2001.

[3]1 S.Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicaqt applications,” in Proceedings of the
ACM SSGCOMM, 2000.

[4] 1. Rhee, V. Ozdemir, and Y. Yim, “Tear: Tcp-
emulation at receivers-flow control for multime-
dia streaming,” in Technical Report NCSU, 2000,

http://www.csc.ncsu.edu/faculty/rhee/export/tear-page.

[5] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end rate-
based congestion control mechanism for realtime streams in the
internet,” in Proc. |EEE Infocom, New York, NY., Mar. 1999.

[6] Hari Balakrishnan, Hariharan Rahul, and Srinivasan Seshan,
“An integrated congestion management architecture for internet
hosts,” in Proceedings of the ACM SGCOMM, Cambridge, MA.,
Sept. 1999.

[7] Deepak Bansal David Anderson, Srinivasan Seshan Dorothy Cur-
tis, and Hari Balakrishnan, “Systems support for bandwidth man-
agement and content adaptation in the internet,” in OSDI, San
Diego, CA, Oct. 2000.

[8] R. Rejaie, M. Handley, and D. Estrin, “Quality adaptation for

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

congestion controlled playback video over the internet,” in Pro-
ceedings of the ACM S GCOMM, Cambridge, MA., Sept. 1999.
S. Jacobs and A. Eleftheriadis, “Real-time dynamic rate shaping
and control for internet video applications,” Workshop on Multi-
media Sgnal Processing, Invited Paper, pp. 23-25, June 1997.
H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP:
A transport protocol for realtime applications,” in Internet Engi-
neering Task Force, Audio-Video Transport Working group, Jan.
1996, RFC 1889.

“Ucl common library,” .

J. Bolot and T. Turletti, “A rate control mechanism for packet
video in the internet,” in IEEE INFOCOM, June 1994, pp. 1216—
1223.

T. Turletti and C. Huitema, “Video conferencing in the internet,”
in ACM/IEEE Transactions on Networking, June 1996, pp. 340—
351.

N. Feamster, D. Bansel, and Hari Balakrishnan, ,” in Packet Video
Wbrkshop, 2001.

K. Ross P. de Cuetos, “Adaptive rate control for streaming stored
fine-grained scalable video,” in Werkshop on Network and Op-
erating System Support for Digital Audio and Video, Miami,
Florida, May 2002.

W. Tan and A. Zakhor, “Real-time internet video using error-
resilient scalable compression and tcp-friendly transport proto-
col,” in IEEE Transactions on Multimedia, June 1999, pp. 172—
186.

F. Licandro and G. Schembra, “Rate/quality controlled mpeg
video transmission system in a tcp-friendly internet scenario,”
in Packet Video Workshop, Pittsburgh, PA, Apr. 2002.

J. Mahdavi and S. Floyd, “TCP-friendly unicast rate-based
flow control,” Technical note sent to the end2end-interest mail-
ing list, Jan. 1997, http://www.psc.edu/networking/papers/tcp-
friendly.html.

D. Bansal, H. Balakrishnan, S. Floyd, and Scott Shenker, “Dy-
namic behavior of slowly-responsive congestion control algo-
rithms,” in Proceedings of the ACM SGCOMM, 2001.

K-W Leg, R. Puri, T. Kim, K. Ramchandran, and V. Bharghavan,
“An integrated source coding and congestion control framework
for video streaming in the internet,” in |IEEE INFOCOM, Tel-
Aviv, Isreal, Mar. 2000.

E. Jammeh, M. Paredes-Farrera, and M. Ghanbari, “Transport-
ing real time video over the internet using end-to-end feedback
control,” in Packet Video Workshop, Pittsburgh, PA, Apr. 2002.

P. A. Chou and Z. Miao, “Rate-distortion optimized streaming
over best-effort networks,” in Submitted tol EEE Transactions on
Multimedia, 2001.

Z. Miao and A. Ortega, “Optimal scheduling for streaming of
scalable media,” in Asilomar Conference, Pacific Grove, CA,
Nov. 2000.

R. Stewart et al., “Stream control transmission protocol,” in
RFC2960, 2000, http://www.ietf.org/rfc/rfc2960.txt.

E. Kohler, M. Handley, S. Floyd, and J. Padhye, “Datagram
congestion control protocol (dccp),” in Internet Draft (draft-ietf-
dccp-specs-00, 2002, http://www.icir.org/kohler/dcp.

12

