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ABSTRACT

This paper addresses the difficult problem of selecting repre-
sentative samples of peer properties (e.g., degree, link band-
width, number of files shared) in unstructured peer-to-peer
systems. Due to the large size and dynamic nature of these
systems, measuring the quantities of interest on every peer is
often prohibitively expensive, while sampling provides a nat-
ural means for estimating system-wide behavior efficiently.
However, commonly-used sampling techniques for measur-
ing peer-to-peer systems tend to introduce considerable bias
for two reasons. First, the dynamic nature of peers can bias
results towards short-lived peers, much as naively sampling
flows in a router can lead to bias towards short-lived flows.
Second, the heterogeneous nature of the overlay topology
can lead to bias towards high-degree peers.

We present a detailed examination of the ways that the
behavior of peer-to-peer systems can introduce bias and
suggest the Metropolized Random Walk with Backtracking
(MRWB) as a viable and promising technique for collecting
nearly unbiased samples. We conduct an extensive simu-
lation study to demonstrate that the proposed technique
works well for a wide variety of common peer-to-peer net-
work conditions. Using the Gnutella network, we empiri-
cally show that our implementation of the MRWB technique
yields more accurate samples than relying on commonly-
used sampling techniques. Furthermore, we provide insights
into the causes of the observed differences. The tool we have
developed, ion-sampler, selects peer addresses uniformly at
random using the MRWB technique. These addresses may
then be used as input to another measurement tool to collect
data on a particular property.
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1 Introduction

The popularity and wide-spread use of peer-to-peer systems
has motivated numerous empirical studies aimed at provid-
ing a better understanding of the temporal and topological
properties of deployed peer-to-peer systems. However, due
to the large scale and highly dynamic nature of many of
these systems, directly measuring their global behavior is
extremely challenging. Sampling is a natural approach for
learning about these systems using light-weight data collec-
tion.

A basic objective is to devise an unbiased sampling method,
i.e., one which selects any of the present peers with equal
probability. Fulfilling this objective becomes highly non-
trivial when the structure of the peer-to-peer system changes
underneath the measurements. First-generation measure-
ment studies of P2P systems typically relied on ad-hoc sam-
pling techniques (e.g., [4, 33]) and provided valuable infor-
mation concerning basic system behavior. However, lacking
any critical assessment of the quality of these sampling tech-
niques, the measurements resulting from these studies may
be biased and consequently our understanding of P2P sys-
tems may be based on incorrect or misleading conclusions.

In this paper we primarily consider the challenging prob-
lem of obtaining unbiased samples from unstructured P2P
systems, where peers select neighbors through a predomi-
nantly random process. Most popular P2P systems in use
today belong to this unstructured category. For structured
P2P systems such as Chord [35] and CAN [30], knowledge
of the structure significantly facilitates unbiased sampling
as we discuss in Section 7.

The main contributions of this paper are (i) a detailed
examination of the ways that the topological and temporal
qualities of peer-to-peer systems can introduce bias and (ii)
an in-depth exploration of the applicability of a sampling
technique called the Metropolized Random Walk with Back-
tracking (MRWB), representing a variation of the Metropolis–
Hastings method [8,14,28]. Our study indicates that MRWB
results in nearly unbiased samples under a wide variety of
commonly encountered peer-to-peer network conditions. The
technique assumes that the P2P system provides some mech-
anism to query a peer for a list of its neighbors: a capability
provided by most widely deployed P2P systems. We also



implemented the proposed sampling technique into a tool
called ion-sampler. Our evaluations show that MRWB
yields more accurate samples than previously considered
sampling techniques. We quantify the observed differences,
explore underlying causes, and discuss the implications on
accurate inference of P2P properties and high-fidelity mod-
eling of P2P systems. While our focus is on P2P networks,
many of our results apply to any large, dynamic, undirected
graph where nodes may be queried for a list of their neigh-
bors.

Building on our earlier formulation in [40], the basic prob-
lem in sampling P2P networks concerns the selection of rep-
resentative samples of peer properties such as peer degree,
link bandwidth, or the number of files shared. To measure
peer properties, any sampling technique needs to locate a
set of peers in the overlay and then gather data about the
desired properties.

An unbiased sampling technique will select any of the
peers present with equal probability. While relatively straight-
forward in a static and known environment, this objective
poses considerable problems in a highly dynamic setting
like P2P systems, which can easily lead to significant mea-
surement bias for two reasons. The first cause of sampling
bias derives from the temporal dynamics of these systems,
whereby new peers can arrive and existing peers can depart
at any time. Locating a set of peers and measuring their
properties takes time, and during that time the peer con-
stituency is likely to change. In Section 3, we show how this
often leads to bias towards short-lived peers and explain how
to overcome this difficulty. The second significant cause of
bias has to do with the connectivity structure of P2P sys-
tems. As a sampling program explores a given topologi-
cal structure, each traversed link is in general more likely
to lead to a high-degree peer than a low-degree peer, sig-
nificantly biasing peer selection towards high-degree peers.
We describe and evaluate different techniques for traversing
static overlays to select peers in Section 4 and find that the
Metropolized Random Walk (MRW) collects unbiased sam-
ples. In Section 5, we adapt MRW for dynamic overlays by
adding backtracking and demonstrate its viability and effec-
tiveness when the causes for both temporal and topological
bias are present. We show via simulations that the MRWB
technique works well and produces nearly unbiased samples
under a variety of circumstances commonly encountered in
actual P2P systems.

Finally, in Section 6 we describe the implementation of the
ion-sampler tool based on MRWB and empirically evaluate
its accuracy through comparison with complete snapshots
of Gnutella taken with Cruiser [37], as well as compare it
with results from previously used, more ad-hoc, sampling
techniques. Section 7 discusses some important questions
such as how many samples to collect, when sampling with a
known bias may be desirable, and outlines a practical solu-
tion to obtaining unbiased samples for structured P2P sys-
tems. Section 8 concludes the paper with a summary of our
findings and plans for future work.

2 Related Work

The phrase “graph sampling” means different things in dif-
ferent contexts. We provide an overview of some of the
different meanings of graph sampling to place our work in
the context of other research on sampling graphs. Sampling
from a class of graphs has been well studied in the graph the-

ory literature [5, 17], where the main objective is to prove
that for a class of graphs sharing some property (e.g., same
node degree distribution), a given random algorithm is ca-
pable of generating all graphs in the class. Cooper et al. [9]
used this approach to show that their algorithm for overlay
construction generates graphs with good properties. Our
objective is quite different; instead of sampling a graph from
a class of graphs our concern is sampling peers (i.e., vertices)
from a largely unknown and dynamically changing graph.

Others have used sampling to extract information about
graphs (e.g., selecting representative subgraphs from a large,
intractable graph) while maintaining properties of the origi-
nal structure [19,20,36]. Sampling is also frequently used as
a component of efficient, randomized algorithms [42]. How-
ever, these studies assume complete knowledge of the graphs
in question. Our problem is quite different in that we do not
know the graphs in advance.

A closely related problem to ours is sampling Internet
routers by running traceroute from a few hosts to many
destinations for the purpose of discovering the Internet’s
router-level topology. Using simulation [21] and analysis [1],
research has shown that traceroute measurements can result
in measurement bias in the sense that the obtained samples
support the inference of power law-type degree distributions
irrespective of the true nature of the underlying degree dis-
tribution. A common feature of our work and the study
of the traceroute technique [1, 21] is that both efforts re-
quire an evaluation of sampling techniques without complete
knowledge of the true nature of the underlying connectiv-
ity structure. However, exploring the router topology and
P2P topologies differ in their basic operations for graph-
exploration. In the case of traceroute, the basic operation is
“What is the path to this destination?”. In P2P, the basic
operation is “What are the neighbors of this peer?”. In addi-
tion, the Internet’s router-level topology changes at a much
slower rate than the overlay topology of P2P networks.

Another closely related problem is selecting Web pages
uniformly at random from the set of all Web pages [3,15,32].
Web pages naturally form a graph, with hyper-links form-
ing edges between pages. Unlike peer-to-peer networks, the
Web graph is directed and only outgoing links are easily dis-
covered. Much of the work on sampling Web pages there-
fore focuses on estimating the number of incoming links,
to facilitate degree correction. Unlike peers in peer-to-peer
systems, not much is known about the temporal stability
of Web pages, and temporal causes of sampling bias have
received little attention in past measurement studies of the
Web.

Several properties of random walks on graphs have been
extensively studied analytically [26], such as the access time,
cover time, and mixing time. While these properties have
many useful applications, they are only well-defined for static
graphs. To our knowledge the application of random walks
as a method of selecting nodes uniformly at random from a
dynamically changing graph has not been studied.

A number of papers [7,11,27,43] have made use of random
walks as a basis for searching unstructured P2P networks.
However, searching simply requires locating a certain piece
of data anywhere along the walk, and is not particularly
concerned if some nodes are preferred over others. Some
studies [11, 43] additionally use random walks as a compo-
nent of their overlay-construction algorithm.

Recent work by Leskovec et al. [23] discusses the evo-



lution of graphs over time and focuses on empirically ob-
served properties such as densification (i.e., networks be-
come denser over time) and shrinking diameter (i.e., as net-
works grow, their diameter decreases) and on new graph
generators that account for these properties. However, the
changes they observe occur on the time-scale of years, while
we are concerned with short time-scale events (e.g., min-
utes). Additionally, the graphs they examine are not P2P
networks and their properties are by and large inconsistent
with the design and usage of actual P2P networks. Hence,
the graph models proposed in [23] are not appropriate for
our purpose.

Awan et al. [2] also address the problem of gathering
uniform samples from peer-to-peer networks. They exam-
ine several techniques, including the Metropolis–Hastings
method, but only evaluate the techniques over static power-
law graphs. Their formulation of the Metropolis–Hastings
method, as well as the Random Weight Distribution method
which they advocate, require special underlying support from
the peer-to-peer application. We implement Metropolis–
Hastings in such a way that it relies only on being able
to discover a peer’s neighbors, a simple primitive operation
commonly found in existing peer-to-peer networks, and in-
troduce backtracking to cope with departed peers. We also
conduct a much more extensive evaluation of the proposed
MRWB method. In particular, we generalize our formula-
tion reported in [40] by evaluating MRWB over dynamically
changing graphs with a variety of topological properties. We
also perform empirical validations over an actual P2P net-
work.

3 Sampling with Dynamics

We develop a formal and general model of a P2P system
as follows. If we take an instantaneous snapshot of the sys-
tem at time t, we can view the overlay as a graph G(V, E)
with the peers as vertices and connections between the peers
as edges. Extending this notion, we incorporate the dy-
namic aspect by viewing the system as an infinite set of
time-indexed graphs, Gt = G(Vt, Et). The most common
approach for sampling from this set of graphs is to define
a measurement window, [t0, t0 + ∆], and select peers uni-

formly at random from the set: Vt0,t0+∆ =
St0+∆

t=t0
Vt. Thus,

we do not distinguish between occurrences of the same peer
at different times.

This formulation is appropriate if peer session lengths
are exponentially distributed (i.e., memoryless). However,
existing measurement studies [16, 29, 33, 39] show session
lengths are heavily skewed, with many peers being present
for just a short time (a few minutes) while other peers re-
main in the system for a very long time (i.e., longer than ∆).
As a consequence, as ∆ increases, the set Vt0,t0+∆ includes
an increasingly large fraction of short-lived peers.

A simple example may be illustrative. Suppose we wish to
observe the number of files shared by peers. In this example
system, half the peers are up all the time and have many
files, while the other peers remain for around 1 minute and
are immediately replaced by new short-lived peers who have
few files. The technique used by most studies would observe
the system for a long time (∆) and incorrectly conclude
that most of the peers in the system have very few files.
Moreover, their results will depend on how long they observe
the system. The longer the measurement window, the larger
the fraction of observed peers with few files.

One fundamental problem of this approach is that it fo-
cuses on sampling peers instead of peer properties. It selects
each sampled vertex at most once. However, the property
at the vertex may change with time. Our goal should not
be to select a vertex vi ∈

St0+∆
t=t0

Vt, but rather to sample
the property at vi at a particular instant t. Thus, we dis-
tinguish between occurrences of the same peer at different
times: samples vi,t and vi,t′ gathered at distinct times t 6= t′

are viewed as distinct, even when they come from the same
peer. The key difference is that it must be possible to sam-
ple from the same peer more than once, at different points
in time. Using the formulation vi,t ∈ Vt, t ∈ [t0, t0 + ∆],
the sampling technique will not be biased by the dynamics
of peer behavior, because the sample set is decoupled from
peer session lengths. To our knowledge, no prior P2P mea-
surement studies relying on sampling make this distinction.

Returning to our simple example, our approach will cor-
rectly select long-lived peers half the time and short-lived
peers half the time. When the samples are examined, they
will show that half of the peers in the system at any given
moment have many files while half of the peers have few
files, which is exactly correct.

Another problem is that using a large ∆ captures the av-
erage behavior of the system, which may not reflect the true
state of the system at any particular moment. In particu-
lar, it precludes study of how the system as a whole evolves,
such as due to the time-of-day effect or a flash crowd. A bet-
ter approach would be to gather several series of measure-
ments, each over some short ∆, then compare them. If ∆ is
sufficiently small, such that the distribution of the property
under consideration does not change significantly during the
measurement window, then we may relax the constraint of
choosing t uniformly at random from [t0, t0 + ∆].

We still have the significant problem of selecting a peer
uniformly at random from those present at a particular time.
We begin to address this problem in the next section.

4 Sampling from Static Graphs

We now turn our attention to topological causes of bias. To-
wards this end, we momentarily set aside the temporal is-
sues by assuming a static, unchanging graph. The selection
process begins with knowledge of one peer (vertex) and pro-
gressively queries peers for a list of neighbors. The goal is to
select peers uniformly at random. In any graph-exploration
problem, we have a set of visited peers (vertices) and a front
of unexplored neighboring peers. There are two ways in
which algorithms differ: (i) how to chose the next peer to
explore, and (ii) which subset of the explored peers to select
as samples. Prior studies use simple breadth-first or depth-
first approaches to explore the graph and select all explored
peers. These approaches suffer from several problems:

• The discovered peers are correlated by their neighbor
relationship.

• Peers with higher degree are more likely to be selected.

• Because they never visit the same peer twice, they
will introduce bias when used in a dynamic setting as
described in Section 3.

Random Walks: A better candidate solution is the ran-
dom walk, which has been extensively studied in the graph
theory literature (for an excellent survey see [26]). We briefly
summarize the key terminology and results relevant to sam-
pling. The transition matrix P (x, y) describes the probabil-



Erdös–Rényi Gnutella Watts–Strogatz Barabási–Albert
Breadth-First Search 4.54 · 10−4 2.73 · 10−3 4.73−3 2.77 · 10−3

Random Walk 3.18 · 10−4 1.57 · 10−3 7.64−5 2.84 · 10−3

Metropolis–Hastings 5.97 · 10−5 5.79 · 10−5 6.08−5 5.22 · 10−5

Table 1: Kolmogorov-Smirnov test statistic for techniques over static graphs. Values above1.07 · 10−4 lie in the rejection region at the 5% level.

ity of transitioning to peer y if the walk is currently at peer
x:

P (x, y) =


1

degree(x)
y is a neighbor of x,

0 otherwise

If the vector v describes the probability of currently being
at each peer, then the vector v′ = vP describes the probabil-
ity after taking one additional step. Likewise, vP r describes
the probability after taking r steps. As long as the graph is
connected and not bipartite, the probability of being at any
particular node, x, converges to a stationary distribution:

π(x) = lim
r→∞

(vP r)(x) =
degree(x)

2 · |E|

In other words, if we select a peer as a sample every r steps,
for sufficiently large r, we have the following good properties:

• The information stored in the starting vector, v, is
lost, through the repeated selection of random neigh-
bors. Therefore, there is no correlation between se-
lected peers. Alternately, we may start many walks in
parallel. In either cases, after r steps, the selection is
independent of the origin.

• While the stationary distribution, π(x), is biased to-
wards peers with high degree, the bias is precisely
known, allowing us to correct it.

• Random walks may visit the same peer twice, which
lends itself better to a dynamic setting as described in
Section 3.

In practice, r need not be exceptionally large. For graphs
where the edges have a strong random component (such as
in peer-to-peer networks), it is sufficient that the number
of steps exceed the log of the population size, i.e., r ≥
O(log |V |).
Adjusting for degree bias: To correct for the bias to-
wards high degree peers, we make use of the Metropolis–
Hastings method [8, 14, 28] for Markov Chains. Random
walks on a graph are a special case of Markov Chains. In
a regular random walk, the transition matrix P (x, y) leads
to the stationary distribution π(x), as described above. The
Metropolis–Hastings method provides us with a way to build
a modified transition matrix, Q(x, y), leading to a target
stationary distribution µ(x), as follows:

Q(x, y) =

(
P (x, y)min

“
µ(y)P (y,x)
µ(x)P (x,y)

, 1
”

if x 6= y,

1 −
P

x 6=y
Q(x, y) if x = y

Equivalently, to take a step from peer x, select a neighbor
y of x as normal (i.e., with probability P (x, y)). Then, with

probability min
“

µ(y)P (y,x)
µ(x)P (x,y)

, 1
”
, accept the move. Otherwise,

return to x. For a proof this definition of Q(x, y) leads to
sampling peer x with probability µ(x), see [8].

To collect uniform samples, we have µ(y)
µ(x)

= 1, so the

move-acceptance probability becomes:

min

„
µ(y)P (y, x)

µ(x)P (x, y)
, 1

«
= min

„
degree(x)

degree(y)
, 1

«

Therefore, our algorithm for selecting the next step from
some peer x is as follows:

• Select a neighbor y of x uniformly at random.

• Query y for a list of its neighbors, to determine its
degree.

• Generate a random number, p, uniformly between 0
and 1.

• If p ≤ degree(x)
degree(y)

, y is the next step.

• Otherwise, remain at x as the next step.

We call this the Metropolized Random Walk (MRW). Qual-
itatively, the effect is to suppress the rate of transition to
peers of higher degree, resulting in selecting each peer with
equal probability.
Evaluation: Although [8] provides a proof of correctness
for the Metropolis–Hastings method, to ensure the correct-
ness of our implementation we conduct evaluations through
simulation over static graphs. This additionally provides the
opportunity to compare MRW with conventional techniques
such as Breadth-First Search (BFS) or naive random walks
(RW) with no adjustments for degree bias.

To evaluate a technique, we use it to collect a large number
of sample vertices from a graph, then perform a goodness-of-
fit test against the uniform distribution. For Breadth-First
Search, we simulate typical usage by running it to gather a
batch of 1,000 peers. When one batch of samples is collected,
the process is reset and begins anew at a different starting
point. To ensure robustness with respect to different kinds
of connectivity structures, we examine each technique over
several types of graphs as follows:

Erdös–Rényi: The simplest variety of random graphs

Watts–Strogatz: “Small world” graphs with high cluster-
ing and low path lengths

Barabási–Albert: Graphs with extreme degree distribu-
tions, also known as power-law or scale-free graphs

Gnutella: Snapshots of the Gnutella ultrapeer topology,
captured in our earlier work [41]

To make the results more comparable, the number of ver-
tices (|V | = 161, 680) and edges (|E| = 1, 946, 596) in each
graph are approximately the same.1 Table 1 presents the
results of the goodness-of-fit tests after collecting 1000 · |V |
samples, showing that Metropolis–Hastings appears to gen-
erate uniform samples over each type of graph, while the
other techniques fail to do so by a wide margin.

Figure 1 explores the results visually, by plotting the num-
ber of times each peer is selected. If we select k ·|V | samples,

1Erdös–Rényi graphs are generated based on some proba-

bility p that any edge may exist. We set p = 2|E|
|V |·(|V |−1)

so that there will be close to |E| edges, though the exact
value may vary slightly. The Watts–Strogatz model require
that |E| be evenly divisible by |V |, so in that model we use
|E| = 1, 940, 160.
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Figure 1: Bias of different sampling techniques; after collectingk · |V | samples. The figures show how many peers (y-axis) were selectedx times.

the typical node should be selected k times, with other nodes
being selected close to k times approximately following a
normal distribution with variance k.2 We used k = 1, 000
samples. We also include an “Oracle” technique, which se-
lects peers uniformly at random using global information.
The Metropolis–Hastings results are virtually identical to
the Oracle, while the other techniques select many peers
much more and much less than k times. In the Gnutella,
Watts–Strogatz, and Barabási–Albert graphs, Breadth-First
Search exhibits a few vertices that are selected a large num-
ber of times (> 10, 000). The (not-adjusted) Random Walk
(RW) method has similarly selected a few vertices an excep-
tionally large number of times in the Gnutella and Barabási–
Albert models. The Oracle and MRW, by contrast, did not
select any vertex more than around 1,300 times.

In summary, the Metropolis–Hastings method selects peers
uniformly at random from a static graph. The next section
examines the additional complexities when selecting from a
dynamic graph, introduces appropriate modifications, and
evaluates the algorithm’s performance.

5 Sampling from Dynamic Graphs

Section 3 set aside topological issues and examined the dy-
namic aspects of sampling. Section 4 set aside temporal is-
sues and examined the topological aspects of sampling. This
section examines the unique problems that arise when both
temporal and topological difficulties are present.

Our hypothesis is that a Metropolis–Hastings random walk
will yield approximately unbiased samples even in a dynamic
environment. The fundamental assumption of Metropolis–
Hastings is that the frequency of visiting a peer is propor-
tional to the peer’s degree. We argue that this assumption
will be approximately correct if peer relationships change
only slightly during the walk. On one extreme, if the en-
tire walk completes before any graph changes occur, then
the problem reduces to the static case. If a single edge is
removed mid-walk, the probability of selecting the two af-
fected peers is not significantly affected, unless those peers
have very few edges. If many edges are added and removed
during a random walk, but the degree of each peer does not
change significantly, we would also expect that the proba-
bility of selecting each peer will not change significantly. In
peer-to-peer systems, each peer actively tries to maintain a
number of connections within a certain range, so we have

2Based on the normal approximation of a binomial distri-
bution with p = 1

|V |
and n = k|V |.

reason to believe that the degree of each peer will be rela-
tively stable in practice. On the other hand, it is quite possi-
ble that in a highly dynamic environment, or for certain de-
gree distributions, the assumptions of Metropolis–Hastings
are grossly violated and it fails to gather approximately un-
biased samples.

The fundamental question we attempt to answer in this
section is: Under what conditions does the Metropolis–Hastings
random walk fail to gather approximately unbiased samples?
Intuitively, if there is any bias in the samples, the bias will
be tied to some property that interacts with the walk. We
identify the following three fundamental properties that in-
teract with the walk:

Degree: The Metropolis–Hastings method is a modification
of a regular random walk in order to correct for degree-
bias as described in Section 4. It assumes a fixed rela-
tionship between degree and the probability of visiting
a peer. If the Metropolis–Hastings assumptions are in-
valid, the degree-correction may not operate correctly,
introducing a bias correlated with degree.

Session lengths: Section 3 showed how sampling may re-
sult in a bias based on session length. If the walk
is more likely to select either short-lived or long-lived
peers, there will be a bias correlated with session length.

Query latency: In a static environment the only notion of
time is the number of steps taken by the walk. In a
dynamic environment, each step requires querying a
peer, and some peers will respond more quickly than
others. This could lead to a bias correlated with the
query latency. In our simulations, we model the query
latency as twice the round-trip time between the sam-
pling node and the peer being queried.3

For other peer properties, sampling bias can only arise if the
desired property is correlated with a fundamental properties
and that fundamental property exhibits bias. For example,
when sampling the number of files shared by each peer, there
may be sampling bias if the number of files is correlated with
session length and sampling is biased with respect to session
length. One could also imagine the number of files being
correlated with query latency (which is very loosely related
to the peer bandwidth). However, sampling the number of
shared files cannot be biased independently, as it does not
interact with the walk. To show that sampling is unbiased

3 1
2

RTT for the SYN, 1
2

RTT for the SYN-ACK, 1
2

RTT for

the ACK and the request, and 1
2

RTT for the reply.



for any property, it is sufficient to show that it is unbiased for
the fundamental properties that interact with the sampling
technique.

5.1 Adapting random walks for a dynamic environ-

ment

Departing peers introduce an additional practical consider-
ation. The walk may try to query a peer that is no longer
present–a case where the behavior of the ordinary random
walk algorithm is undefined. We make an adaptation by
maintaining a stack of visited peers. When the walk chooses
a new peer to query, we push the peer’s address on the stack.
If the query times out, we pop the address off the stack, and
choose a new neighbor of the peer that is now on top of the
stack. If all of a peer’s neighbors time out, we re-query that
peer to get a fresh list of its neighbors. If the re-query also
times out, we pop that peer from the stack as well, and so
on. If the stack underflows, we consider the walk a failure.
We do not count timed-out peers as a hop for the purposes
of measuring the length of the walk. We call this adaptation
of the MRW sampling technique the Metropolized Random
Walk with Backtracking (MRWB) method for sampling from
dynamic graphs. Note that when applied in a static envi-
ronment, this method reduces to MRW.

5.2 Evaluation methodology

In the static case, we can rely on graph theory to prove the
accuracy of the MRW technique. Unfortunately, graph the-
ory is not well-suited to the problem of dynamically chang-
ing graphs. Therefore, we rely on simulation rather than
analysis. We have developed a session-level dynamic overlay
simulator that models peer arrivals, departures, latencies,
and neighbor connections. We now describe our simulation
environment.

The latencies between peers are modeled using values from
the King data set [13]. Peers learn about one another using
one of several peer discovery mechanisms described below.
Peers have a target minimum number of connections (i.e.,
degree) that they attempt to maintain at all times. When-
ever they have fewer connections, they open additional con-
nections. We assume connections are TCP and require a
3-way handshake before the connection is fully established,
and that peers will time out an attempted connection to a
departed peer after 10 seconds. A new peer generates its
session length from one of several different session length
distributions described below and departs when the session
length expires. New peers arrive according to a Poisson
process, where we select the mean peer arrival rate based on
the session length distribution to achieve a target population
size of 100,000 peers.

To query a peer for a list of neighbors, the sampling node
must set up a TCP connection, submit its query, and receive
a response. The query times out if no response is received
after 10 seconds.4 We run the simulator for a warm-up pe-
riod to reach steady-state conditions before performing any
random walks.

Our goal is to discover if random walks started under
identical conditions will select a peer uniformly at random.
To evaluate this, we start 100,000 concurrent random walks
from a single location. Although started at the same time,

4The value of 10 seconds was selected based on our ex-
periments in developing a crawler for the Gnutella network
in [37].
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Figure 2: Distribution of time needed to complete a random walk (simu-
lated)

the walks will not all complete at the same time.5 We chose
to use 100,000 walks as we believe this is a much larger num-
ber of samples than most researchers will use in practice. If
there is no discernible bias with 100,000 samples, we can
conclude that the tool is unbiased for the purposes of gath-
ering fewer samples (i.e., we cannot get more accuracy by
using less precision). Figure 2 shows the distribution of how
long walks take to complete in one simulation using 50 hops
per walk, illustrating that most walks take 10–20 seconds
to complete. In the simulator the walks do not interact or
interfere with one another in any way. Each walk ends and
collects an independent sample.

As an expected distribution, we capture a perfect snap-
shot (i.e., using an oracle) at the median walk-completion
time, i.e., when 50% of the walks have completed.

5.3 Evaluation of a base case

Because the potential number of simulation parameters is
unbounded, we need a systematic method to intelligently
explore the most interesting portion of this parameter space.
Towards this end, we begin with a base case of parameters as
a starting point and examine the behavior of MRWB under
those conditions. In the following subsections, we vary the
parameters and explore how the amount of bias varies as a
function of each of the parameters. As a base case, we use
the following configuration:

Session length distribution: Weibull(k = 0.59, λ = 40)
Target degree: 15

Maximum degree: 30
Peer discovery mechanism: FIFO

Table 2: Base Case Configuration

Figure 3 presents the sampled and expected distributions
for the three fundamental properties: degree, session length,
and query latency. The fact that the sampled and expected
distributions are visually indistinguishable demonstrates that
the samples are not significantly biased in the base case.

To efficiently examine other cases, we introduce a sum-
mary statistic to quickly capture the difference between the
sampled and expected distributions, and to provide more
rigor than a purely visual inspection. For this purpose, we
use the Kolmogorov-Smirnov (KS) statistic, D, formally de-
fined as follows. Where S(x) is the sampled cumulative dis-
tribution function and E(x) is the expected cumulative dis-

5Each walk ends after the same number of hops, but not
every hop takes the same amount of time due to differences
in latencies and due to the occasional timeout.
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Figure 3: The sampled and expected distributions are visually indistinguishable.
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Figure 4: Sampling error of the three fundamental properties as a function of session-length distribution. Exceptionally heavychurn (median< 1min)
introduces error into the sampling process.

tribution function from the perfect snapshot, the KS statis-
tic is:

D = max (|S(x) − E(x)|)

In other words, if we plot the sampled and expected CDFs,
D is the maximum vertical distance between them and has
a possible range of [0, 1]. For Figures 3a, 3b, and 3c, the
values of D were 0.0019, 0.0023, and 0.0037, respectively.
For comparison, at the p = 0.05 significance level, D is
0.0061, for the two-sample KS statistic with 100,000 data
points each. However, in practice we do not expect most re-
searchers to gather hundreds of thousands of samples. After
all, the initial motivation for sampling is to gather reason-
ably accurate data at relatively low cost. As a rough rule
of thumb, a value of D ≥ 0.1 is quite bad, corresponding to
at least a 10 percentage point difference on a CDF. A value
of D ≤ 0.01 is excellent for most purposes when studying a
peer property, corresponding to no more than a 1 percentage
point difference on a CDF.

5.4 Exploring different dynamics

In this section, we examine how the amount of bias changes
as we vary the type and rate of dynamics in the system.
We examine different settings of the simulation parameters
that affect dynamics, while continuing to use the topologi-
cal characteristics from our base case (Table 2). We would
expect that as the rate of peer dynamics increases, the sam-
pling error also increases. The key question is: How fast
can the churn rate be before it causes significant error, and
is that likely to occur in practice?

In this subsection, we present the results of simulations
with a wide variety of rates using three different models for
session length, as follows:
Exponential: The exponential distribution is a one-parameter

distribution (rate λ) that features sessions relatively

close together in length. It has been used in many
prior simulation and analysis studies of peer-to-peer
systems [24,25,31].

Pareto: The Pareto (or power-law) distribution is a two-
parameter distribution (shape α, location xm) that
features many short sessions coupled with a few very
long sessions. Some prior measurement studies of peer-
to-peer systems have suggested that session lengths
follow a Pareto distribution [6, 12, 34]. One difficulty
with this model is that xm is a lower-bound on the
session length, and fits of xm to empirical data are
often unreasonably high (i.e., placing a lower bound
significantly higher than the median session length re-
ported by other measurement studies). In their in-
sightful analytical study of churn in peer-to-peer sys-
tems, Leonard, Rai, and Loguinov [22] instead suggest
using a shifted Pareto distribution (shape α, scale β)
with α ≈ 2. We use this shifted Pareto distribution,
holding α fixed and varying the scale parameter β. We
examine two different α values: α = 1.9 (infinite vari-
ance) and α = 2.1 (finite variance).

Weibull: Our own empirical observations [39] suggest the
Weibull distribution (shape k, scale λ) provides a good
model of peer session lengths, representing a compro-
mise between the exponential and Pareto distributions.
We fix k = 0.59 (based on our empirical data) and vary
the scale parameter λ.

Figure 4 presents the amount of sampling error (D) as a
function of median session length, for the three fundamen-
tal properties, with a logarithmic x-axis scale. The figure
shows that error is low over a wide range of session lengths
but begins to become significant when the median session
length drops below 2 minutes, and exceeds D = 0.1 when
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Figure 5: Sampling error of the three fundamental properties as a function of the number of connections each peer actively attempts to maintain. Low target
degree (≤ 2) introduces significant sampling error.

the median drops below 30 seconds. The type of distribution
varies the threshold slightly, but overall does not appear to
have a significant impact. To investigate whether the critical
threshold is a function of the length of the walk, we ran some
simulations using walks of 10,000 hops (which take around
one simulated hour to complete). Despite the long dura-
tion of these walks, they remained unbiased with D < 0.003
for each of the three fundamental properties. This suggests
that the accuracy of MRWB is affected primarily by the rate

of local variation in the ratio degree(x)
degree(y)

relative to the time

required to query peers, rather than the speed of global vari-
ations relative to the length of the walk.

While the median session length reported by measurement
studies varies considerably (see [31] for a summary), none
report a median below 1 minute and two studies report a
median session length of one hour [4,33]. In summary, these
results demonstrate that MRWB can gracefully tolerate peer
dynamics. In particular, it performs well over the rate of
churn reported in real systems.

5.5 Exploring different topologies

In this section, we examine different settings of the simu-
lation parameters that directly affect topological structure,
while using the dynamic characteristics from our base case
(Table 2). The Metropolis–Hastings method makes use of
the ratio between the degrees of neighboring peers. If this
ratio fluctuates dramatically while the walk is conducted, it
may introduce significant bias. If peers often have only a
few connections, any change in their degree will result in a
large percentage-wise change. One key question is therefore:
Does a low target degree lead to sampling bias, and, if so,
when is significant bias introduced?

The degree of peers is controlled by three factors. First,
each peer has a peer discovery mechanism that enables it
to learn the addresses of potential neighbors. The peer dis-
covery mechanism will influence the structure of the topol-
ogy and, if performing poorly, will limit the ability of peers
to establish connections. Second, peers have a target de-
gree which they actively try to maintain. If they have fewer
neighbors than the target, they open additional connections
until they have reached the target. If necessary, they make
use of the peer discovery mechanism to locate additional
potential neighbors. Finally, peers have a maximum degree,
which limits the number of neighbors they are willing to ac-
cept. If they are at the maximum and another peer contacts
them, they refuse the connection. Each of these three fac-
tors influences the graph structure, and therefore may affect
the walk.

We model four different types of peer discovery mecha-
nisms, based on those found in real systems:

Random Oracle: This is the simplest and most idealistic
approach. Peers learn about one another by contacting
a rendezvous point that has perfect global knowledge
of the system and returns a random set of peers for
them to connect to.

FIFO: In this scheme, inspired by the GWebCaches of Gnu-
tella [10], peers contact a rendezvous point which re-
turns a list of the last n peers that contacted the ren-
dezvous, where n is the maximum peer degree.

Soft State: Inspired by the approach of BitTorrent’s “track-
ers”, peers contact a rendezvous point that has imper-
fect global knowledge of the system. In addition to
contacting the rendezvous point to learn about more
peers, every peer periodically (every half hour) con-
tacts the rendezvous point to refresh its state. If a peer
fails to make contact for 45 minutes, the rendezvous
point removes it from the list of known peers.

History: Many P2P applications connect to the network
using addresses they learned during a previous ses-
sion [18]. A large fraction of these addresses will time-
out, but typically enough of the peers will still be ac-
tive to avoid the need to contact a centralized ren-
dezvous point. As tracking the re-appearance of peers
greatly complicates our simulator (as well as greatly
increasing the memory requirements), we use a coarse
model of the History mechanism. We assume that
90% of connections automatically timeout. The 10%
that are given valid addresses are skewed towards peers
that have been present for a long time (more than one
hour) and represent regular users who might have been
present during the peer’s last session. While this might
be overly pessimistic, it reveals the behavior of MRWB
under harsh conditions.

Figure 5 presents the amount of sampling error (D) for
the three fundamental properties as a function of the target
degree, for each of the peer discovery methods, holding the
maximum peer degree fixed at 30 neighbors. It shows that
sampling is not significantly biased in any of the three fun-
damental properties as long as peers attempt to maintain
at least three connections. Widely deployed peer-to-peer
systems typically maintain dozens of neighbors. Moreover,
maintaining fewer than three neighbors per peer almost cer-
tainly leads to network fragmentation, and is therefore not
a reasonable operating point for peer-to-peer systems.
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Figure 6: Sampling error of the three fundamental properties as a function of the maximum number of connections each peer will accept. Each peer actively
attempts to maintainx − 15 connections.

Sample
Snapshot

Degree

C
C
D

F
(%

)

302520151050

100

80

60

40

20

0

Figure 7: Comparison of degree distributions using the History mechanism
with a target degree of 30. Sampling cannot capture the unconnected peers
(degree= 0), causing the sampling error observed in Figure 5.

The results for the different peer-discovery mechanisms
were similar to one another, except for a small amount of
bias observed when using the History mechanism as the tar-
get degree approaches the maximum degree (30). To investi-
gate this issue, Figure 7 presents the sampled and expected
degree distribution when using the History mechanism with
a target degree of 30. The difference between the sampled
and expected distributions is due to the 2.4% of peers with
a degree of zero. These isolated peers arise in this scenario
because the History mechanism has a high failure rate (re-
turning addresses primarily of departed peers), and when a
valid address is found, it frequently points to a peer that is
already at its connection limit. The zero-degree peers are
visible in the snapshot (which uses an oracle to obtain global
information), but not to the sampler (since peers with a de-
gree of zero have no neighbors and can never be reached).
We do not regard omitting disconnected peers as a serious
limitation.

Having explored the effects of lowering the degree, we now
explore the effects of increasing it. In Figure 6, we examine
sampling error as a function of the maximum degree, with
the target degree always set to 15 less than the maximum.
There is little error for any setting of the maximum degree.

In summary, the proposed MRWB technique for sampling
from dynamic graphs appears unbiased for a range of dif-
ferent topologies (with reasonable degree distributions; e.g.,
degree ≥ 3), operates correctly for a number of different
mechanisms for peer discovery, and is largely insensitive to
a wide range of peer dynamics, with the churn rates reported
for real systems safely within this range.

6 Empirical Results

In addition to the simulator version, we have implemented
the MRWB algorithm for sampling from real peer-to-peer
networks into a tool called ion-sampler. The following sub-
sections briefly describe the implementation and usage of
ion-sampler and present empirical experiments to validate
its accuracy.

6.1 Ion-Sampler

The ion-sampler tool uses a modular design that accepts
plug-ins for new peer-to-peer systems.6 As long as the peer-
to-peer system allows querying peers for a list of their neigh-
bors, a plug-in can be written. The ion-sampler tool hands
IP-address:port pairs to the plug-in, which later returns a
list of neighbors or signals that a timeout occurred. The
ion-sampler tool is responsible for managing the walks. It
outputs the samples to standard output, where they may be
easily read by another tool that collects the actual measure-
ments. For example, ion-sampler could be used with exist-
ing measurement tools for measuring bandwidth to estimate
the distribution of access link bandwidth in a peer-to-peer
system. Listing 1 shows an example of using ion-sampler

to sample peers from Gnutella.

6.2 Empirical Validation

Empirical validation is challenging due to the absence of
high-quality reference data to compare against. In our ear-

6In fact, it uses the same plug-in architecture as our earlier,
heavy-weight tool, Cruiser, which exhaustively crawls peer-
to-peer systems to capture topology snapshots.

bash$ ./ion-sampler gnutella --hops 25 -n 10

10.8.65.171:6348

10.199.20.183:5260

10.8.45.103:34717

10.21.0.29:6346

10.32.170.200:6346

10.201.162.49:30274

10.222.183.129:47272

10.245.64.85:6348

10.79.198.44:36520

10.216.54.169:44380

bash$

Listing 1: Example usage of theion-sampler tool. We specify that we
want to use the Gnutella plug-in, each walk should take 25 hops, and we
would like 10 samples. The tool then prints out 10 IP-address:port pairs.
We have changed the first octet of each result to “10” for privacy reasons.
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Figure 8: Comparison of degree distributions observed from samplingver-
sus exhaustively crawling all peers

lier work [37,41], we developed a peer-to-peer crawler called
Cruiser that captures the complete overlay topology through
exhaustive exploration. We can use these topology snap-
shots as a point of reference for the degree distribution.
Unfortunately, we do not have reliably accurate empirical
reference data for session lengths or query latency.

By capturing every peer, Cruiser is immune to sampling
difficulties. However, because the network changes as Cruiser
operates, its snapshots are slightly distorted [37]. In partic-
ular, peers arriving near the start of the crawl are likely
to have found additional neighbors by the time Cruiser con-
tacts them. Therefore, we intuitively expect a slight upward
bias in Cruiser’s observed degree distribution. For this rea-
son, we would not expect a perfect match between Cruiser
and sampling, but if the sampling is unbiased we still ex-
pect them to be very close. We can view the CCDF version
of the degree distribution captured by Cruiser as a close
upper-bound on the true degree distribution.

Figure 8 presents a comparison of the degree distribution
of reachable ultrapeers in Gnutella, as seen by Cruiser and
by the sampling tool (capturing approximately 1,000 sam-
ples with r = 25 hops). It also includes the results of a short
crawl,7 a sampling technique commonly used in earlier stud-
ies (e.g., [33]). We interleaved running these measurement
tools to minimize the change in the system between mea-
surements of different tools, in order to make their results
comparable.

Examining Figure 8, we see that the full crawl and sam-
pling distributions are quite similar. The sampling tool finds
slightly more peers with lower degree, compared to the full
crawl, in accordance with our expectations described above.
We examined several such pairs of crawling and sampling
data and found the same pattern in each pair. By com-
parison, the short crawl exhibits a substantial bias towards
high degree peers relative to both the full crawl and sam-
pling. We computed the KS statistic (D) between each pair
of datasets, presented in Table 3. Since the full crawl is a
close upper-bound of the true degree distribution, and since

7A “short crawl” is a general term for a progressive explo-
ration of a portion of the graph, such as by using a breadth-
first or depth-first search. In this case, we randomly select
the next peer to explore.

Short Crawl Full Crawl Sampling
Short Crawl — 12.0 16.1
Full Crawl 12.0 — 4.30
Sampling 16.1 4.30 —

Table 3: KS statistic (D) between pairs of empirical datasets
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Figure 9: Difference between sampled results and a crawl as a functionof
walk length. Each experiment was repeated several times. Error bars show
the sample standard deviation.

sampling’s distribution is lower, the error in the sampling
distribution relative to the true distribution is D ≤ 4.3. On
the other hand, because the short crawl data exceeds the full
crawl distribution, its error relative to the true distribution
is D ≥ 12. In other words, the true D for the sampling data
is at most 4.3, while the true D for the short crawl data is at
least 12. It is possible that sampling with MRWB produces
more accurate results than a full crawl (which suffers from
distortion), but this is difficult to prove conclusively.

Having demonstrated the validity of the MRWB tech-
nique, we now turn our attention to its efficiency. Perform-
ing the walk requires n · r queries, where n is the desired
number of samples and r is the length of the walk in hops.
If r is too low, significant bias may be introduced. If r is
too high, it should not introduce bias, but is less efficient.
From graph theory, we expect to require r ≥ O(log |V |) for
an ordinary random walk.

To empirically explore the selection of r for Gnutella, we
conducted many sets of sampling experiments using differ-
ent values of r, with full crawls interspersed between the
sampling experiments. For each sampling experiment, we
compute the KS statistic, D, between the sampled degree
distribution and that captured by the most recent crawl.
Figure 9 presents the mean and standard deviation of D
as a function of r across different experiments. The figure
shows that low values of r (≤ 10) can lead to enormous bias
(D ≥ 40). The amount of bias decreases rapidly with r, and
low bias is observed for r ≥ 25 hops. However, in a single
experiment with r = 30 hops, we observed D > 30, while all
other experiments at that length showed D < 9. Investigat-
ing the anomalous dataset, we found that a single peer had
been selected 309 out of 999 times.

Further examining the trace of this walk, we found that
the walk happened to start at a peer with only a single
neighbor. In such a case, the walk gets stuck at that peer
due to the way Metropolis–Hastings transitions to a new

peer y with probability only degree(x)
degree(y)

. When this “stuck”

event occurs late in the walk, it is just part of the normal
re-weighting to correct for a regular random walk’s bias to-
wards high degree peers. However, when it occurs during
the first step of the walk, a large fraction of the walks will
end at the unusual low-degree peer, resulting in an anoma-
lous set of selections where the same peer is chosen many
times.

One way to address this problem is to increase the walk
length by requiring

r ≥
maximum degree

minimum degree
· log |V |.



However, this reduces the efficiency of the walk. More im-
portantly, we typically do not accurately know the maximum
degree, i.e., while increasing r decreases the probability of an
anomalous event, it does not preclude it. Therefore, we sug-
gest the following heuristic to prevent such problems from
occurring. During the first few steps of the walk, always
transition to the next peer as in a regular random walk; af-
ter the first few steps, use the Metropolis–Hastings method
for deciding whether to transition to the next peer or re-
main at the current one. This modification eliminates the
correlations induced by sharing a single starting location,
while keeping the walk length relatively short. We are ex-
perimenting with this modification in our ongoing work. In
any case, such anomalous data sets can easily be detected
(and discarded) by the presence of the same IP address be-
ing selected a statistically improbable number of times. In
light of these considerations, we regard a choice of r = 25
as a safe walk length for Gnutella. Choosing r = 25, we
can collect 1,000 samples by querying 25,000 peers, over an
order of magnitude in savings compared with performing a
full crawl which must contact more than 400,000.

With respect to execution time, preliminary results show
than an implementation of ion-sampler with r = 25 hops
has execution time comparable using Cruiser to capture the
entire network, or around 10 minutes. While ion-sampler

contacts significantly fewer peers, walks are sequential in na-
ture which limits the amount of parallelism that ion-sampler
can exploit. As discussed earlier, while longer execution time
has a negative impact on the accuracy of Cruiser’s results,
ion-sampler’s results are not significantly impacted by the
time required to perform the walk (as demonstrated in Sec-
tion 5.4 where we simulate walks of 10,000 hops). In our
initial implementation of ion-sampler, a small fraction of
walks would get “stuck” in a corner of the network, repeat-
edly trying to contact a set of departed peers. While the
walks eventually recover, this corner-case significantly and
needlessly delayed the overall execution time. We added a
small cache to remember the addresses of unresponsive peers
to address this issue.

In summary, these empirical results support the conclu-
sion that a Metropolized Random Walk with Backtrack-
ing is an appropriate method of collecting measurements
from peer-to-peer systems, and demonstrate that it is sig-
nificantly more accurate than other common sampling tech-
niques. They also illustrate the dramatic improvement in
efficiency and scalability of MRWB compared to performing
a full crawl. As network size increases, the cost of a full
crawl grows linearly and takes longer to complete, intro-
ducing greater distortion into the captured snapshots. For
MRWB, the cost increases logarithmically, and no additional
bias is introduced.

7 Discussion

7.1 How many samples are required?

An important consideration when collecting samples is to
know how many samples are needed for statistically signif-
icant results. This is principally a property of the distri-
bution being sampled. Consider the problem of estimating
the underlying frequency f of an event, e.g., that the peer
degree takes a particular value. Given N unbiased samples,

an unbiased estimate of f is bf = M/N where M is the num-

ber of samples for which the event occurs. bf has root mean

square (RMS) relative error

σ =

q
Var( bf)/f =

p
(1 − f)/fN.

From this expression, we derive the following observations:

• Estimation error does not depend on the population
size; in particular the estimation properties of unbiased
sampling scale independently of the size of the system
under study.

• The above expression can be inverted to derive the
number of samples Nf,σ required to estimate an out-
come of frequency f up to an error σ. A simple bound
is Nf,σ ≤ 1/(fσ2).

• Unsurprisingly, smaller frequency outcomes have a larger
relative error. For example, gathering 1,000 unbiased
samples gives us very little useful information about
events which only occur one time in 10,000; the as-
sociated σ value is approximately 3: the likely error
dominates the value to be estimated. This motivates
using biased sampling in circumstances that we discuss
in the next subsection.

The presence of sampling bias complicates the picture. If
an event with underlying frequency f is actually sampled
with frequency f0, then the RMS relative error acquires an
additional term (1 − f0/f)2 which does not reduce as the
number of samples N grows. In other words, when sam-
pling from a biased distribution, increasing the number of
samples only increases the accuracy with which we estimate
the biased distribution.

7.2 Unbiased versus biased sampling

At the beginning of this paper, we set the goal of collecting
unbiased samples. However, there are circumstances where
unbiased samples are inefficient. For example, while unbi-
ased samples provide accurate information about the body
of a distribution, they provide very little information about
the tails: the pitfall of estimating rare events we discussed
in the previous subsection.

In circumstances such as studying infrequent events, it
may be desirable to gather samples with a known sampling
bias, i.e., with non-uniform sampling probabilities. By de-
liberately introducing a sampling bias towards the area of
interest, more relevant samples can be gathered. During
analysis of the data, each sample is weighted inversely to
the probability that it is sampled. This yields unbiased esti-
mates of the quantities of interest, even though the selection
of the samples is biased.

A known bias can be introduced by choosing an appropri-
ate definition of µ(x) in the Metropolis–Hastings equations
presented in Section 4 and altering the walk accordingly. Be-
cause the desired type of known bias depends on the focus of
the research, we cannot exhaustively demonstrate through
simulation that Metropolis–Hastings will operate correctly
in a dynamic environment for any µ(x). Our results show
that it works well in the common case where unbiased sam-
ples are desired (i.e., µ(x) = µ(y) for all x and y).

7.3 Sampling from structured systems

Throughout this paper, we have assumed an unstructured
peer-to-peer network. Structured systems (also known as
Distributed Hash Tables or DHTs) should work just as well
with random walks, provided links are still bidirectional.



However, the structure of these systems often allows a more
efficient technique.

In a typical DHT scheme, each peer has a randomly gen-
erated identifier. Peers form an overlay that actively main-
tains certain properties such that messages are efficiently
routed to the peer “closest” to a target identifier. The ex-
act properties and the definition of “closest” vary, but the
theme remains the same. In these systems, to select a peer
at random, we may simply generate an identifier uniformly
at random and find the peer closest to the identifier. Be-
cause peer identifiers are generated uniformly at random, we
know they are uncorrelated with any other property. This
technique is simple and effective, as long as there is little
variation in the amount of identifier space that each peer is
responsible for. We made use of this sampling technique in
our study of the widely-deployed Kad DHT [38].

8 Conclusions and Future Work

This paper explores the problem of sampling representative
peer properties in large and dynamic unstructured P2P sys-
tems. We show that the topological and temporal prop-
erties of P2P systems can lead to significant bias in col-
lected samples. To collect unbiased samples, we present the
Metropolized Random Walk with Backtracking (MRWB),
a modification of the Metropolis–Hastings technique, which
we developed into the ion-sampler tool. Using both simu-
lation and empirical evaluation, we show that MRWB can
collect approximately unbiased samples of peer properties
over a wide range of realistic peer dynamics and topological
structures.

We are pursuing this work in the following directions.
First, we are exploring improving sampling efficiency for
uncommon events (such as in the tail of distributions) by
introducing known bias, as discussed in Section 7.2. Sec-
ond, we are studying the behavior of MRWB under flash-
crowd scenarios, where not only are the properties of individ-
ual peers changing, but the distribution of those properties
is also rapidly evolving. Finally, we are developing addi-
tional plug-ins for ion-sampler and using it in conjunction
with other measurement tools to accurately character sev-
eral properties of widely-deployed P2P systems.
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