
Understanding Churn in Peer-to-Peer Networks

Daniel Stutzbach, Reza Rejaie
University of Oregon

{agthorr,reza}@cs.uoregon.edu

ABSTRACT

The dynamics of peer participation, or churn, are an inher-
ent property of Peer-to-Peer (P2P) systems and critical for
design and evaluation. Accurately characterizing churn re-
quires precise and unbiased information about the arrival
and departure of peers, which is challenging to acquire.
Prior studies show that peer participation is highly dynamic
but with conflicting characteristics. Therefore, churn re-
mains poorly understood, despite its significance.

In this paper, we identify several common pitfalls that
lead to measurement error. We carefully address these dif-
ficulties and present a detailed study using three widely-
deployed P2P systems: an unstructured file-sharing system
(Gnutella), a content-distribution system (BitTorrent), and
a Distributed Hash Table (Kad). Our analysis reveals sev-
eral properties of churn: (i) overall dynamics are surprisingly
similar across different systems, (ii) session lengths are not
exponential, (iii) a large portion of active peers are highly
stable while the remaining peers turn over quickly, and (iv)
peer session lengths across consecutive appearances are cor-
related. In summary, this paper advances our understanding
of churn by improving accuracy, comparing different P2P file
sharing/distribution systems, and exploring new aspects of
churn.

Categories and Subject Descriptors

C.2.3 [Computer–Communication Networks]: Net-
work Operations—Network monitoring ; I.6.5 [Simulation
and Modeling]: Model Development; C.2.4 [Computer–
Communication Networks]: Distributed Systems—Dis-
tributed applications

General Terms

Measurement, Reliability, Verification

Keywords

Peer-to-peer, Churn, Gnutella, BitTorrent, Kad, Session
Length, Uptime

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’06, October 25–27, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-561-4/06/0010 ...$5.00.

1 Introduction

During recent years, the Internet has witnessed a significant
increase in the popularity of Peer-to-Peer (P2P) applications
ranging from file-sharing (e.g., Gnutella and FastTrack) to
conferencing (e.g., End System Multicast) and content dis-
tribution (e.g., BitTorrent). A peer joins the system when a
user starts the application, contributes some resources while
making use of the resources provided by others, and leaves
the system when the user exits the application. We define
one such join-participate-leave cycle as a session. The inde-
pendent arrival and departure by thousands—or millions—
of peers creates the collective effect we call churn. The user-
driven dynamics of peer participation must be taken into
account in both the design and evaluation of any P2P ap-
plication. For example, the distribution of session length
can affect the overlay structure [27], the resiliency of the
overlay [14], and the selection of key design parameters [15].
Moreover, every simulation or analysis study of a peer-to-
peer system relies on some model of churn. Towards this
end, researchers and developers require an accurate model
of churn in order to draw accurate conclusions about peer-
to-peer systems.

However, accurately characterizing churn requires fine-
grained and unbiased information about the arrival and de-
parture of peers, which is challenging to acquire in practice,
primarily due to the large size and highly dynamic nature
of these systems. Therefore, the characteristics of churn in
large-scale P2P systems are not currently well understood.
Several measurement studies [9,24,25] have presented a high
level view (e.g., the CDF of session lengths [23] or median
session length [9]) of churn as part of broader characteri-
zations of P2P systems. While these studies have revealed
that peer participation is highly dynamic, their findings are
dramatically different. For example, the reported median
session lengths varies from one minute to one hour [22]. In
the absence of a reliable model for churn, researchers must
make assumptions about the distribution of arrival times
and session lengths that may be incorrect.

This study takes a major step towards increasing our un-
derstanding of churn by conducting deeper analysis and re-
lying on more accurate measurements. One of our contribu-
tions is to identify a number of key challenges in character-
izing churn that arise from factors such as measurement lim-
itations, network conditions, and peer dynamics. We then
develop techniques to address these difficulties or at least
bound the resulting error. As a result, our measurements
are significantly more accurate and representative.

Our second contribution is an examination of churn at

two levels: (i) Group-level characteristics that capture the
behavior of all participating peers collectively, and (ii) Peer-
level characteristics that capture the behavior of specific
peers across multiple appearances in the system over time.
Furthermore, we examine some of the underlying causes
and implications of our findings on the design of P2P sys-
tems. To ensure the broad applicability of our results, we
study churn in three types of widely-deployed P2P sys-
tems: Gnutella, an unstructured file-sharing system; Kad, a
Distributed Hash Table (DHT); and BitTorrent, a content-
distribution system. Examining multiple systems allows us
to explore the similarities and differences in churn behavior
between different types of P2P systems. Our main results
can be summarized as follows:

• Group-level properties of churn exhibit similar behav-
ior across all three applications, but per-peer proper-
ties in BitTorrent are significantly different.

• Session lengths are fit by Weibull or log-normal distri-
butions, but not by the exponential or Pareto.

• Past session length is a good predictor of the next ses-
sion length in Gnutella and Kad, but not BitTorrent.

• The availability of individual peers exhibits a strong
correlation across consecutive days.

• In BitTorrent, peers frequently remain in the system
long after their downloads complete.

The remainder of the paper is laid out as follows. Section 2
presents the related work on characterizing churn. Section 3
describes the three systems we examine in more detail. Sec-
tion 4 identifies common pitfalls in studying churn and how
we address them in our study. Sections 5 and 6 present our
results, while Section 7 describes some key implications of
our results on the design of P2P applications. Finally, Sec-
tion 8 concludes the paper and describes our future plans.

2 Related Work

We are not aware of any prior study that focuses primarily
on churn in P2P networks. However, several studies present
a passing investigation of session length as part of wider
characterizations of P2P applications. We divide these stud-
ies into two groups based on their measurement technique
as follows:
Passive Monitoring: As part of a study on P2P flows in a
large ISP network, Sen et al. [24] use passive measurement
at several routers to monitor flows in FastTrack, Gnutella,
and Direct-Connect. They present a CDF of the duration
an IP address is active (the ontime), based on a threshold,
δ = 30 minutes, of inactivity. They show that the ontime is
heavy-tailed, but does not follow a Zipf distribution when
ranked. As part of a study on workload characterization in
Kazaa, Gummadi et al. [9] present session lengths based on
passive monitoring of a router at the University of Wash-
ington. They found that session lengths are heavy-tailed,
with a median session length of 2.4 minutes while the 90th
percentile is 28.25 minutes. In general, passive monitoring
techniques to characterize churn are likely to underestimate
session lengths because some peers may not be continuously
generating traffic through the observation point. Difficul-
ties in correctly identifying peer-to-peer flows [12] can also
limit measurement accuracy. Furthermore, it is difficult to
determine whether the subset of captured users is represen-
tative of the entire P2P user population, especially if data
is collected at a small number of measurement points.

Active Probing: Several studies use active probing or
crawling to characterize P2P networks and present the be-
havior of session length across peers. Chu et al. [6] present
the session length distribution in Napster and Gnutella and
fit it to a log-quadratic distribution. In their insightful
characterization of peers in Napster and Gnutella, Saroiu et
al. [23] present a CDF of session durations, showing session
lengths are heavily skewed. They also present CDFs of peer
availability in these systems. Bustamante and Qiao [5] mon-
itored peers in Gnutella to motivate preferential neighbor
selection based on uptime. Their tool measures the length
of sessions for peers which return to the network during
their measurement period, and they fit peer session lengths
to the Pareto distribution. More recently, Liang et al. [17]
similarly provide a CDF of session lengths for super-nodes
in the Kazaa network, based on active probing. Finally,
Bhagwan et al. [3] examine availability in the Overnet DHT
using probing. They show there is little correlation between
the availability of different peers. Stutzbach et al. illustrate
that the distribution of peer uptime is not Poisson and show
how churn leads to biased connectivity among long-lived
peers [27]. Prior studies of BitTorrent [11, 21] have used
tracker logs to show that session lengths are heavily skewed.
One study of BitTorrent [10] examines the lingering and
downtime distributions and conclude they are both expo-
nentially distributed.

Each of these studies show that session-lengths are not
Poisson, and some of the studies further conclude that ses-
sion lengths are heavy-tailed (or Pareto). Reports of the
median session length vary dramatically, from one minute
to one hour (as summarized in [22]). In this study, we iden-
tify common pitfalls in measuring churn, such as biased peer
selection and false negatives, which we believe are the main
contributing factors for the conflicting results reported by
previous studies. Leveraging our more accurate measure-
ments, we find that session-lengths are not heavy-tailed or
Pareto, but are more accurately modeled by a Weibull dis-
tribution. Additionally, we conduct a more detailed study
of churn, exploring aspects such as the inter-arrival distri-
bution and correlations across sessions. Finally, our work
compares churn characteristics across different P2P systems.

3 Background

Before we discuss our methodology, we need to introduce the
systems we examine. The Gnutella and Kad overlays pro-
vide a keyword-search function that allows users to locate
files that have the keyword in the filename. Gnutella per-
forms these lookups using an unstructured topology, while
Kad uses a DHT. BitTorrent, on the other hand, forms an
overlay to facilitate the rapid transfer of very large files
(100+ MB) to a large number of peers. In the following
subsections, we briefly describe the relevant aspects of these
systems and introduce our datasets.

Overall, our goal is to measure the arrival and departure
time of peers so that we can compute characteristics such as
session lengths and inter-arrival intervals. Each system pro-
vides slightly different hooks for measurement, each with
advantages and disadvantages. The two most important
properties are the precision in measuring arrival and de-
parture times and the ability to capture a representative set
of sessions. We address the issues of possible inaccuracies or
bias in our data in Section 4.

Our datasets consist of two types: (i) centralized logs that

capture the arrival and departure time of each peer, and (ii)
sequences of snapshots that record the peers present at a
particular time. By comparing snapshots, we can deduce
when a peer arrived and departed. The length of time re-
quired to capture a snapshot, ∆, determines the precision in
determining the arrival or departure time. All of the snap-
shots were captured with Cruiser [26], a fast, distributed
P2P crawler that features a plug-in architecture allowing it
to capture different P2P systems. Cruiser operates by pro-
gressively exploring an overlay topology, querying peers for
a list of their neighbors, and adding newly discovered peers
to its queue until the queue is exhausted. The start time
and length of our datasets are summarized in Table 1.

Gnutella: Gnutella is currently one of the most popu-
lar P2P systems, with more than 1 million simultaneous
users [2]. It uses a two-tier overlay structure, similar to
FastTrack and eDonkey. Most peers are leaf peers, while
a small fraction of peers act as ultrapeers. The leaf peers
connect to a handful of ultrapeers, which index the content
of the leaves. Searches spread out from ultrapeers using a
modified expanding-ring search.

Our Gnutella data consists of snapshots of the entire Gnu-
tella network taken with Cruiser by Stutzbach et al. [27]. Us-
ing a special crawler hook provided by modern Gnutella [19],
Cruiser can capture 1.3 million peers within 7 minutes. Since
the snapshots capture all peers in the system, they are nec-
essarily representative. The datasets consist of five sets of
48-hour periods of back-to-back snapshots, with crawl du-
rations ranging from 4 to 10 minutes.

Kad: Kad is a Kademlia-based [20] P2P search network
used by the eMule P2P file-sharing software [1]. To our
knowledge, Kad is the largest deployed DHT, with more
than 1 million simultaneous users. Similar to other DHTs,
each peer has a persistent, globally-unique identifier of
length b bits (in Kad’s case b = 128 bits). Keywords are
hashed to b bits and stored on the peer with the closest
matching identifier. Each peer stores a structured routing
table pointing to other nodes in the network such that the
expected number of overlay hops to perform any lookup is
O(log n), where n is the population size.

We used Cruiser to capture a subset of the DHT identifier
space, called a zone. As an input parameter, Cruiser accepts
a zone, specified as a Kad ID address and mask, analogous
to an IP subnet address. We use the “slash notation” to
specify Kad ID zones. For example “0x594/10” specifies all
Kad identifiers where the high-order 10 bits match the high-
order 10 bits in the hexadecimal number 0x594. Monitoring
a larger zone includes more sessions, but requires more time
to crawl, and thus decreases the precision.

Dataset Start Date Duration Kad Zone

Gnutella 1 Oct. 14, 2004 2 days

Gnutella 2 Oct. 21, 2004 2 days

Gnutella 3 Nov. 25, 2004 2 days

Gnutella 4 Dec. 21, 2004 2 days

Gnutella 5 Dec. 27, 2004 2 days

Kad 1 Apr. 13, 2005 2 days 0xab0/10

Kad 2 Apr. 16, 2005 2 days 0x594/10

Kad 3 Apr. 18, 2005 2 days 0xe14/10

Kad 4 Apr. 21, 2005 2 days 0x734/12

BitTorrent Red Hat Mar. 21, 2003 3 months

BitTorrent Debian Feb. 22, 2005 2 months

BitTorrent FlatOut Nov. 11, 2004 2 months

Table 1: Measurement collections

Since each peer selects its ID uniformly at random1, each
zone is a uniformly random sample of the Kad network as a
whole and therefore representative. We used the Kad version
of Cruiser to collect 48-hour slices of back-to-back snapshots
of 4 different zones within the Kad overlay. The zone ad-
dresses and crawl durations (∆) are given in Table 1 and
Figure 1b.
BitTorrent: BitTorrent is a popular P2P application for
distributing very large files (100+ MB) to a large group
of users. Unlike most P2P systems, which form one large
overlay, BitTorrent has a distinct overlay for each file. To
download a file, peers exchange different blocks of the con-
tent until each peer has the entire file. The peers locate one
another using a rendezvous point, called a tracker, whose
address is provided to new members out of band. Each
new peer contacts the tracker via HTTP, periodically sends
an update of its progress to the tracker, and informs the
tracker when it departs. Each peer may receive the entire
file across multiple sessions, i.e., it may obtain only a sub-
set of blocks in one session and resume the download later.
Many peers may give up without downloading the whole
file [11]. The tracker logs its interactions with peers, provid-
ing the arrival and departure times of peers with one second
resolution. While the tracker records the arrival time of all
peers, the departure time is only captured for peers which
depart gracefully. We have obtained tracker logs from three
long BitTorrent networks: Debian ISO images, a Red Hat
ISO image, and a demo of the game FlatOut.

4 Pitfalls in Characterizing Churn

In the previous section, we described how our data was col-
lected and the granularity of the measurements. However,
we have not yet addressed how to cope with limitations of
the data, such as peers missed during a crawl or sessions
longer than the measurement period. While we cannot ad-
dress every possible event that might introduce error into
the measurement and analysis of churn, the following sub-
sections discuss the pitfalls most likely to cause significant
error. In many cases, we are able to overcome the prob-
lem entirely. In some cases, we must settle for bounding or
estimating the error.

4.1 Missing Data

One of the challenges in collecting data for studying churn is
that it requires continuous measurement. If the observation
software crashes or loses network connectivity, data will be
missing, essentially breaking the dataset into two pieces. If
the gap is unnoticed and the data is processed as one piece,
it may introduce considerable error.

In Gnutella and Kad, our data is composed of a series
of snapshots captured by a crawler. Each snapshot con-
tains the start time of the crawl. Examining the sequence of
these times, we did not find any significant gaps in the data.
Within each dataset, the time from the start of one crawl to
the start of the next is reasonably close to the mean. The
distributions are shown in Figures 1a and 1b.

For BitTorrent, our data consists of logs from BitTorrent
trackers which record each event with 1-second granularity.
In our data, typically there are just a few seconds between

1Technically, the identifiers are selected using a pseudo-
random number generator seeded with entropy collected by
the operating system. Because the identifiers are 128 bits,
the probability of collisions occurring is extremely small.

Gnut 5
Gnut 4
Gnut 3
Gnut 2
Gnut 1

Crawl duration (minutes)

C
C

D
F

(%
)

1086420

100

10

1

0.1

(a) Gnutella crawl times

Kad 4
Kad 3
Kad 2
Kad 1

Crawl duration (minutes)

C
C

D
F

(%
)

1086420

100

10

1

0.1

0.01

(b) Kad crawl times

BT FlatOut
BT Debian

BT Red Hat

Inter-event intervals

C
C

D
F

(%
)

1s 4s 15s 1m 5m 30m 2h 12h

100

10

1

0.1

0.01

0.001

1e − 04

1e − 05

(c) BitTorrent inter-event times
Figure 1: Inter-event gaps

each event. However, as shown in Figure 1c there are a few
outlying points with unusually large gaps between one event
and the next. In total, we found five significant gaps in the
Red Hat log, two in the Debian log, and one in the FlatOut
log. The shortest of these gaps is twenty minutes while the
longest is eight hours. All other inter-event intervals are less
than 4 minutes. Although the Red Hat log has been studied
by other researchers [4,11,13], to our knowledge these gaps
have not been previously reported. We also checked if the
clock ever ran backward, but it did not. It seems very un-
likely that an otherwise busy tracker receiving several hits
per minute would abruptly have an eight-hour period of si-
lence. Therefore, we conclude that during these gaps the
tracker was not running or was experiencing network con-
nectivity problems. An alternative explanation is that the
clock time on the tracker was changed. Instead of using the
entire logs, we restrict ourselves to the largest contiguous
portion between gaps.

4.2 Biased Peer Selection

The most common approach [6, 17, 23] for measuring churn
has been to select a set of peers and ping them at regular
intervals to determine when their sessions begin and end.
However, polling a closed population of peers repeatedly
captures sessions from a small fraction of all peers (those
who return regularly). This introduces bias in two ways:
(i) the potential for bias in selecting the peers and (ii) con-
secutive sessions of the same peer are correlated (as we will
show in Section 6.2). Selecting peers based on criteria that
are correlated with session length necessarily leads to bi-
ased results. Selecting based on query responses [6,23] may
be biased if there is a correlation between session length
and number of files shared. Similarly, conducting a partial
crawl of the topology [23] may be biased due to a correla-
tion between session length and a peer’s degree [27]. One
way around these difficulties is to monitor the entire system,
implicitly detecting new peers.

In BitTorrent, the tracker is a central monitoring point
that captures the arrival time of all peers and the departure
time of all peers that depart gracefully. Sessions that ended
ungracefully were eliminated from our analysis (22% in Red
Hat, 70% in Debian, 27% in FlatOut). While tracker logs
provide a comprehensive account for a particular tracker,
it is possible that different trackers see different behavior.
To account for this, we present results from three different
trackers, serving two different types of files: two Linux ISO
images and one game demo.

For Gnutella, we use snapshots of all the peers in the
system collected with Cruiser at approximately 7 minute in-

tervals. For Kad, we use Cruiser’s Kad module to capture
all the peers within a particular zone of the DHT. Since each
peer selects its Kad ID uniformly at random, there is no cor-
relation between a peer’s zone and its session length. Unlike
sampling a set of addresses and probing them, zones allow us
to monitor the arrival of new peers and therefore do not suf-
fer the drawbacks of closed populations. For these reasons,
zones are a representative way of characterizing the overall
system behavior with respect to churn. In Section 4.4, we
address the possibility that some peers may be missing from
the snapshots (i.e., false negatives).

4.3 Handling Long Sessions

Because we can only make observations for a finite length
of time, we must carefully account for long sessions. Given
a measurement window of length τ , we can compute the
length of each session that begins and ends within the win-
dow. However, this would lead to a significant bias towards
shorter sessions. For example, we could only observe a ses-
sion of length τ if it started exactly at the beginning of our
measurements, whereas we would have τ opportunities to
observe a session of unit length. Worse still, we are not able
to measure any sessions longer than τ .

We use the “create-based method” employed by Saroiu et
al. [23] to overcome this dilemma. We divide the measure-
ment window into two halves, and only consider sessions
that begin during the first half. This provides equal op-
portunity to observe session lengths less than τ

2
. We cannot

make unbiased measurements of the length of longer sessions
using this method. However, we can observe how many ses-
sions started with a length greater than τ

2
, allowing us to

count sessions that continue past the end of our measure-
ment window, even though we cannot measure them. In
summary, our sample includes all the sessions which begin
in the time period [0, τ

2
], either by measuring their session

length or by noting that the session length is greater than
τ

2
.
Our initial measurements, as well as previous studies [6],

showed fluctuations in network size correlated with the time
of day. In this initial study, we are interested in studying the
average behavior and reserve exploring the influence of time
of day for future work. Therefore, we must capture all times
of day roughly equally by either choosing τ = k · 2 days,
where k is a positive integer, or chosing τ ≫ 2 days.

4.4 False Negatives

Unlike BitTorrent, in Gnutella and Kad there is the possi-
bility that a peer is actually online even though it is missing
from a snapshot. This could occur, for example, due to sig-
nificant network congestion between the observation point

Gnut 5
Gnut 4
Gnut 3
Gnut 2
Gnut 1

Session Length

o
f
le

n
g
th

≥
x

U
n
d
er

co
u
n
te

d
se

ss
io

n
s

1m2m 5m 12m30m1h 2h 5h 12h 1d

100
90
80
70
60
50
40
30
20
10
0

(a) Gnutella

Kad 4
Kad 3
Kad 2
Kad 1

Session Length

o
f
le

n
g
th

≥
x

U
n
d
er

co
u
n
te

d
se

ss
io

n
s

1m2m 5m 12m30m1h 2h 5h 12h 1d

100
90
80
70
60
50
40
30
20
10
0

(b) Kad
Figure 2: Upper-bound on the percentage of missed observations due tofalse negatives

and the peer. Even when the chance of false negatives is
small, the impact on measurements of long sessions is sig-
nificant. For example, polling every 5 minutes with a 1%
chance of a false negative per peer can decrease the observed
1-day sessions by 94%. Because false negatives are inaccu-
racies in the measurements themselves, we cannot directly
measure how often they occur. However, we can draw some
inferences from the data. We consider two types of false
negatives that could theoretically occur:

Systematic failures: Some peers may be very prone to be-
ing missed by the crawler, perhaps due to routing instability
between the observation point and the peer. If the failure is
permanent and the peer is never captured, no sessions are
observed and the peer is simply omitted from the data and
does not significantly impact the results. If the failure is
intermittent, the peer will appear to flap, frequently going
up and down. In Section 6.3, we show that few peers exhibit
flapping behavior.
Random failures: Random failures are cases where the
crawler randomly misses some fraction, λ, of peers during
each crawl. Even if λ is quite low, the cumulative probabil-
ity of a false negative grows exponentially with the session
length. The observed session length distribution is therefore
limited by the exponential distribution with rate parameter
λ. We can leverage this fact to compute an upper-bound on
λ as follows, using our Gnutella 1 dataset as an example.

We observed that 2.2% of sessions had a length of 1 day or
more. Using the mean crawl duration of ∆ = 6.7 min, we
compute the predicted decrease in these sessions according
to the exponential distribution: exp

`

−λ ·
1 day

∆

´

. For ex-
ample, if λ = 10%, then we would expect to observe only
1 in every 3.1 trillion sessions that are 1 day or longer.
Since 2.2% is substantially more than 1 in 3.1 trillion, λ

must be significantly smaller than 10%. We can compute
an upper-bound on λ by solving 2.2% = exp

`

−λ ·
1 day

6.7 min

´

which yields λ = 1.8%. In fact, λ must be significantly lower,
otherwise the observation of 2.2% would only be possible if
nearly all sessions were at least 1 day in length.

Given an upper-bound on λ, we can compute an upper-
bound on the number of reduced observations as a function
of session length, shown in Figure 2. Short and moderate
length sessions (up to an hour) are not significantly affected;
however, long sessions (5 hours and longer) may be dra-
matically undercounted. We factor this limitation into our
conclusions as we analyze our results.

4.5 Handling Brief Events

The granularity of polling can lead to measurement over-
sights. If a brief departure is missed, two sessions may look

like one longer session. On the other hand, very short ses-
sions may not be observed at all.

In BitTorrent, a centralized tracker records all events, so
brief events are not a problem. Even if the events are shorter
than the logs’ granularity (1 second), they are still recorded
in order.

For Gnutella and Kad, we are limited by the snapshot
granularity of around 7 minutes and 4 minutes, respectively.
Very short sessions will be missing from the data, but this
does not adversely impact our observations of other sessions.
Brief departures pose a larger problem, as they may artifi-
cially inflate the number of observed long sessions. However,
in Section 6.3 we present evidence that few peers repeatedly
come and go, suggesting that the number of errors of this
type is small. Moreover, it is outweighed by the problem of
false negatives, described in the previous subsection, which
causes the number of long sessions to be under-counted.

4.6 NAT

Network Address Translation (NAT) devices present an ob-
stacle to observing churn in two ways. First, they can make
it difficult to observe a peer at all, since it is not possible to
send the peer unsolicited packets to check its status. This
could prevent any NATed or firewalled peers from being in-
cluded, as many as 73% of all peers [8]. Second, if there are
several peers behind a single NAT device, they may all look
like one peer with the NAT device’s external IP address.
As a result, as long as any of the actual peers is up, the
single observed peer will appear to be up, creating one ar-
tificially long session. Typical home users with a NAT and
only one peer behind it do not pose a problem; however,
erroneous data points will be collected if a large organiza-
tion has many users all connecting to the same P2P network
through a NAT device.

In BitTorrent, we don’t need to contact peers, since they
contact the tracker, overcoming the first difficulty. To over-
come the second difficulty, we use a heuristic to identify IP
addresses which appear to be NAT devices with multiple
peers and eliminate those IP addresses from our dataset.
BitTorrent clients generate a random identifier on start-up,
which is transmitted to the tracker and stored in the tracker
logs. If an IP address is downloading the same file using
multiple identifiers simultaneously, we classify it as a NAT
device with multiple peers. Table 2 shows the number of IP
addresses observed and eliminated from each log.

As a DHT, Kad requires all participating peers to be
able to directly receive unsolicited TCP and UDP packets.
Therefore, none of the Kad peers are behind NAT devices,
eliminating the NAT problem. While there are NATed peers

Dataset Fig. 1 Fig. 3,12 Fig. 4,5a Fig. 5b,5c Fig. 6 Fig. 9 Fig. 10 Fig. 11

Gnutella 1 430 N/A 5,624,972 N/A 154,804,229 5,670,886 2,850,712 3,118,797

Gnutella 2 714 N/A 11,713,861 N/A 263,595,662 11,700,224 8,697,797 3,182,355

Gnutella 3 561 N/A 9,743,605 N/A 221,638,443 9,749,129 6,573,694 3,368,625

Gnutella 4 390 N/A 13,232,322 N/A 154,978,617 13,256,624 9,579,572 3,834,708

Gnutella 5 423 N/A 12,117,124 N/A 155,671,531 12,116,071 8,550,825 3,737,315

Kad 1 844 N/A 7,104 N/A 404,751 7,136 5,037 2,299

Kad 2 810 N/A 6,326 N/A 390,874 6,303 4,348 2,254

Kad 3 845 N/A 6,161 N/A 397,301 6,175 4,280 2,135

Kad 4 2,573 5,676 2,723 N/A 337,722 2,713 2,205 540

BitTorrent Red Hat 2,457,473 43,956 25,782 4,058 804,296 5,627 2,294 147,536

BitTorrent Debian 9,386,976 160,020 28,047 7,250 5,856,787 13,590 16,729 137,382

BitTorrent FlatOut 9,387,684 1,050 648 398 8,409 129 52 5,542

Table 3: Number of observations for data presented in figures

that make use of the Kad overlay, they do not participate
in the overlay itself and are not part of our study.

For Gnutella, the snapshots captured by Cruiser contain
all the peers directly contacted as well as all of their neigh-
bors, including NATed peers. Therefore, contacting NATed
peers is not necessary to establish their presence. However,
we lack a good heuristic for Gnutella to detect when there
are multiple peers behind one NAT device. This introduces
a potential bias in our Gnutella data towards long sessions.
Again, the typical home user with a NAT device does not
pose a problem; only large organizations with multiple P2P
users all behind one NAT device will cause measurement
errors.

4.7 Dynamic Addresses

DHCP and PPP dynamically assign IP addresses to hosts.
Under normal circumstances, as long as the host remains up,
its IP address will not change. Therefore, dynamic address
assignment is not a problem for measuring the length of
sessions. However, it can become problematic for measuring
the gap between sessions or correlations across consecutive
sessions. When the peer is not continuously participating in
the P2P network, the peer’s host may have gone down and
later returned with a different IP address.

Dynamic address assignment can make it difficult to make
conclusions about user behavior. However, it is sometimes
useful to know whether any peer is likely to be available at
a particular IP address. For example, imagine designing the
bootstrapping mechanism that helps integrate the peer into
the overlay when the application starts. When the applica-
tion exits, it stores to disk a cache of IP addresses of other
peers so that when it starts again it can attempt to contact
them. Ideally, the application wants to store IP addresses
that have a high probability of being up later. It doesn’t
matter if the IP address represents the same user; the im-
portant part is whether there is a peer at that IP address.
For these reasons, dynamic addresses are not a serious prob-
lem as long as only appropriate conclusions are drawn from
the data.

Studying user behavior requires persistent unique identi-
fiers that precisely identify particular users across sessions
even when their IP address changes. Kad is the only one
of the systems we examine that provide persistent unique
identifiers. While BitTorrent peers also use unique identi-
fiers, these identifiers are not persistent across sessions; the

Log Total IPs NAT (Eliminated)

BT Red Hat 115,016 9,022 (8%)

BT Debian 23,880 3,964 (17%)

BT FlatOut 1,250 64 (5%)

Table 2: Total IP addresses in BitTorrent logs and the fraction eliminated
due to NAT

Dataset Observations 1 Hour 2 Hours 8 Hours

Gnutella 1 5,624,972 2,307,729 1,493,194 456,830

Gnutella 2 11,713,861 3,137,153 1,691,327 412,641

Gnutella 3 9,743,605 3,307,803 1,891,606 474,570

Gnutella 4 13,232,322 4,028,592 2,046,154 322,369

Gnutella 5 12,117,124 3,758,452 1,927,332 350,549

Kad 1 7,104 2,681 1,968 810

Kad 2 6,326 2,719 1,974 805

Kad 3 6,161 2,566 1,918 814

Kad 4 2,723 791 557 205

BT Red Hat 23,266 4,526 3,727 1,853

BT Debian 24,335 7,660 5,886 2,504

BT FlatOut 600 170 67 15

Table 4: Number of observations for Fig. 7 and 8

BitTorrent application selects a new identifier each time it
starts2. Characterizing the behavior using persistent iden-
tifiers is useful for the design of P2P applications that store
persistent state across sessions. Therefore, when studying
behavior across sessions in Section 6, we examine the be-
havior of users in Kad and the behavior of IP addresses in
Gnutella and BitTorrent.

5 Group-Level Characterization

This section explores two fundamental properties of churn
which do not rely on maintaining peer identity across ses-
sions as follows: (i) the inter-arrival time is the time that
passes from the start of one session to the start of the next
session (not necessarily by the same peer) and (ii) the ses-
sion length is the time that passes from the start of a ses-
sion until the end of that session. In other words, the inter-
arrival distribution captures the pattern of when peers arrive
and the session length distribution captures how long they
stay in the system. Prior simulation and analysis studies
have typically assumed both distributions to be exponen-
tial [15, 18, 22], though some studies have modeled the ses-
sion length distribution as Pareto [14,16] (i.e., heavy-tailed)
as suggested by earlier measurement studies [5, 9, 24]. We
found that neither exponential nor Pareto distributions were
consistent with our session length data.

Additionally, to provide greater insight into the implica-
tions of the session length distribution, Section 5.4 empiri-
cally examines how long peers in the system have been up
(the uptime) and Section 5.5 examines the power of uptime
as a predictor for how much longer peers will remain in the
system (the remaining uptime).

Throughout Sections 5 and 6, we present many com-
plementary cumulative distribution functions (CCDFs).
Tables 3 and 4 list the number of observations from each

2This is true of the official BitTorrent application at the time
our traces were collected. More recent versions of BitTorrent
or third-party implementations may have different behavior.

Exponential
Weibull

BT Red Hat

Inter-arrival Times (minutes)

C
C

D
F

(%
)

160140120100806040200

100

10

1

0.1

0.01

0.001

(a) BitTorrent Red Hat

Kad 4
Exponential

Weibull
BT Debian

Inter-arrival Times (minutes)

C
C

D
F

(%
)

876543210

100

10

1

0.1

0.01

0.001

0.0001

(b) BitTorrent Debian and Kad

Exponential
Weibull

BT FlatOut

Inter-arrival Times (minutes)

C
C

D
F

(%
)

1400120010008006004002000

100

10

1

0.1

0.01

(c) BitTorrent FlatOut
Figure 3: Inter-arrival Time Distribution CCDFs

dataset used in constructing these CCDFs. The values
vary from one figure to another depending on what type of
behavior we are observing.

5.1 Distribution of Inter-Arrival Time

The distribution of peer inter-arrival times is an important
distribution for understanding churn because it captures the
pattern of how peers arrive. To measure inter-arrival times,
we must be able to observe individual arrival events. In
Gnutella, this is not possible since tens of thousands of new
peers arrive between two consecutive snapshots. In con-
trast, measuring inter-arrival time in BitTorrent is straight-
forward since tracker logs capture arrival times with one-
second granularity. To examine inter-arrival time in Kad,
we use our Kad 4 trace which monitors a small fraction of
the network with 1 minute snapshots. However, even at 1
minute, the granularity is poor. Therefore, we rely primarily
on our BitTorrent data.

Figure 3 presents log-linear plots of the distribution of
peer inter-arrival time for four datasets: BT Red Hat, BT
Debian, BT FlatOut, and Kad 4. All four datasets appear
roughly linear on the log-linear scale, which might suggest
that the exponential distribution is a good fit. However, for
the FlatOut and Red Hat datasets, there is slight curvature
on the left side of the graphs, making a good fit impossible.
For the Debian datasets, there is also some curvature, but
it is much less pronounced. The Kad dataset, shown in
Figure 3b, has poor granularity but does serve to illustrate
that the inter-arrival behavior in Kad is at least roughly
similar to that found in BitTorrent.

In addition to the data, Figure 3 shows a fit of the expo-
nential distribution, indicating that there are more extreme
values than are captured by that model. For example, in
the FlatOut data, 33% of inter-arrival times are less than 10
minutes, while the exponential model predicts 9%. On the
other hand, in the FlatOut data, 1.5% of inter-arrival times
are longer than 10 hours, while the exponential model pre-
dicts 0.38%. Exponential distributions are typically used
to model behavior resulting from a large number of inde-
pendent events. However, peer arrivals are not completely
independent. Users are less likely to be active during cer-
tain times of day (or during certain days of the week), and a
surge of arrivals may occur when a link to a file appears on a
popular website. Deviations from the exponential model are
caused by these correlations. Despite these deviations, some
may still find it acceptable due to its simplicity. However, a
more accurate model is desirable.

Weibull distributions are a more flexible alternative to
exponential distributions. In fact, exponential distributions

are a special case of the Weibull distributions where the
shape parameter is k = 1. For inter-arrival times, a Weibull
distribution provides a much better fit, most noticeably
shown in Figures 3a and 3c, with scale parameter k = 0.79
for Debian, k = 0.53 for Red Hat, and k = 0.62 for FlatOut.
We found the parameters of the distributions using the
non-linear least-squares method on the log-linear transform
of the CCDF.

An alternative hypothesis is that over short time scales,
inter-arrivals can be described an exponential distribution,
but the parameter of the distribution varies with the time
of day. To explore this hypothesis, we divided the Debian
dataset into 1 hour segments, containing a few hundred
events each on average. For each segment, we computed
the best fit via Maximum Likelihood Estimators for several
types of distributions and computed the Anderson–Darling
goodness-of-fit test statistic. At the p = 5% level, neither
exponential, Weibull, nor log-normal distributions regularly
provided good fits. We repeated the experiments on the
Red Hat dataset which contains only a few dozen events
per hour on average. Exponential and Weibull distributions
were each able to fit the data in more than 93% of all cases.
At the p = 5% level, we would expect at least 5% of all cases
to fail the test, for a good candidate distribution, so 93% is
quite good. We did not examine the FlatOut data in this
way because it is too sparse to meaningfully divide into 1
hour segments.

An interesting question is: Why does the exponential dis-
tribution appear to be a good candidate with the Red Hat
data but not the Debian data? The Debian data provides
a larger number of events per 1 hour segment, which in-
creases the power of the Anderson–Darling goodness-of-fit
test. Consequently, if exponential (and Weibull) distribu-
tions are close, but imperfect, models of user behavior, they
might be accepted with a small number of data points but
rejected when we supply a large number of data points (i.e.,
enough data points for the test to detect the difference). On
the other hand, the difference could be to a fundamental
difference in user behavior between the two datasets. To
explore this issue, we further divided the Debian events into
6 minute segments so that each segment has a few dozen
on average. Only 28% of segments could be fit with an ex-
ponential distribution and 38% with a Weibull distribution,
suggesting that there are fundamental differences in inter-
arrival patterns from one torrent to another.

5.2 Distribution of Session Length

One of the most basic properties of churn is the session
length distribution, which captures how long peers remain

Gnut 5
Gnut 4
Gnut 3
Gnut 2
Gnut 1

Session Length

C
C

D
F

(%
)

1m2m 5m 12m30m1h 2h 5h 12h 1d

100

10

1

0.1

(a) Gnutella

Kad 4
Kad 3
Kad 2
Kad 1

Session Length

C
C

D
F

(%
)

1m2m 5m 12m30m1h 2h 5h 12h 1d

100

10

1

0.1

(b) Kad

BT FlatOut
BT Debian

BT Red Hat

Session Length

C
C

D
F

(%
)

1m2m 5m 12m30m1h 2h 5h 12h 1d

100

10

1

0.1

(c) BitTorrent
Figure 4: Session Length CCDFs

BT FlatOut
BT Debian

BT Red Hat

Session Length

C
C

D
F

(%
)

2s 10s 1m 10m 1h 5h 1d 1w 8w

100

10

1

0.1

0.01

0.001

(a) BitTorrent session times

BT FlatOut
BT Debian

BT Red Hat

Completion Time

C
C

D
F

(%
)

2s 10s 1m 10m 1h 5h 1d 1w 8w

100

10

1

0.1

0.01

0.001

(b) Completion times

BT FlatOut
BT Debian

BT Red Hat

Lingering Time

C
C

D
F

(%
)

2s 10s 1m 10m 1h 5h 1d 1w 8w

100

10

1

0.1

0.01

0.001

(c) Lingering after download completion
Figure 5: Interactions with Transfer Time

in the system each time they appear. Figure 4 presents the
distribution of session length across different datasets for
each system. Figure 5a presents a different angle on the ses-
sion lengths in BitTorrent using a wider x-axis scale. These
results demonstrate the following points: First, within a sin-
gle system, the distribution of session length from different
datasets are very similar. This implies that the distribution
of session length does not significantly change over time.
Second, and more importantly, the distributions in different
systems are similar, suggesting that user behavior, which de-
termines the session length distribution, is consistent across
different P2P systems. Third, session lengths clearly do not
follow the commonly-used exponential distribution, which
features a sharp “knee” when plotted on log-log scale due to
the relative absence of large values.

Prior studies [5,9,16,24] have reported that peer sessions
lengths are heavy-tailed. A heavy-tailed distribution is one
with the following property [7]:

P [X > x] ∝ x
−α

, as x → ∞, 0 < α < 2

The parameter α is called the tail index and is equal to
the “slope” of the tail on a log-log plot. As a result, if a
distribution is heavy-tailed, on a log-log plot of the CCDF
the tail will appear linear with a “slope” between 0 and 2.
Examining the tails in our BitTorrent data, we find α does
not fall in this range. By fitting a line to the log-log trans-
form of the tail of the data, we found α = 2.5 for Red Hat,
α = 2.7 for Debian, and α = 2.1 for FlatOut. Therefore,
we must conclude that session lengths in BitTorrent are not
heavy-tailed.

Since neither the exponential nor heavy-tailed distribu-
tions proved consistent with our observations, we investi-
gated two other models that might provide a good fit: log-
normal distributions and Weibull distributions. These two
models are not heavy-tailed yet can include more extreme
values than exponential distributions, making them good

candidates. We found that log-normal provided a decent fit
for all three BitTorrent datasets, but significantly overesti-
mated the number of sessions longer than one day in the Red
Hat and Debian datasets. The Weibull distribution was able
to provide a tighter fit with shape (k) and scale (λ) param-
eters k = 0.34, λ = 21.3 for Red Hat, k = 0.38, λ = 42.4
for Debian, and k = 0.59, λ = 41.9 for FlatOut.

The Gnutella and Kad CCDFs (Figures 4a and 4b) ex-
hibit slight downward curvature, very similar to that seen
in BitTorrent over the same scale (Figure 4c). This suggests
that they, too, are not heavy-tailed. However, due to the po-
tential for significantly under-counting the number of long
sessions in Gnutella and Kad (as described in Section 4.4),
we cannot rule out the possibility that this curvature is a
measurement artifact. All of the Gnutella and Kad session
length datasets fit tightly to log-normal distributions and
reasonably well to Weibull distributions.

In summary, while most sessions are short (minutes),
some sessions are very long (days or weeks). This differs
from exponential distributions, which exhibit values closer
together in length, and heavy-tailed distributions, which
have more pronounced extremes (years). The data is better
described by Weibull or log-normal distributions. We will
explore the consequences of this further in the following
subsections.

5.3 Lingering after Download Completion

We found the similarity of session length distributions be-
tween BitTorrent and the other systems surprising. While
Gnutella and Kad applications provide a keyword-search fea-
ture and manage the downloading of many files, BitTorrent
is designed to download a single large file3. Intuitively,

3Modern versions of BitTorrent can manage several file
downloads within one instance of the application, but at
the time of our data each file required a separate instance.

Gnut 5
Gnut 4
Gnut 3
Gnut 2
Gnut 1

Uptime So Far

C
C

D
F

(%
)

1m 10m 1h 5h 1d 1w

100

10

1

0.1

(a) Gnutella

Kad 4
Kad 3
Kad 2
Kad 1

Uptime So Far

C
C

D
F

(%
)

1m 10m 1h 5h 1d 1w

100

10

1

0.1

(b) Kad

BT FlatOut
BT Debian

BT Red Hat

Uptime So Far

C
C

D
F

(%
)

1m 10m 1h 5h 1d 1w

100

10

1

0.1

(c) BitTorrent
Figure 6: CCDF of the uptime of peers that are in the system at any given moment

we would expect users to exit BitTorrent soon after the
file transfer completes, which would tightly couple the ses-
sion length with the transfer time, suggesting a multi-modal
distribution based on common access-link bandwidths (and
therefore common download durations). To investigate this
issue, we divide the BitTorrent sessions into two parts: (i)
the time to completely download the file and (ii) the addi-
tional time the peer lingers in the system. We call these the
completion time and the lingering time, respectively. Fig-
ures 5b and 5c depicts the distribution of these two values,
for sessions that download the entire file in a single session
(16–61% of all sessions, see Table 3). Interestingly, many
peers linger for a few hours after their download is complete,
and a few peers linger for days or weeks, particularly in the
Red Hat and Debian traces. By comparing Figures 5a, 5b,
and 5c, we can see that the tail of the session length distri-
bution is dominated by peers who are lingering long after
their download has completed. Guo et al. [10, Fig. 13(a)]
also examine the lingering time distribution (which they call
the “seeding time”) and conclude it follows an exponential
distribution due to its linear shape on a log-linear plot. How-
ever, the significant curvature on the left side of their plot
(similar to our Figure 3c) is inconsistent with an exponential
distribution but could be modeled by a Weibull distribution.

5.4 Distribution of Peer Uptime

The previous subsections presented the distribution of ses-
sion length across all sessions. However, they did not illus-
trate what combination of these peers might coexist in the
system at any point of time. To address this issue, we turn
our attention to how long the peers currently in the system
have been present (their uptime).

To compute the uptime distribution, we slightly alter the
methodology described in Section 4.3 to avoid bias towards
short-lived peers as follows. Again, we divide each measure-
ment window of length τ into two halves, A and B. For peers
in B, we can either compute their uptime or we know that
their uptime is at least τ

2
. For Gnutella and Kad, for each

snapshot in B, we observe the uptime for each peer. For Bit-
Torrent, where we have tracker logs instead of snapshots, we
observe the uptime of each peer per once per minute dur-
ing B. We then examine the distributions of all observed
uptimes.

Figure 6 shows the CCDF of the uptime for co-existing
peers within a snapshot and reveals several interesting
points. First, the uptime distribution exhibits very similar
behavior across different systems, except for the Debian
dataset. The uptime distribution in that dataset is heavily
influenced by a large number of long-lived “seed” peers run

by the Debian organization. Second, a significant fraction of
peers have an uptime longer than half our measurement pe-
riod (shown by a gap between the rightmost data-point and
the x-axis). More specifically, roughly 10%–20% of peers
per snapshot in Gnutella and Kad have an uptime longer
than one day, and around 1–3% of BitTorrent peers have an
uptime longer than two weeks for the Red Hat and Debian
traces. Third, and most importantly, these distributions
are heavily weighted towards uptimes longer than a couple
of hours, i.e., they show that the majority of peers in each
snapshot are long-lived peers. For example, if we randomly
select a peer from these systems, the probability that the
selected peer has been up for more than five hours is roughly
40% in Gnutella, 55% in Kad, and 60% in BitTorrent for
the Linux ISO images. This effect is significantly less pro-
nounced, but still present, in the FlatOut trace, where 15%
of active peers have been up for more than five hours.

The combination of the uptime distribution (Figure 6)
and the session length distribution (Figure 4) present an
enlightening view of churn in P2P systems as follows: At
any point of time, a majority of participating peers in the
system are long-lived peers. However, the remaining small
portion of short-lived peers join and leave the system at such
a high rate that they constitute a relatively large portion of
sessions. Describing this from a different angle, the session
length of a randomly selected session (Figure 4) is likely to
be short whereas the uptime of a randomly selected active
peer from the system (Figure 6) is likely to be long.

5.5 Uptime Predictability

One interesting question is whether a peer’s uptime is a good
predictor of its remaining uptime. Although Figure 4 sug-
gests this is the case, to empirically explore this property
we examine the correlation between uptime and remaining
uptime at two levels. Figure 7 depicts the CCDF of the
median4 remaining uptime as a function of a peer’s current
uptime. It shows that while uptime is in general a good pre-
dictor of remaining uptime, its strength is different across
systems and for different uptime values. More specifically,
peer uptime in Gnutella is a good indicator of remaining
uptime regardless of uptime value; the median peer has a
remaining uptime between 50% and 100% of its uptime so
far. However, the uptime of Kad peers is a stronger predic-
tor of remaining uptime up to around 4 hours. Beyond that,
the median peer’s remaining uptime increases only slowly.

4Since we cannot measure the length of very long sessions
as discussed in Section 4.3, we cannot compute the mean.
However, we do know how many of these sessions there are
and can thus find the median.

Gnut 5
Gnut 4
Gnut 3
Gnut 2
Gnut 1

Uptime So Far (hours)

R
em

a
in

in
g

(h
o
u
rs

)
M

ed
ia

n
U

p
ti
m

e

181614121086420

12

10

8

6

4

2

0

(a) Gnutella

Kad 4
Kad 3
Kad 2
Kad 1

Uptime So Far (hours)

R
em

a
in

in
g

(h
o
u
rs

)
M

ed
ia

n
U

p
ti
m

e

181614121086420

12

10

8

6

4

2

0

(b) Kad

BT FlatOut
BT Debian

BT Red Hat

Uptime So Far (hours)

R
em

a
in

in
g

(h
o
u
rs

)
M

ed
ia

n
U

p
ti
m

e

181614121086420

12

10

8

6

4

2

0

(c) BitTorrent
Figure 7: Median remaining uptime as a function of current uptime

Up 8h
Up 2h
Up 1h

Uptime Remaining

C
C

D
F

(%
)

2m 10m 1h 5h 1d 1w

100

10

1

0.1

0.01

(a) Gnutella 1

Up 8h
Up 2h
Up 1h

Uptime Remaining

C
C

D
F

(%
)

2m 10m 1h 5h 1d 1w

100

10

1

0.1

0.01

(b) Kad 1

Up 8h
Up 2h
Up 1h

Uptime Remaining

C
C

D
F

(%
)

2m 10m 1h 5h 1d 1w

100

10

1

0.1

0.01

(c) BitTorrent Red Hat
Figure 8: CCDF of Remaining Uptime for peers already up 1 hour, 2 hours,and 8 hours

Nevertheless, at x = 16 h, Kad peers have approximately
the same remaining uptime as their Gnutella counterparts.
In the BitTorrent datasets, we see a rapid increase in the me-
dian remaining uptime as the uptime approaches one hour,
but peers up for at least two hours all have approximately
the same remaining uptime. The FlatOut trace appears to
wobble, which is likely noise given the relatively small num-
ber of sessions in this dataset.

While Figure 7 presents the median remaining uptime, we
would also like to understand the variance of this predictor.
If the variance is low, that would make the predictor more
useful. To explore this, Figure 8 shows the CCDF of the
remaining uptime for peers currently up for 1 hour, 2 hours,
and 8 hours, from one trace of each system. The CCDFs
show that the reliability of the predictions is highly variable,
covering a broad range of times. For example, in Gnutella
around 50% of peers up for 8 hours will be up for at least
another 8 hours. However, the bottom 20% of the peers
will be up for less than 2 more hours, while the top 30%
will be up for more than 16 hours! In summary, our results
show that while uptime is on average a good indicator of
remaining uptime, it exhibits high variance. Therefore it
should only be used when a bad prediction does not have a
major cost but making better choices on average improves
overall performance.

6 Peer-Level Characterization

In this section, we characterize the behavior of a peer across
multiple appearances. These characterizations are useful for
both the design and evaluation of peer-to-peer systems. For
example, in the previous section we showed that the cur-
rent uptime of a peer is a rough predictor for the remaining
uptime. A peer that has just arrived cannot use this fact
to make much of a prediction. Examining multiple appear-
ances can reveal whether previous session lengths are good

predictors of future session lengths. We examine the follow-
ing characteristics: (i) the distribution of downtime, (ii) the
correlation between consecutive session lengths, and (iii) the
correlation of availability on consecutive days.

As described in Section 4.7, Kad is the only one of our
systems in which individual peers have a persistent unique
identifier. Thus, our characterizations of Kad reflect the
behavior of individual users, while our characterizations of
Gnutella and BitTorrent reflect the behavior of IP address.
Both types of characterization are useful. The behavior of
users is important when persistent state is stored across ses-
sions (such as the list of filenames that a user shares), while
the behavior of IP addresses is important when we want to
know if any peer will be available at the address (such as
when an incoming peer bootstraps).

6.1 Distribution of Downtime

We define downtime as the interval between the moment a
peer departs and its next arrival. To ensure an unbiased
selection of downtime measurements, we again apply the
window-halving methodology described in Section 4.3. The
possibility in Gnutella and Kad that the crawler misses some
peers, described in Section 4.4, has the opposite effect on
downtime observations. Rather than increasing the number
of long events, it may significantly increase the number of
short events. Figure 9 presents the distribution of downtime
for Kad (based on ID) as well as Gnutella and BitTorrent
(based on IP address) and Table 3 lists the number of obser-
vations from each dataset. The gaps between the rightmost
data-point and the x-axis represent the fraction of down-
time events which were too long to measure without bias
as well as instances where the peer never returns (i.e., in-
finite downtime). One interesting feature of these figures
is that the behavior is approximately the same in Gnutella
and Kad, despite one of the measurements being based on
ID while the other is based on IP.

Gnut 5
Gnut 4
Gnut 3
Gnut 2
Gnut 1

Downtime

C
C

D
F

(%
)

1m2m 5m 12m30m1h 2h 5h 12h 1d

100

80

60

40

20

0

(a) Gnutella (based on IP address)

Kad 4
Kad 3
Kad 2
Kad 1

Downtime

C
C

D
F

(%
)

1m2m 5m 12m30m1h 2h 5h 12h 1d

100

80

60

40

20

0

(b) Kad (based on node ID)

BT FlatOut
BT Debian

BT Red Hat

Downtime

C
C

D
F

(%
)

2s 10s 1m 10m 1h 5h 1d 1w 8w

100

80

60

40

20

0

(c) BitTorrent (based on IP address)
Figure 9: Downtime Distribution CCDFs

Gnut 5
Gnut 4
Gnut 3
Gnut 2
Gnut 1

Session Length

N
ex

t
S
es

si
o
n

L
en

g
th

1m2m 5m 12m30m1h 2h 5h 12h 1d

1m
2m
4m
7m

15m
30m

1h
2h
5h

12h
1d

(a) Gnutella (based on IP address)

Kad 4
Kad 3
Kad 2
Kad 1

Session Length

N
ex

t
S
es

si
o
n

L
en

g
th

1m2m 5m 12m30m1h 2h 5h 12h 1d

1m
2m
4m
7m

15m
30m

1h
2h
5h

12h
1d

(b) Kad (based on node ID)

BT FlatOut
BT Debian

BT Red Hat

Session Length

N
ex

t
S
es

si
o
n

L
en

g
th

1m2m 5m 12m30m1h 2h 5h 12h 1d

1m
2m
4m
7m

15m
30m

1h
2h
5h

12h
1d

(c) BitTorrent (based on IP address)
Figure 10: Correlation between Consecutive Session Length

These CCDFs reveal a number of interesting qualities.
First, the behavior in BitTorrent is significantly different.
In Gnutella and Kad, most departing peers return within
1 day (70–85% in Gnutella and 90% in Kad), while in Bit-
Torrent most peers do not appear to return at all. Second,
in Gnutella and Kad peers that will return have a strong
tendency to return sooner rather than later. For example,
departed peers return within 1 hour 40–70% of the time
in Gnutella and 65–80% of the time in Kad. In BitTor-
rent, a departed peer is somewhat more likely to reappear
within a few minutes, but after that has a relatively equal
probability of returning at any point between 10 minutes
and 1 week, if it returns at all5. This difference between
systems is likely due to their different modes of use. In
Gnutella and Kad, users make regular use of the overlay to
discover and download new files. Users join a BitTorrent
overlay, on the other hand, to download one particular file.
While they may depart prematurely and complete a down-
load later, once they have downloaded the file they have
little motivation to return. In summary, our results show
that in a content-distribution system, departed peers are un-
likely to return. However, those that return are equally likely
to return at any time. In contrast, most peers in file-sharing
systems do return, and there is a strong tendency to return
sooner rather than later.

6.2 Correlation in Session Length

Another interesting question is “How correlated are ses-
sion lengths across different appearances of a single peer?”
Characterizing such an effect illustrates whether past session
lengths of a peer are a good predictor of its future session

5Guo et al. [10] character the downtime of peers in BitTor-
rent (which they call the “sleeping time”) as exponential.
However, this conclusion may be an artifact caused by in-
correctly handling long-sessions as described in Section 4.3.

lengths. For example, in Gnutella, a peer can promote it-
self to an Ultrapeer earlier if it can reliably estimate that
its remaining uptime is likely long. We explore this corre-
lation across consecutive sessions as follows. For a peer p

that appears np times during our measurements, there are
(np − 1) pairs of consecutive sessions with session lengths
(sp,i, sp,i+1) for i ∈ [1, np − 1]. Given the set of all pairs,
across all peers, with a first session of length x, Figure 10
presents the median4 second session’s length. These figures
show that there is a strong correlation between consecutive
session lengths in Kad (based on ID) and in Gnutella (based
on IP address). However, session lengths in BitTorrent do
not exhibit a clear correlation. This result is not surprising
because the pattern of participation in BitTorrent is likely to
be different from Kad or Gnutella. In summary, past session
length of a peer is a good predictor of its next session length
in both structured and unstructured file-sharing applications,
but not in content-distribution systems such as BitTorrent.

6.3 Correlation in Availability

The availability of a peer is the fraction of time the peer
is available in the system, which is a coarse measure of the
peer’s overall participation regardless of its pattern of ap-
pearance. For example, a node with 50% availability during
one day, might appear just once for 12 hours, or appear
4 times and stay 3 hours during each appearance. In this
section we examine correlations in the availability of peers,
from one day to another.

To study peer availability, we divide each two-day dataset
into two windows of one-day length and examine the corre-
lation between the availability of peers over these two con-
secutive days. For the longer BitTorrent datasets, we use
each pair of consecutive days. Figure 11 depicts the median
availability in the second day as a function of the availability
on the first day. These results show that a strong correla-
tion exists for availability in Gnutella and Kad. However,

Gnut 5
Gnut 4
Gnut 3
Gnut 2
Gnut 1

Availability Day 1 (%)

A
va

il
a
b
il
it
y

D
ay

2
(%

)

100806040200

100

80

60

40

20

0

(a) Gnutella (based on IP address)

Kad 4
Kad 3
Kad 2
Kad 1

Availability Day 1 (%)

A
va

il
a
b
il
it
y

D
ay

2
(%

)

100806040200

100

80

60

40

20

0

(b) Kad (based on node ID)

BT FlatOut
BT Debian

BT Red Hat

Availability Day 1 (%)

A
va

il
a
b
il
it
y

D
ay

2
(%

)

100806040200

100

80

60

40

20

0

(c) BitTorrent (based on IP address)
Figure 11: Correlation in Availability

Gnut 5
Gnut 4
Gnut 3
Gnut 2
Gnut 1

Apperances per Day

C
C

D
F

(%
)

706050403020100

100

10

1

(a) Gnutella (based on IP address)

Kad 4
Kad 3
Kad 2
Kad 1

Apperances per Day

C
C

D
F

(%
)

706050403020100

100

10

1

(b) Kad (based on node ID)

BT FlatOut
BT Debian

BT Red Hat

Apperances per Day

C
C

D
F

(%
)

706050403020100

100

10

1

(c) BitTorrent (based on IP address)

Figure 12: Appearances

BitTorrent does not exhibit such a clear correlation, except
for one case: if a peer is up for a full 24 hours, it is likely to
be up for the next full 24 hours as well.

One interesting question is: “How many appearances per
day does a peer make?” Figure 12 presents the distribu-
tion of the number of appearances per day. It shows that
more than half the peers in both systems appear only once
per day while a very small number of clients may return to
the system very often (up to 60 times per day). Bhagwan et
al. [3] show the availability of different peers are mostly inde-
pendent. Their results are complimentary to ours, since we
examine the correlation in availability of a single peer across
multiple measurement windows while they looked for corre-
lations across multiple peers in the same measurement win-
dow. In summary, the availability of individual peers across
two consecutive days are strongly correlated. Furthermore,
most observed peers appear only once per day.

7 Design Implications

In this section, we discuss a couple of key implications of
our findings on the design of P2P applications. To grace-
fully cope with churn, P2P systems must be able to effi-
ciently handle the significant fraction of peers who join the
system for just a few minutes. In particular, churn could
significantly affect the connectivity of P2P overlays. To im-
prove resiliency against churn, each peer should prefer to
maintain routing information about other stable long-lived
peers. This approach implies that long-lived peers maintain
state about each other and provide a backbone of connectiv-
ity among peers. For example, peers in a DHT should select
long-lived peers as neighbors to ensure better connectivity
and resiliency against churn (e.g., [16,20]).

Our results suggest two reliable strategies for identifying
long-lived peers as follows: (i) randomly selecting a set of
peers that are all active at the same time is likely to capture

long-lived peers since the distribution of uptime among peers
up at any given moment (Figure 6) is weighted more heav-
ily towards long-lived peers, or (ii) observed peers must be
weighted by the number of times they are observed. The key
point is that observations made over time become skewed
towards the larger number of short-lived peers if the ob-
servations are not weighted back in favor of the long-lived
peers.

Our results motivate a scalable and low cost bootstrap-
ping mechanism that does not require a central bootstrap-
ping node. In particular, we showed that 20%–30% of peers
at any moment have an uptime longer than one day. This
implies that each peer can select and cache IP addresses of
several long-lived peers using one of the strategies we de-
scribe above. To connect to the system at any later time,
each peer can contact cached long-lived peers to locate a
participating peer in the system. Maintaining a sufficiently
large cache of long-lived peers ensures that each peer can al-
ways successfully bootstrap to the system without the need
to contact a well-known, centralized address. In contrast,
selecting cached peers based on a first-in first-out strategy,
as currently implemented by many Gnutella clients, tends
to generate a list of short-lived peers that are unlikely to be
available.

Finally, the strong correlation in the length of consecutive
sessions and availability implies that a P2P application can
roughly estimate the duration of its session length (or avail-
ability per day) based on its last observed behavior. The
advantage of this approach is that it does not require the
application to wait in order to predict that the user may
have a long session.

8 Conclusions and Future Work

This paper took a major step towards increasing our under-
standing of churn by characterizing different aspects of peer

dynamics in three different classes of P2P systems: Gnu-
tella, Kad and BitTorrent. We identified an array of mea-
surement pitfalls in characterizing churn, such as biased peer
selection and false negatives, and either addressed them or
bound their resulting error. Our main findings, listed in
Section 1, present new insight into peer dynamics which can
be used in the design and evaluation of churn-aware P2P
applications. In particular, we found that the session length
distribution is neither Poisson nor Pareto and is more accu-
rately modeled by a Weibull distribution. Good models for
these distributions are required for making accurate evalu-
ations of proposed P2P protocols, via either simulation or
analysis.

We are pursuing this work in several directions. We are
investigating potential heuristics to identify when a peer was
missed during a snapshot versus a genuine departure, which
will allow us to more closely study the behavior of long-lived
peers in these systems. Additionally, we plan to examine
the underlying characteristics of churn by studying how user
habits are correlated with time of day, geographical location,
and file preferences.

9 Acknowledgments

We would like to thank Ernst Biersack from the Institut
Eurecom for kindly sharing the Red Hat tracker logs [11], the
Debian organization for their tracker logs, and 3D Gamers
for the FlatOut logs. We would additionally like to thank,
for their valuable feedback on this paper, Subhabarata Sen,
Amin Vahdat, Geoff Voelker, and Walter Willinger.

This material is based upon work supported in part by the
National Science Foundation (NSF) under Grant No. Nets-
NBD-0627202 and an unrestricted gift from Cisco Systems.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF or Cisco.

10 References

[1] eMule. http://www.emule-project.net, 2005.
[2] slyck.com. http://www.slyck.com, 2005.
[3] R. Bhagwan, S. Savage, and G. Voelker.

Understanding Availability. In International
Workshop on Peer-to-Peer Systems, 2003.

[4] A. Bharambe and C. Herley. Analyzing and Improving
BitTorrent Performance. Technical Report
MSR-TR-2005-03, Microsoft Research, 2005.

[5] F. E. Bustamante and Y. Qiao. Friendships that last:
Peer lifespan and its role in P2P protocols. In
International Workshop on Web Content Caching and
Distribution, 2003.

[6] J. Chu, K. Labonte, and B. N. Levine. Availability
and Locality Measurements of Peer-to-Peer File
Systems. In ITCom: Scalability and Traffic Control in
IP Networks II Conferences, 2002.

[7] M. E. Crovella and A. Bestavros. Self-Similarity in
World Wide Web Traffic: Evidence and Possible
Causes. Transactions on Networking, 5(6), 1997.

[8] Free Peers, Inc. BearShare Network Statistics.
http://www.bearshare.com/stats/, 2005.

[9] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble,
H. M. Levy, and J. Zahorjan. Measurement, Modeling,
and Analysis of a Peer-to-Peer File-Sharing Workload.
In SOSP, 2003.

[10] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and
X. Zhang. Measurements, Analysis, and Modeling of
BitTorrent-like Systems. In Internet Measurement
Conference, 2005.

[11] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A.
Felber, A. A. Hamra, and L. Garces-Erice. Dissecting
BitTorrent: Five Months in a Torrent’s Lifetime. In
PAM, 2004.

[12] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy,
and M. Faloutsos. Is P2P dying or just hiding? In
Globecom, 2004.

[13] T. Karagiannis, P. Rodriguez, and K. Papagiannaki.
Should Internet Service Providers Fear Peer-Assisted
Content Distribution? In Internet Measurement
Conference, 2005.

[14] D. Leonard, V. Rai, and D. Loguinov. On
Lifetime-Based Node Failure and Stochastic Resilience
of Decentralized Peer-to-Peer Networks. In
SIGMETRICS, 2005.

[15] J. Li, J. Stribling, F. Kaashoek, R. Morris, and T. Gil.
A Performance vs. Cost Framework for Evaluating
DHT Design Tradeoffs under Churn. In INFOCOM,
2005.

[16] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek.
Bandwidth-efficient Management of DHT Routing
Tables. In Networked Systems Design and
Implementation, 2005.

[17] J. Liang, R. Kumar, and K. W. Ross. The KaZaA
Overlay: A Measurement Study. Computer Networks
Journal (Elsevier), 2005.

[18] D. Liben-Nowell, H. Balakrishnan, and D. Karger.
Analysis of the Evolution of Peer-to-Peer Systems. In
Principles of Distributed Computing, 2002.

[19] Lime Wire LLC. Crawler Compatability. Gnutella
Developer’s Forum, 2003.

[20] P. Maymounkov and D. Mazieres. Kademlia: A
Peer-to-peer Information System Based on the XOR
Metric. In International Workshop on Peer-to-Peer
Systems, 2002.

[21] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The
Bittorrent P2P File-sharing System: Measurements
and Analysis. In International Workshop on
Peer-to-Peer Systems (IPTPS), 2005.

[22] S. Rhea, D. Geels, and J. Kubiatowicz. Handling
Churn in a DHT. In USENIX, 2004.

[23] S. Saroiu, P. K. Gummadi, and S. D. Gribble.
Measuring and Analyzing the Characteristics of
Napster and Gnutella Hosts. Multimedia Systems
Journal, 9(2), 2003.

[24] S. Sen and J. Wang. Analyzing Peer-To-Peer Traffic
Across Large Networks. IEEE/ACM Transactions on
Networking, 12(2), 2004.

[25] K. Sripanidkulchai, B. Maggs, and H. Zhang. An
Analysis of Live Streaming Workloads on the Internet.
In Internet Measurement Conference, 2004.

[26] D. Stutzbach and R. Rejaie. Capturing Accurate
Snapshots of the Gnutella Network. In Global Internet
Symposium, 2005.

[27] D. Stutzbach, R. Rejaie, and S. Sen. Characterizing
Unstructured Overlay Topologies in Modern P2P
File-Sharing Systems. In Internet Measurement
Conference, 2005.

