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ABSTRACT
While networks have evolved in profound ways, the tools to measure
them from end hosts have not kept pace. State-of-the-art tools are
ill-suited for elucidating observed network performance impairments
and path dynamics, and are susceptible to operational policies of the
network. Consequently, the semantic gap between the application-
view of network performance vs. actual conditions has resulted in
network oblivious (NOOB) systems and applications.

To address this NOOB problem, we examine the Extended Berke-
ley Packet Filter (eBPF) as a new way to improve the practice
of gathering fine-grained network telemetry from the edge. More
specifically, by leveraging the safe and efficient in-kernel program-
ming mechanism of eBPF, we design a high-performance telemetry
framework called nooBpf with two tools—namely noobprobe
and noobflow—to quantify the actual network performance from
end hosts and offer unprecedented insights into the flow-level per-
formance, including in-network queuing and routing-induced delays.
We illustrate the potential of these two tools to address the NOOB
problem through a variety of experiments. The results of our ex-
periments strongly suggest eBPF as a promising foundation for
high-performance telemetry and for addressing the NOOB problem.
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1 INTRODUCTION
Ensuring the end-to-end performance of applications is one of the
key goals of distributed systems research. End-to-end performance,
in turn, depends on the (a) end hosts or data center servers in
which the applications are deployed and (b) wide-area networks
(WANs) including the protocols and infrastructures connecting those
hosts. Traditionally, the performance of WAN paths is character-
ized by emitting active measurements from end hosts and gathering
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telemetry information to infer or directly assess end-to-end per-
formance metrics, forwarding paths, configurations, among others
(e.g., [15, 22, 31, 32, 38]).

Unfortunately, the tools for elucidating WAN performance im-
pairments and path dynamics have not kept pace with the techno-
logical evolution of WAN and edge infrastructures [29, 41]. For
one, state-of-the-art measurement tools (e.g., [30, 34]) are based on
user-space approaches (e.g., using libpcap) and result in telemetry
information with suboptimal precision and high measurement over-
heads, obscuring the network performance characteristics. Second,
the user-space nature of these tools warrants a non-trivial amount
of changes to the applications and end systems during integration.
Third, the tools emit measurement traffic which is susceptible to op-
erational policies of WANs including blocked measurements, traffic
shaping, etc. These issues, in sum, have resulted in a semantic gap
between the application-view of network performance vs. actual per-
formance, making applications and end systems network oblivious
(NOOB) [12, 16, 39, 40, 42].

In this paper, we examine the Extended Berkeley Packet Filter
(eBPF) as a new way to address the NOOB problem and develop
two measurement tools. First is a high-performance in-kernel and
in-band active measurement tool called noobprobe, which pro-
vides three key opportunities for improving the practice of network
measurements from end hosts. First, noobprobe takes an in-band
approach and injects probes into an existing application flow, en-
suring that those probes will follow the same router-level path as
packets in an ongoing application flow. While our prior work [30, 34]
has largely focused on measuring the specific router-level paths of
application flows by setting TTLs in outgoing probes in a similar
manner as the traceroute method and collecting ICMP time exceeded
messages [27], they have used libpcap (for packet injection and
capture) or similar means. As shown in prior work [36], libpcap
introduces undesired variability in the probe emission process due
to context switching between the kernel and the user spaces, among
other overheads [28]. Besides, in-band measurements have been
shown to be more resilient to the operational policies, e.g., filtering,
of providers [11, 30, 34].

Second, noobprobe leverages the safe, in-kernel programming
mechanism of eBPF. eBPF programs, after safety verification, can
be installed at different kernel hooks or tracepoints, and have been
envisioned as a flexible and powerful means for system performance
tracing and measurement collection [5, 20]. Unlike current user-
space measurement tools, noobprobe brings the power of eBPF
to network measurements and provides visibility into high-precise
telemetry information (e.g., flow-level performance, routing-induced
delays, etc.) to end hosts. Third, noobprobe relies on two eBPF
program types: tc/cls-bpf for egress packet processing [14], and
XDP for ingress processing [21]. On the egress path, packets destined
to addresses of interest are periodically cloned, truncated in size to
be of minimum length, and the TTL modified. On the ingress path,
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payloads of ICMP time exceeded messages are matched with probes,
and, importantly, measurement traffic is dropped prior to entering
the OS networking stack. Thus, the load imposed on the host system
on packet ingress is minimal—unlike any prior system described
in the literature (see § 2 in [36]). A Python controller program
(in userspace) coordinates these two eBPF tracepoints and extracts
latency measurements from in-kernel BPF maps.

We evaluate the efficacy of noobprobe in a WAN setting. Con-
cretely, we use noobprobe to launch Network Diagnostic Tool
(NDT) [10] throughput measurements from 5 Cloudlab [18] loca-
tions to 12 measurementlab.net (M-Lab) destinations around the
world. We collect additional measurements using noobprobe with
Netflix’s fast.com as well as measurements from additional M-Lab
destinations. Using probe rates of no more than 100 probes per
second, we observe that at least 70% of routers traversed with our
probes do no apparent rate-limiting or throttling of ICMP time ex-
ceeded responses. In addition, we find that the latency measurements
gathered using our tool, while noisy, nonetheless reveal the evolution
of router queues along a path. In particular, we observe evidence
for congestion both between service providers and within service
providers. Moreover, due to the relatively high-resolution measure-
ments, we observe several instances of flow disruption due to route
changes. The nature of our measurements enables us to show that,
depending on the path, load balancing does not necessarily result
in equal treatment of application flows. Overall, our results indicate
that the in-band flow monitoring capability enabled by noobprobe
provides a new level of insight into network flow behavior without re-
quiring access to intermediate routers, and can go a long way toward
addressing the problem of application network-obliviousness.

The second tool is an XDP-based passive flow collector called
noobflow. Network flow measurement has a long history within
networking and flow records have been used for a variety of manage-
ment and monitoring tasks such as DDoS detection and detection,
capacity planning, traffic engineering, etc. [25]. We describe the
implementation of noobflow in detail and evaluate it in Cloud-
lab [18]. Our experiments show that it scales with available CPU
cores to perform 10 Gb/s lossless capture on 5 cores, with 60 byte
packets and without any special hardware acceleration or storage
configuration. We find that the main current limitation has to do with
maximum map sizes in eBPF, and thus the number of flows that can
be concurrently stored.

2 MOTIVATION AND SCOPE
Our research is motivated by the network obliviousness (NOOB) of
today’s distributed systems [12, 16] and key-value stores [39, 40].
This NOOB problem stems from three key issues with state-of-the-
art: (a) lack of tools to gather fine-grained telemetry information
about the network infrastructures from end hosts, (b) lack of capabil-
ities to collate the gathered telemetry information to understand and
infer the state of network and end-host infrastructures in a unified
manner, and (c) lack of interfaces to expose the inferred state to the
applications. Recent efforts such as MicroMon [24] seek to address
the second issue and efforts on application-network interfaces [23]
(and see references therein) focus on the third issue. To the best
of our knowledge, however, the problem of gathering fine-grained
telemetry information about the network path performance charac-
teristics from end hosts is not adequately addressed. It is indeed this

problem of gathering fine-grained measurements from end hosts that
we focus on in this paper.

To illustrate, consider the widely-used Cassandra [2]1—a NoSQL
database—that replicates data for availability across geographically
distributed data centers. Similar to LogDevice [9] and Zookeeper [3],
Cassandra uses consistent hashing for replica selection. Also, in an
attempt to accommodate network path dynamics, Cassandra uses
the Snitch mechanism for monitoring network topology and detect-
ing failures. While snitch offers the ability to route requests effi-
ciently, it is completely oblivious to wide-area network (WAN) path
dynamics—including routing changes, routing-induced delays, load
balancing, link outages, queuing delays at routers, among others—
that are known to affect application throughput [33].

Aggravating the problem further is the semantic gap between
telemetry information measurable by today’s Internet measurement
tools on WAN paths vs. telemetry information needed for e.g., en-
hancing the performance of applications. For example, the N repli-
cas of Cassandra deployed at M data center locations connected
by a WAN are susceptible to performance variability caused by the
aforementioned WAN path dynamics. Unfortunately, despite the
usefulness of end-to-end active measurement tools for illuminating
path-oriented performance characteristics of a WAN, explaining or
diagnosing the performance of individual application flows is gener-
ally not possible using today’s active measurement tools. For exam-
ple, an end-to-end router-level path identified using traceroute
may not be the same path used by an application flow from Cas-
sandra between the same endpoints due to load-balancing and other
effects [13]. Similarly, latency measurements derived from tools
such as ping may be quite different from latencies that an appli-
cation flow of Cassandra experiences along the same end-to-end
path [32]. In short, state-of-the-art measurement tools (a) provide
coarse-grained information such as latency and bandwidth, making
applications unaware of transient network congestion at certain hops,
load balancing issues, etc.; (b) warrant changes to internal mecha-
nisms of applications; and (c) are prone to operational policies (e.g.,
occasionally blocked, traffic shaping) of WAN providers.

What is critically lacking is a system for collecting fine-grained
telemetry information from end hosts and exposing that information
to applications. The telemetry information should go beyond what
is measurable with state-of-the-art network measurement tools and
offer new insights about network path dynamics to applications. One
example of insight could be to infer queuing delays at different hops
between a source and a destination. Another example is to identify
the flow-level effects and/or load balancing effects that may have an
immense impact on application performance. That is, we should be
able to infer whether the application flows are end-host (rwnd) or
in-network (cwnd) limited, and possibly even where in the network
the impairment comes from.

Scope. Note that collecting telemetry information using pro-
grammable switches (e.g., a path that a packet takes, number of
unique flows per second, heavy hitters) is limited to an intra-domain
setting (e.g., enterprise network) and does not apply to WAN paths,
which are our main focus. Similarly, in this work, we examine a
novel high-performance in-band active measurement tool for tracing

1While we use Cassandra as an illustrative example, several applications (e.g., from
Zookeeper to LogDevice to key-value stores) suffer from the NOOB problem.

measurementlab.net
fast.com
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application flow performance. The goal of this tracer is to provide
unprecedented insights into the flow-level performance telemetry
information to address issue (a), pushing the state-of-the-art further
beyond what is possible today with user-level in-band measurement
implementations (e.g., libpcap). Integrating the tool to applica-
tions (e.g., Cassandra) is beyond the scope of this work.

3 ACTIVE MONITORING WITH NOOBPROBE
In this section, we illustrate the use of eBPF for active measurement
by presenting and evaluating a tool for in-band flow measurement.

3.1 Design Approach: In-band Measurement
To tackle the pitfalls of state-of-the-art measurement tools (de-
scribed in § 2), we take an in-band measurement approach to design
noobprobe. The main idea of this approach is to inject packets
(probes) into an existing flow such that the probes have the same 5-
tuple (source/destination addresses, protocol, and source/destination
port numbers), ensuring that they will follow the same router-level
path as the application flow and bypass operational and management
policies of WAN operators.

Note that prior work [30, 34] has focused on measuring the spe-
cific router-level paths of application flows by setting TTLs in outgo-
ing probes in a similar manner as the traceroute method and collect-
ing ICMP time exceeded messages [27]. Although latency measures
can also be gathered using these tools, they have used libpcap or
similar means which may, as shown in [36], introduce undesired
variability in the probe emission process due to context switching
between the kernel and the user spaces, among other overheads [28].
Similarly, the approach of [11] requires a hybrid user-/kernel-space
approach which introduces variability into the measurement process
and undesirable context-switching overhead.

Our approach follows the novel approach of ELF [36]:
noobprobe is implemented with eBPF and thus its core functional-
ity resides in the OS kernel, enabling probes and application packets
to be emitted closely spaced in time. Consequently, the performance
(e.g., latency, and loss) experienced by application traffic is highly
likely to be experienced by probes—a key insight and feature of
noobprobe, and why we argue that it is well-suited for addressing
the problem of application network-obliviousness.

3.2 noobprobe Implementation Details
noobprobe is implemented using bcc [6]. Given a network in-
terface to use, destination hostnames of interest and an optional
program/application to run, a Python control program uses bcc to
compile and install eBPF programs for egress and ingress packet
processing. Egress handling and sending probes are done within the
tc subsystem and ingress handling is done within XDP. Because
tc eBPF programs can only be invoked in response to outgoing
or incoming packets, probe emission is dependent on the presence
of application-level traffic. When noobprobe is started, the user
can specify a probing rate, but this is, in effect, a maximum probe
rate. The probe rate r can be specified as per-hop, in which case
noobprobe attempts to meter probes out so that the rate observed
at each hop along a path ≈ r; it can also be specified as global,
in which case the probe rate observed at an individual hop will be
≈ r

pathlen .

There are several BPF maps used to track destinations of inter-
est, manage information about destinations, and provide temporary
storage for measurements. One map associates each destination IP
address (v4 or v6) of interest with a unique integer identifier; this
integer is used as an index into a BPF array of structs, where each
struct contains a nanosecond timestamp of the most recent probe
sent to a given destination, an estimated number of hops to the desti-
nation (inferred from the TTL/hop count in packets received from
the destination), the next probe sequence to use, and the next hop to-
ward the destination to probe. Also stored is a bitmap of hops toward
a destination for which ICMP time exceeded messages have been
received. This bitmap is used to detect non-responsive hops and to
avoid probing them repeatedly. A separate BPF map stores informa-
tion about probes that have been sent, but for which responses have
not yet been received. Lastly, another map stores information about
received probes, including timestamps, IP address of the responding
host, received TTL/hop count, etc. This last map is a per-cpu map
so that no locks are required to update the map as probe responses
are received.

The probe egress and ingress programs are organized using “pro-
gram maps”: an initial program checks whether the packet is IP,
and jumps to separate programs for IPv4 or IPv6 processing. On
egress, these programs perform a lookup in the destination IP ad-
dress BPF map and check whether a probe should be emitted toward
a destination to satisfy a configured probe rate. If a probe should be
emitted, the integer BPF array index associated with the destination
is stored in the skb metadata and control is handed off to a third
program that handles protocol-specific (ICMP, TCP, UDP) packet
operations. Within this third program, the skb metadata is consulted
to avoid another destination address lookup and the packet is cloned
and emitted. As a result, the original application packet is sent on
its way soon after identifying that a probe should be created. The
packet clone is then truncated in size to be of minimum length (e.g.,
40 bytes for IPv4 TCP), the IP TTL/hop count is modified in such
a way as to cycle over each hop between the source and destina-
tion. Also, checksums are recomputed, and a sequence number and
a nanosecond-scale timestamp are recorded and stored on another
map. Note that the first program invoked in the tc handler checks
whether the skb metadata has been set with a destination (integer)
identifier; if it has, this packet is ignored to avoid re-cloning a packet
that has already been cloned. Program maps are also used on packet
ingress in XDP in a similar way, providing some code modularity.

Within the network, ICMP time exceeded messages are typically
generated at router interfaces where TTLs expire, and these mes-
sages are received in the ingress (XDP) component. Furthermore,
the sequence and original destination are matched, a timestamp is
recorded, and the data are added to the per-cpu BPF map containing
measurement results. For ICMP time exceeded messages that match
an outgoing probe, the message is, by default, dropped within the
XDP processing path so as not to impose any additional process-
ing load on the host. This behavior (to drop incoming ICMP time
exceeded messages) is configurable; as a debugging aid, it can be
helpful to observe those packets from other programs. Moreover,
it is important to note that this ability to eliminate measurement
traffic before it enters the OS networking stack is a distinct advan-
tage of eBPF-based measurement over using libpcap and similar
approaches. As long as the application that was given to the Python
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control program continues to run or until interrupted, paths to desti-
nations of interest will continue to be monitored. Periodically, the
Python control program reads result data from BPF maps and ap-
pends these data to a CSV file.

An alternative design we considered is direct implementation
in the kernel, which has been employed in prior work (e.g., [35]).
While such an approach has lower overhead by virtue of avoiding
user/kernel boundary crossings, the implementation would be tightly
coupled to specific kernel versions and fundamentally non-portable.
A user-space implementation (cf. [11, 30]) using libpcap or sim-
ilar would be portable, but shown in [36] the performance cost is
too high for even modest packet rates. The eBPF approach we chose
and advocate strikes a balance between high-performance and im-
plementation using a stable and, in theory, portable API2.

4 EVALUATION
4.1 Internet Experiments
In this section, we evaluate the performance of noobprobe with
Internet-wide experiments 3. Concretely, we describe a week-long
experiment in which we monitored flows created using NDT4, which
is in use by M-Lab [10] and has been used in recent studies of
the Internet congestion [37, 38]. We focus on particular examples
that illustrate how high-fidelity in-band measurements can help in
interpreting and contextualizing flow performance.

4.1.1 Data collection. We collected a week-long data set using NDT
in conjunction with in-band flow measurements. For each data set,
we launched the NDT client from a host in one of 4 CloudLab data
centers [18] (Utah, Wisconsin, Clemson, and Paris) as well as a fixed
university location in the USA. The NDT client connected to 12
M-Lab server locations distributed across the world. Specifically, we
used M-Lab servers in Auckland, New Zealand; Amsterdam, Nether-
lands; Dallas-Fort Worth, TX, USA; Dublin, Ireland; Miami, FL,
USA; New York, NY, USA; Nairobi, Kenya; Seattle, WA, USA; Sin-
gapore; Toronto, Canada; Vancouver, Canada; and Vienna, Austria.
Measurements to each M-Lab location were collected in series every
hour. For each experiment to each location (168 for each location
and from each of the 5 launch sites), we stored the output of NDT as
well as the in-band probe data.

The NDT application creates several flows over the span of an
individual test. We note that many paths between the five client sites
and the various M-Lab servers have some form of load balancing.
Because noobprobe creates probes (packet clones) based on a
destination IP address and a maximum probe rate, all flows for a
given test are monitored. The CSV data file created by the Python
control program indicates TCP ports, etc. to disambiguate specific
flows that are monitored. For all experiments, noobprobe was
configured with a maximum probe rate of 100 probes/sec per hop.

In addition to the week-long data set, we collected measurements
using different settings of maximum probe rate, and with a broader
set of NDT servers, as well as with throughput tests using Netflix’s
2We note that although the Linux kernel is the context for many of the advances in the
eBPF landscape, there is also an implementation for the FreeBSD kernel as well as
platform-independent implementations in userspace [1].
3In all experiments, we used a Linux host running kernel version 5.15 along with bcc
commit c65446b765c9f7df7e357ee9343192de8419234a (from 28-3-2022).
4We do not claim that NDT is ideal for throughput measurement; we use this tool simply
to generate longer-lived TCP flows across the wide-area.

fast.com [8]. Moreover, we collected data from experiments in which
we ran the NDT client with noobprobe followed by running NDT
alone, to evaluate whether the probes had any measurable impact on
throughput, flow completion times, etc. Although we do not show
detailed results due to space limits, we found no statistical differences
between the NDT output with or without in-band monitoring—an
observation consistent with results observed by the authors of service
traceroute [30] and flowtrace [11].

4.1.2 Evaluation of Hop-by-Hop Latencies. We first comment on
how queuing dynamics can be revealed through noobprobe. To
this end, we show in Figure 1 the results from an experiment in
which we traced flows generated through a throughput test from the
university site using Netflix’s fast.com. Unlike NDT, fast.com
uses the standard best practice of multiple TCP flows as part of
its throughput test to saturate links between the client and a set of
dynamically chosen Netflix edge servers. In this particular test, there
were 5 parallel flows created; the figure shows results for one of
these flows. We see that there is substantial queuing oscillation at
hop 4 (some hops are elided from the plot for readability), suggesting
congestion at that point in the network path. Interestingly, hops 3–
5 are all within the same provider, indicating that congestion for
these flows does not take place at the border between providers
which has been shown in prior work to be a common site of network
congestion [17, 26]. We also observe that at 13.5–14 seconds there
are similar effects at hop 2 as in the middle plot of Figure 2 in [36].

Figure 1: Evolution of hop-by-hop round-trip times measured
by using noobprobe to monitor a fast.com throughput test
from the university site.

Lastly, we note again that the RTT measurements collected using
in-band probes bear similarity to the Time Series Latency Probe
(TLSP) method of [26], with two key differences: TLSP targets a
particular pair of interfaces along a path, and the probes are emitted
“out of band”. Because of the out-of-band nature of TLSP, it may not
be possible to relate the TLSP measurements with application flow
behavior due to load-balancing effects and the possibility that ICMP
probes take a different path than ordinary application flows.

4.1.3 Observation of Route Changes. Figure 2 depicts hop-by-hop
latencies of one flow between the university client and an M-Lab
server in Vancouver, Canada, and captures the effect of an inter-
domain route change while the flow is in progress. We observe that
at about 12 sec., there are major level-shifts in latency for hops 7–9

fast.com
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and responses from hop 6 cease. We also see that very few probes
are generated between 12–13 seconds. Since probes are cloned from
packets generated from the application, we infer that the application
flow went through a major slowdown in its sending rate (likely
TCP timeout) at the time of the route change. In all the data we
collected, we observed 9 interdomain route changes between the
university client and the Vancouver, Canada M-Lab site. Currently,
an application experiencing a route change would potentially just
observe some change in throughput, latency, or packet loss and
be oblivious to why the observed changes were occurring. With
information from a system like noobprobe, however, applications
could potentially make adjustments to avoid or appropriately react
to an impairment.

Figure 2: Evolution of hop-by-hop round-trip times measured
using noobprobe in-band probes in the presence of a mid-flow
interdomain route change. Plot shows one flow of an NDT test
to an M-Lab server in Vancouver, Canada.

4.1.4 Load Balancing Effects. Finally, because the in-band flow mea-
surements enable identification of the interface-level paths followed
by individual flows, we can directly compare performance differ-
ences that may result from uneven load-balanced paths to the same
destination. Figure 3 shows empirical CDFs of outbound through-
put measured by NDT across four load-balanced paths between the
Clemson CloudLab client and the Dallas-Fort Worth, TX M-Lab
site. The number of test instances that were identified to follow a
given route is shown in the plot legend, and we note that the length
of each route (in hops) was identical (8).

We see in the figure that download throughputs for two pairs of
the routes are similar (1/2 and 3/4), but that performance for routes
1 and 2 was frequently measured to be substantially lower than for
routes 3 and 4. We also note that a Kolmogorov-Smirnov 2-sample
test indicates that the null hypothesis, that measurements from routes
1/2 and 3/4 are drawn from the same distribution, must be rejected.
Examining other load-balanced paths (not shown due to space limits),
we found that while there are instances of similar performance
for flows following different load-balanced paths, there are also
more examples similar to that shown in Figure 3 of substantial
performance disparity.

In our data, many of the instances of load balancing we observed
were of flow-level load balancing: all packets of the same flow follow
the same interface-level path. For most clients and one particular des-
tination (Amsterdam, Netherlands) we observed interface-level paths

consistent with per-packet load balancing. Interestingly, however,
there appeared to be fundamental route changes also taking place
due to changes in the number of hops within particular autonomous
systems.

Figure 3: Empirical CDFs of inbound (download) throughput
between the Clemson cloudlab site and the Dallas-Fort Worth,
TX M-Lab server for four load-balanced paths.

5 PASSIVE MONITORING WITH NOOBFLOW
Passively collected network measurements are critical for monitoring
local network dynamics and performance from the perspective of
individual nodes within the edge-cloud environment. Traditional
passive monitoring approaches like Simple Network Management
Protocol (SNMP), while useful, are not granular or flexible enough
to gain the kind of deep insight needed in a complex multi-layered
system. In this section, we describe the design and evaluation of
noobflow, a passive network measurement agent. noobflow is a
concrete example of how eBPF-facilitated in-network computing can
be exploited for lightweight, flexible, easily-deployed edge-cloud
system monitoring.

5.1 noobflow Implementation Overview
noobflow comprises two components: a user-space program and an
XDP-based in-kernel/in-network component. The user-space portion
is implemented using the BPF Compiler Collection (bcc) library [7]
and acts as a manager of the in-kernel component. In our prototype,
this component is written in Python and can be used to dynami-
cally load, configure, and re-configure the kernel component. In a
system-wide edge-cloud setting, this component would be config-
ured through a logically centralized controller.

The user-space component creates per-CPU maps that are used to
store passively collected network flow records. Using per-CPU maps
enables noobflow to scale well with the computational resources
available on VMs deployed across the edge/cloud. Which flows
to capture information for can be dynamically reconfigured, and
standard flow information is stored, such as source/destination IPs
and ports, the number of bytes and packets received, timestamps, etc.
A double-buffering scheme is used with two per-CPU maps; while
one map accumulates newly arriving packets, data from the other
can be retrieved and cleared. Periodically, the user-space program
atomically swaps the map roles, enabling continuous, lock-free flow
collection.
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5.2 Evaluation of noobflow
5.2.1 Configuration. We design our experiment in the CloudLab
infrastructure [18], where two nodes are connected via 25 Gb/s
network interfaces 5. One node acts as the flow collector, running
noobflow, and the other uses pktgen, a high-speed packet gener-
ation tool packaged with the Linux kernel. We configured pktgen
to emit a varying rate of 60 byte UDP packets, starting at 1 Mpps (1
Million packets/sec). We also randomized the destination address
and source port to produce 25K new flows/sec. Lastly, we utilized
a number of cores on the host running pktgen to provide offered
loads from 1 Mpps up to 20 Mpps (just over 10 Gb/s, at maximum).

5.2.2 Results. We evaluated the performance of noobflow on two
criteria: performance and accuracy. In particular, our main metric
was the maximum offered packet rate that could be sustained with
zero or negligible packet loss (i.e., less than 0.0001% loss) at the
flow collector. By simply comparing the number of packets emitted
from pktgen with the number of packets received by noobflow,
we could assess whether a given packet rate could be sustained. In
our experiments, we varied the number of CPU cores available on
the host running noobflow as we also vary the offered packet rate
from the pktgen host.

Figure 4: Maximum sustainable packet rate (Mpps) by
noobflow for an increasing number of CPU cores.

Figure 4 shows results of the number of CPU cores required
(x-axis) to sustain a packet rate (y-axis, in Mpps). We observe in
the plot that a single core can handle approximately 3.66 Mpps
and that this rate scales well with additional cores. The maximum
rate we considered in our experiments, 20 Mpps, was achieved
with 5 cores (this limit is due to pktgen and is not inherent to
noobflow). Although not shown here, we found that the main
performance limitation with noobflow has to do with keeping up
with a high rate of new flow arrivals, mainly due to limits on the
size of BPF maps. We conclude from these experiments that our
eBPF-based passive measurement agent is able to scale well with
available computational resources at the edge.

6 DISCUSSION AND FUTURE WORK
Limitations. Overall, our experiences and the results of our experi-
ments described in this paper strongly suggest eBPF as a promising
high-fidelity vehicle for implementing measurement methods. There
are, however, some limitations that we have encountered. In par-
ticular, one needs to take care in regards to the movement of data
from kernel to userspace. There are facilities for pushing data from
kernel to userspace (perf buffers [4]) which cause callbacks in the
5We used Linux hosts running kernel version 5.15 along with bcc commit
c65446b765c9f7df7e357ee9343192de8419234a (from 28-3-2022).

control program (e.g., in Python), but data can also be pulled through
direct access to eBPF maps from a control program. While the perf
interface is simple, the version of bcc we employed used a fixed-size
ring buffer which could not scale to the data rate. Direct map access
does not suffer from that issue but requires careful data management.
Determining which interface is best for a given application can be
non-trivial. Another challenge has to do with debugging, which
largely relies on printf-style tracing. Silent failures can happen
(particularly, in our experience, with XDP), which can be difficult
to identify, and memory safety checks can sometimes be difficult
to understand and fix. We do, however, expect debugging tools to
improve as the eBPF subsystem matures. Lastly, there are limitations
regarding map sizes which may pose difficulties for flow capture if
the rate of new flow creation is too high. While we intend to examine
alternative flow storage architectures to address such limitations, we
also expect that future eBPF versions may relax current constraints.

With active measurement, in particular, metering out probes in
the desired way is the main challenge. Specifically, arbitrary timing
of packet emissions is not possible, especially considering eBPF
programs installed in tc and/or XDP are on the critical path for
packet processing thus making spin-waiting an unviable approach.
At the same time, any packet arrival or departure can be used to
trigger a probe within tc using the “clone and redirect” API call,
which we use in noobprobe. The clone and redirect interface must
be used with care, though, because it can lead to extended bursts
of newly cloned packets. In some cases, bursts may be desired
(and indeed, we experimented with bursts), but avoidance is also
straightforward, as we discuss in § 3. Still, for active measurement
methods that require precise spacing of packets according to some
distribution or pattern, traditional approaches or approaches using
kernel bypass (e.g., DPDK) are more appropriate at present.

Rethinking Internet measurements with noobprobe. We be-
lieve that eBPF holds a lot of promise for both active and passive
network measurement, and there are several directions we intend
to investigate in future work. In particular, we plan to revisit the
efforts of Govindan and Paxson to examine delays in ICMP packet
generation at routers [19] to better understand how to reduce or elim-
inate noise in the hop-limited latency measurements. We also plan
to collect a much broader set of measurements to better understand
wide-area queuing dynamics and congestion. Moreover, we plan
to examine alternative data organization for storing flows beyond
current eBPF-imposed limits. Finally, we plan to explore the design
and evaluation of interfaces to introduce network-awareness gained
using noobprobe to distributed systems and applications.

Revisiting the NOOB problem. As mentioned in § 2, we need to
expose the insights gathered from noobprobe and noobflow to
an inference capability to effectively tackle the NOOB problem. The
inference capability should not only have visibility into actual net-
work performance gathered using noobprobe/noobflow but also
performance information at the end. Moreover, as mentioned above
the inference capability requires new interfaces to communicate the
unified information to applications in (near) real-time to react to
diverse network events. We plan to bring this network awareness
to applications (e.g. Cassandra, ZooKeeper, etc.) and perform an
end-to-end evaluation of the interplay between noobprobe and
noobflow, inference capability, and applications as part of future
work.
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