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ABSTRACT
The envisioned capabilities of mobile edge computing are predi-
cated on a delivery infrastructure with capacity, ubiquity, robust-
ness, and capabilities to serve a country-wide user base. In this
paper, we present an empirical study of key aspects of mobile edge
infrastructure toward the goal of understanding their current char-
acteristics and identifying future deployments. We start by analyz-
ing a dataset of over 4M cell tower locations in the US. We evaluate
the geographic characteristics of deployments and highlight how
locations correspond to population density in major metropolitan
areas and in rural areas. We also show how deployments have been
arranged along highways throughout the US. Our analysis high-
light areas where new deployments would be warranted. Finally,
we analyze how cell tower deployments correspond to current ma-
jor data center locations and assess how micro servers might be
deployed to improve response times and to better serve customers.
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1 INTRODUCTION
Future mobile edge communications (MEC) systems will provide
a foundation for new applications and services that dramatically
outperform today’s offerings. One of the central tenets of the en-
visioned MEC infrastructure follows a well-worn path—push the
computational capability closer to users. This offers the opportunity
to significantly reduce edge-to-core latencies for mobile devices
that are currently on the order of hundreds of milliseconds [23].
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A starting point for our work is defining and understanding the
edge of MEC infrastructure. First, we define the edge as the locations
of cell towers that will act as the primary service infrastructure for
mobile devices.1 Next, we extend this notion to include distances
between cell towers and data centers that provide computational
and storage services. We posit that characterization of current cell
tower and data center deployments will establish a baseline for
understanding MEC performance and for identifying how new
infrastructure deployment can enhance performance.

In this paper, we report results of an analysis of mobile edge
infrastructure in the US. Our focus is a crowd-sourced database of
over 4M cell tower locations in the US from OpenCelliD [11]. We
argue that while this data is not definitive, it is large enough to
provide useful insights on cell tower deployments. Along with cell
tower locations, we also consider population distribution datasets
from Census Bureau [1] and data center locations from Internet
Atlas [19] in our analyses. Our location-based analysis utilizes a
Geographic Information System (GIS) to combine these data sets
and address questions such as: what is the distribution of cell tow-
ers in different areas of the US?, what is the average number of
residents or drivers per cell tower? what is the average distance
from cell tower to data center? and what is the potential impact of
deployment of micro servers colocated with cell towers?

Visual inspection of cell tower locations shows that deployments
are prevalent in densely populated areas and along major thorough-
fares. This aligns with the notion of assuring service to the largest
number of users. We assess the populations served by cell towers
in selected large Metropolitan Statistical Areas (MSAs), rural ar-
eas and roadways by dividing regions into Voronoi cells. We find
that cell tower deployments in large urban areas are dense and
relatively consistent in the number of residents that they serve. In
contrast, deployments in rural areas are much more sparse and less
consistent. Similarly, cell tower deployments along highways tend
to be relatively dense near urban hubs but deployments becomes
less dense along rural stretches although the gradient is different
than in residential areas.

Our analysis of cell tower deployments relative to nearest data
centers is intended to highlight how the edge in MEC infrastructure
can be moved closer to users in order to improve performance. Our
analysis shows that cell tower-to-data center distances in large
MSAs today are typically less than 10 miles, while distances in
rural areas are greater by a factor of 2. This baseline serves as a
reference for a tiered analysis of deployments of micro data centers
that would be colocated with cell towers. We show how cell tower-
to-data center distance can be dramatically reduced by focusing on

1While WiFi hotspots are ubiquitous and valuable in broad MEC deployment, we focus
on cellular infrastructure in this paper due to its broader range and ability to support
mobility.
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the Voronoi cells associated with the largest number of residents
first and then deploying successively in cells with lower population
density.

2 DATASETS
2.1 Cell Tower Dataset
In this study, we use cell tower data from OpenCelliD [11]. This
crowd-sourced dataset has information about ∼40M cell towers
worldwide. The repository includes geographic locations, Mobile
Network Operators (MNOs), Mobile Country Codes (MCCs) and
cell tower type (e.g., LTE, CDMA). Since the focus of our study is
to elucidate the deployment characteristics of the edge in the US,
we employ the following two filters.

US boundary filtering. To eliminate cell towers whose geolo-
cation is outside the US, we apply a two-step filtering based on
US boundaries. First, given a csv file of cell tower geolocations, we
create a shape file of the cell tower dataset using spatial analysis
tool from ESRI’s ArcGIS [7]. We then perform the boundary-based
filtering with overlap tool in ArcGIS, which eliminates cell towers
outside the US boundary TIGER shape file from the Census Bu-
reau [6]. We use the Geographic Coordinate System (GCS) NAD
1983 projection, which is consistent with the projection used by the
Census Bureau. After this step, we are left with a total of 5,062,816
cell towers.

NHD-based filtering. The second filter uses the National Hy-
drography Dataset (NHD) from US Geological Survey [9]. This
dataset includes features such as rivers, lakes, ponds, etc. Once
again we employ the overlap tool to eliminate cell towers located in
waterbodies. We are left with a total of 4,908,175 cell towers after
this step. Overall, ∼3% of the US cell towers were eliminated as a
result of the filtering steps.

Figure 1: Locations of cell towers in the US from OpenCel-
liD [11].

Cell tower deployments. A geographical visualization of the cell
towers in the US is shown in Figure 1. The figure highlights the
density of cell towers around major population centers as well as
a close correspondence to major highways across the country. It
also shows higher density of cell towers in the east vs. sparser
deployments in the west.

2.2 Census Dataset
Our analysis uses multiple US demographic datasets from the Cen-
sus Bureau. These datasets consist of both shape files and tables
for population estimates. We use the following shape files: (1) US

outline [3], (2) Metropolitan Statistical Area (MSA) 2 boundaries
extracted from the Core Based Statistical Area [6], (3) Block-level
population estimates from Population & Housing Unit Counts [4],
(4)Counties (and equivalent) [6], (5)Census Tracts [6], and (6) Roads [6].

Majority of the shape files listed above are not directly associated
with population estimates (Block-level shape files being the only
exception). In order to associate the population estimates with
the areas indicated, we rely on the following Census FactFinder
tables [1]: (1) Annual Estimates of the Resident Population [2], and
(2) URBAN AND RURAL Universe [12].

2.3 Data Center Locations
Internet Atlas [19] is a repository of Internet infrastructure data
gathered from public sources via web search. Data is cleaned, nor-
malized and made openly available to the community. We obtain
data center locations from Internet Atlas as the base case of our
deployment model (see §3.2). The dataset consists of geographic
information of 867 data centers in the US.

3 DEPLOYMENT ANALYSIS
3.1 Cell Tower Proximity to Population

3.1.1 Metropolitan Statistical Areas. We start by counting the
number of cell towers deployed in MSAs. There are a total of 389
MSAs in the US. Table 1 shows the top 10 MSAs ranked based on
count of cell towers deployed. To compute these counts, we use the
spatial query and overlap tools in ArcGIS and proceed as follows.
Given a shape file of point features (i.e., geographic locations of
cell towers) and another shape file of polygon features (ı.e., MSA
regions shape file from the TIGER dataset) as inputs, we compute
the spatial overlap between each MSA and the cell towers using the
aforementioned tools to produce the count of cell towers within
each MSA. Table 1 also depicts the latest (2016) annual estimate
of residential population [2], area (in square mile areas) of each
MSA, and the number of cell towers per person. From the table, we
observe a close correspondence between top MSAs with cell tower
deployments and top MSAs in terms of population densities. Due
to space constraints, our analysis is focused primarily on the top 3
MSAs.

Next, we estimate the residential population covered by each
cell tower in the top 3 MSAs. Spatial coverage of individual cell
towers has been analyzed using Voronoi tessellations (also known
as Thiessen polygons) in prior studies [16, 25]. This method does
not consider antenna characteristics, but is considered a reasonable
approximation for coverage of deployments. Thus, we use Voronoi
cells for our cell tower coverage analysis. To facilitate this analysis,
we use the Create Thiessen Polygons tool in ArcGIS, which takes
geographic locations of cell towers and MSA regions as input and
partitions an area into Voronoi cells. Specifically, for each cell tower
location, the tool produces a Thiessen polygon such that any lo-
cation within the polygon is closer (by the measure of Euclidean
distance) to its associated cell tower than to any other cell tower.
The tool then partitions the spatial plane into Voronoi cells and
hence requires a boundary to delimit the spatial plane of interest
(MSA regions shape file).
2MSAs are the most populated geographical regions in the US according to the Census
Bureau [8]
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Table 1: Cell tower deployment summary statistics for top 10 MSAs.

Metropolitan Statistical Area (MSA) Cell Towers Population Area Cell towers
Count (2016 estimate) (square miles) per person

New York-Newark-Jersey City, NY-NJ-PA 310,916 20,153,634 9,211.62 0.0154
Los Angeles-Long Beach-Anaheim, CA 248,227 13,310,447 5,699.01 0.0186
Chicago-Naperville-Elgin, IL-IN-WI 174,348 9,512,999 9,578.60 0.0183
Dallas-Fort Worth-Arlington, TX 141,100 7,233,323 9,285.22 0.0195

Atlanta-Sandy Springs-Roswell, GA 124,932 5,789,700 8,481.03 0.0216
Washington-Arlington-Alexandria, DC-VA-MD-WV 120,085 6,131,977 6,030.38 0.0196

Houston-The Woodlands-Sugar Land, TX 109,256 6,772,470 10,071.73 0.0161
Miami-Fort Lauderdale-West Palm Beach, FL 103,345 6,066,387 6,137.05 0.0170

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 100,499 6,070,500 4,870.09 0.0166
San Francisco-Oakland-Hayward, CA 91,728 4,679,166 3,426.14 0.0196

Figure 2: Cell towers (black dots), Voronoi cells (red poly-
gons) and Census Blocks (blue polygons) in the Manhattan
area of NYC.

To compute the residential population estimate served by each
Voronoi cell, we use the Census Blocks dataset. A census block is
the smallest geographic area for which the Census Bureau releases
population estimates [5]. Figure 2 depicts the location of cell towers
(black dots), the Voronoi cells computed (red polygons), and the
census blocks (blue polygons) in the Manhattan area of New York
City (NYC). We note that census blocks typically are larger than the
Voronoi cells in MSAs (also highlighted in Figure 2). To account for
this, given that we have the population estimates for each census
block, we employ the following steps to determine the population
estimate of each Voronoi cell:
• Compute area of each Voronoi cell (inm2). This step requires
re-projection of the Voronoi layer using Projected Coordinate
System (PCS). For consistency with the GCS used, we use NAD
1983 (2011) Contiguous USA Albers projection.
• Given a set of N Voronoi cells contained within a population

block B, compute the sum of square area of all the Voronoi cells

contained within a census block as: totalAreaB =
N∑
i=1

areai .

• Given the estimate for population block B, compute population
estimate (popEst ) for each contained Voronoi cell i as:

popEsti = popEstB ∗ (areai/totalAreaB ) (1)

• If a Voronoi cell i spansM population blocks, compute popula-
tion estimate as:

popEsti = max
1<=j<=M

popEstBj ∗ (areai/totalAreaBj ) (2)

We codify the above steps using the spatial join tool in ArcGIS. To
classify cell towers based on their estimated residential population,
we also employ the Classify numerical quantities using Graduated
Colors tool in ArcGIS. Figure 3-(left) shows the residential popula-
tion estimate produced by our analysis for the New York (NY) MSA.
The average and median square area of Voronoi cells in NY MSA
are 38,213.86m2 and 9,707m2. The average estimated residential
population of Voronoi cells is 25. These distributions are highly
right skewed because of the presence of larger Voronoi cells closer
to the boundary of the MSA. In the center of MSA, on the contrary
Figure 3-(left) shows highly populated, smaller sized Voronoi cells.
The right skewed nature of these distributions is observed across all
of our remaining analysis. The classification tool produces 5 classes,
each of which is color coded (for a range of population estimates).
The classes for NY MSA range from: dark green (0 - 20), light green
(21 - 55), yellow (56 - 113), orange (114 - 238) and red (239 - 2140).

Similarly, Figure 3-(center) shows the estimated residential pop-
ulation per cell tower for the Los Angeles (LA) MSA. The classes
for the LA MSA are: dark green (0 - 15), light green (16 - 42), yel-
low (43 - 87), orange (88 - 184) and red (185 - 1588). The average
and median square area of Voronoi cells in LA MSA are 46,009.28
m2 and 13,341.3m2. The average estimated residential population
of Voronoi cells is 19. Figure 3-(right) shows the same analysis
for the Chicago MSA. The classes for the Chicago MSA are: dark
green (0 - 15), light green (16 - 45), yellow (46 - 108), orange (109
- 362) and red (363 - 759). The average and median square area of
Voronoi cells in the Chicago MSA is 74,159.80m2 and 22,477.07m2.
The average estimated residential population of Voronoi cells is 15.
Overall, these results show that the correspondence between cell
towers and population density is consistent in large MSAs. This
analysis also provides an ability to categorize cell towers based on
the residential population they serve, which forms the basis of our
MEC deployment model (see §3.2).

3.1.2 Rural Area Analysis. Next, we consider cell tower deploy-
ments in less populated, rural areas. The 2010 US census [1] shows
that 19% of the US population lived in rural areas3. Census data in-
cludes urban and rural population estimates for all counties (census
tracts). A Census tract’s population estimate is obtained by aggre-
gating a set of Census Block Groups, which are in turn obtained by
aggregating a set of Census Blocks. To identify a target rural area
for analysis, we picked the census tract which had the highest rural

3The US Census Bureau has a broad definition for rural areas: areas outside urban
areas and urbanized clusters
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Figure 3: Per cell tower population estimate variation for NY MSA (left), LA MSA (center) and Chicago MSA (right).

population estimate count. This census tract was part of St. Clair
county in Alabama.

Next, we create the Voronoi cells for towers in St. Clair county
and compute population estimates using the same steps described
above, with the exception of type of population dataset employed
for this analysis. The population estimate from census block dataset
was too fine-grained for the St. Clair county. The size of Voronoi
cells and the population blocks were quite similar, but there was no
direct spatial overlap between them, thereby making any meaning-
ful estimation difficult. To consistently apply the same estimation
approach as that of MSAs, we consider the census tract dataset [1].
In the census tract dataset, the population polygons are, again,
larger than size of the Voronoi cells.

Figure 4: Per cell tower population estimate variation for St.
Clair, AL Rural Area.

Figure 4 shows the result of this analysis for St. Clair county.
The average square area of Voronoi cells in St. Clair county is
1,144,799.37m2. This is much larger than the MSAs. Correspond-
ingly, the average estimated residential population of Voronoi cells
is 52, which indicates that each cell tower serves much larger resi-
dential population than in MSAs. The classes for St. Clair county
are dark green (0 - 39), light green (40 - 109), yellow (110 - 233),
orange (234 - 407) and red (408 - 661), with the preponderance of
dark green cells clustered along two highways that span the county.

3.1.3 Highways Analysis. Drivers on highways often rely on
cell towers for GPS and other application usages. Apart from static
residential population estimates, we extend our analysis by consid-
ering dynamic usage across cell towers using the Average Annual
Daily Traffic (AADT) [14] counters, to account for the usage by
drivers. AADT counters provide a total count of vehicles per day

(averaged annually in both directions) that use a given section of a
highway. We use the road shape file dataset provided by Census
Bureau. In this analysis, we consider only those cell towers that
are within 0.25 miles from either side of highways using Locate
Features Along Route tool in ArcGIS. We consider a busy section of
highway, representing traffic between two population centers for
our analysis, the details of which are highlighted in the example
below. Similar to MSA analysis, computation of Voronoi cells for
these towers also require boundaries to delimit the spatial plane.
To account for this, we use Create Polygon Features from ArcGIS to
create bounding boxes around the selected sections of highways.

With the goal of estimating people driving on the section on a
per-hour basis, we take an average of all the AADT values available
for the chosen section of the highway. We assume that drivers
are evenly distributed on the road at any time and that there is 1
driver/cell user per vehicle. Assuming that drivers are active over
a 20 hour period, we divide the averaged AADT value by 20 to
obtain the per-hour estimates of users served by each cell tower.
Specifically, estimate for each cell tower i is:

drvrEsti = (AADTaveraдed/20) ∗ (areai/totalAreaB ) (3)

Figure 5: Per cell tower driver estimate variation for I-94 in
Wisconsin.

Figure 5 shows the result of this analysis on the 70 mile section
of I-94 between Madison, WI to Milwaukee, WI. The results show
higher cell tower density closer to the population centers, hence
fewer drivers per Voronoi cell. It also reflects that areas in between
have more demand and likely do not serve a population other than
drivers.

3.2 MEC deployment analysis
Next, we consider the problem of identifying geographic locations
for deploying MEC micro data centers. We propose a methodol-
ogy that considers incremental deployment of micro data centers
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to different categories of cell towers that were identified in our
population density analysis above.

Figure 6: Box-and-whiskers plot of distances in miles to the
closest data center / MEC micro data center for each cell
tower.

Figure 7: Average number of cell towers served per data cen-
ter / MEC micro data center.

Incremental deployment model. For each of the top-3 MSA’s
and the rural area (St. Clair county) considered in our analysis above,
we model latency as the distance of a cell tower to the closest data
center. Specifically, we consider two point shape file layers: cell
tower locations (merged with each tower’s population estimate)
and data center locations. To calculate geographical distance to
nearest data center, we use the Near tool in ArcGIS, which takes
the above two point shape file layers as input. We then propose an

Figure 8: Number of data centers (base case) and number of
micro data centers (other cases).

incremental deployment model for MEC micro data centers based
on tiers of population estimate classes identified above to show
the reduction in latencies achieved for each cell tower. Specifically,
our analysis considers the following: (1) Base case: existing data
centers from Internet Atlas dataset. (2) Tier-1 case: deployment of
MEC micro data centers co-located with cell towers, which were
classified in the red class. These are the towers which correspond
to highest population estimates. (3) Tier-2 case: deployment of
MEC micro data centers co-located with orange class cell towers.
(4) Tier-3 case: deployment of MEC micro data centers co-located
with yellow class cell towers. (5) Tier-4 case: deployment of MEC
micro data centers co-located with light green class cell towers. Our
analysis assumes that a given tower/population will be served by
the data center or MEC micro data center that is geographically
nearest (i.e., micro data centers act as aggregation sites).

For each deployment case, Figure 6 shows the box-and-whiskers
plot of distance estimates in miles for the top 3 MSAs and the rural
area. The figure highlights the reduction in distance to the nearest
data center / MEC micro data center. Figure 7 shows the histogram
of the average number of cell towers served per data center or MEC
micro data center for each MSA and the rural area. The results show
clearly the reduction of cell towers served per data center, as we
consider the progressive tiers of the incremental deployment. For
example, in New York MSA, adding 580 MEC micro data centers in
Tier-1 deployment case, decreases the mean distance from 5.8 miles
(Base case) to 1.8 miles (Tier-1 case). It also reduces the number
of cell towers served per data center from 5,552.07 (Base case) to
488.86 (Tier-1 case).

Figure 8 shows the histogram of the number of data centers for
the base case of each MSA and rural area. In case of the MSAs,
these data centers are located within the region of the MSA. On
the other hand, in the case of the rural area (St. Clair county), the
2 data centers are outside the boundary of the county (but closest
to the cell towers within the county). The figure also shows the
number of MEC micro data centers for the Tier-1 to Tier-4 cases.

To analyze the reduction in distance (to the closest data center
or MEC micro data center) achieved by our deployment model, we
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Figure 9: Per cell tower distance reduction to data center / MEC micro data center for Tier-1 case (left) and Tier-2 case (right)
for top 10 MSAs.

consider the top 10 MSAs. For each cell tower within the MSA, we
compute the distance to the closest data center from the Internet
Atlas dataset [19]. We consider this computed distance as the base
distance. Then for all the deployment tiers, we compute the distance
to the closest data center, which could either be a deployed MEC
micro data center or an existing data center. Finally, for each cell
tower, we calculate the difference between the base distance and
the distance in current tier.

Figure 9-(left) shows the CDF of distance reduction (in miles)
for the Tier-1 deployment case. In the Chicago MSA, a deployment
of just 28 MEC micro data centers achieves a distance reduction
of greater than nearly 14 miles for at least 10% of the cell towers
(~17,000 cell towers). On average, we achieve a reduction of nearly
12 miles for approximately 10% of the cell towers across all 10 MSAs.
Out of the top 10 MSAs, the Atlanta MSA shows the best distance
reduction of nearly greater than 26 miles for 10% of the cell towers.

Figure 9-(right) shows the CDF of distance reduction (in miles)
for the Tier-2 deployment case. Based on the design of our deploy-
ment model, the distance to the closest data center or MEC micro
data center reduces from Tier-1 to Tier-2. Hence we observe an im-
provement in distance reduction between Tier-1 and Tier-2. Tier-2
deployment has a greater impact in MSAs like Houston, Chicago,
and San Francisco. However, the distance reduction gained by Tier-
3 and Tier-4 deployments are minimal, and due to space constraints
we have not shown these results.

4 RELATEDWORK
MEC offers latency and performance benefits by pushing cloud com-
puting closer to edge of the network—a key factor driving telecoms
(e.g., AT&T plans to fuel applications such as VR, self-driving cars,
etc. using MEC [10]; Verizon’s MEC vision can be found in [13]).
While a majority of efforts have focused on resource management
and allocation [18, 20, 22], load balancing [28], network architec-
tures [27], programmability/virtualization [17], models for handling

data [21], among others, one important issue stands out: site selec-
tion for MEC deployments [20, 26]. To address this issue, Bouet et
al. proposes a graph-based partitioning algorithm to deploy MEC
servers [15], which is motivated by the spatial locality of MEC
servers [24]. Zhao et al. optimizes the placement of virtual pro-
cess control functions using an iterative algorithm with resilience
constraints. Our work is complementary: we propose a tier-based
approach by empirically studying the mobile edge infrastructure
to understand their current capacity and to identify future deploy-
ments.

5 SUMMARY AND FUTUREWORK
Our study considers cell tower and data center locations and pop-
ulation distribution in the US. Using Voronoi cell-based analysis,
we find that cell tower deployments are relatively consistent in
large urban areas and along highways near those areas, but that de-
ployments are more sparse and inconsistent in rural areas. We also
find that cell towers are typically within 10 miles of data centers in
large urban areas, but distances can be much further in rural areas.
Finally, we show how micro data center deployments at cell towers
can reduce distances.While our analysis is limited, we believe that it
provides useful insights on MEC edge deployments and a roadmap
for future GIS-based assessments. We continue to investigate edge
deployment issues including considering different models for micro
data center deployments, transmission range issues and how user
mobility can impact MEC.
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