ARISE: A Multi-Task Weak Supervision
Framework for Network Measurements

Jared Knofczynski, Ramakrishnan Durairajan (University of Oregon), Walter Willinger (NIKSUN, Inc.)

Abstract—The application of machine learning (ML) to mit-
igate network-related problems poses significant challenges for
researchers and operators alike. For one, there is a general lack
of labeled training data in networking, and labeling techniques
popular in other domains are ill-suited due to the scarcity
of operators’ domain expertise. Second, network problems are
typically multi-tasked in nature, requiring multiple ML models
(one per task) and resulting in multiplicative increases in training
times as the number of tasks increases. Third, the adoption of ML
by network operators hinges on the models’ ability to provide
basic reasoning about their decision-making procedures.

To address these challenges, we propose ARISE, a multi-task
weak supervision framework for network measurements. ARISE
uses weak supervision-based data programming to label network
data at scale and applies learning paradigms such as multi-
task learning (MTL) and meta-learning to facilitate information
sharing between tasks as well as reduce overall training time.
Using community datasets, we show that ARISE can generate
MTL models with improved classification accuracy compared
to multiple single-task learning (STL) models. We also report
findings that show the promise of MTL models for providing a
means for reasoning about their decision-making process, at least
at the level of individual tasks.

I. INTRODUCTION

HE application of machine learning (ML) to the field
of networking has received mixed reactions from the
network research and operator communities. On the one hand,
there continues to be great interest and enthusiasm among
network researchers in developing new learning models for
an increasing number of diverse network management tasks,
be they performance- or security-related [1]. However, this
enthusiasm has been hampered by a general lack of data
(especially labeled training data), has generated little to no
interest in demonstrating whether or not a trained ML model
will generalize as expected in deployment scenarios (i.e., can
it be trusted in practice), and has resulted in the development
of ever more complex black-box learning models without
much or any concern for attempting to explain how they
“work” (i.e., make their decisions) [2]. At the same time,
operators have been slow to jump on the ‘ML bandwagon’
and remain reluctant to deploy untested ML-based tools in
their production networks, voicing an overall dissatisfaction
with black-box models that cannot be trusted because they fail
to provide insight into how they work or how their decision
making compares to that of a domain expert (i.e., network
operator) [1], [3]. Rather than deploy untested ML-based tools
in their networks, operators often prefer to rely on more
traditional statistical techniques in conjunction with manual
oversight [4]], resulting in increased operator workloads.
In this work, we take a step towards bridging this gap
between what network researchers perceive as top priorities as

far as their ML-based efforts are concerned and what operators
look for in terms of benefiting from recent innovations in
ML and applying them in practice. In particular, we address
some of the challenges posed by (i) the increasing number
of network management tasks for which researchers seek to
develop automated ML-based tools despite a general paucity of
suitable (labeled) data, (ii) a general inability of ML models
to benefit from common characteristics that may be present
across features when training different task-specific models,
and (iii) the continued focus on black-box learning models
which are incompatible with operators’ need to “trust” the
inferences made by developed learning models, and thus pose
a crucial roadblock for any widespread adoption of ML-based
network management tools in practice.

To better articulate these challenges, consider the following
simple scenario that we will use throughout the paper as an
illustrative example. This scenario involves just two tasks:

e Task 1: Remove noisy measurements from time-series la-
tency data and identify changepoints occurring after a
congestion event.

e Task 2: Remove noisy measurements from time-series la-
tency data and detect changepoints leading to a loss of
packets in the network.

Note that both tasks consist of multiple sub-tasks (i.e., remove
noise, identify changepoints, detect congestion in the case of
Task 1; and remove noise, identify changepoints, and identify
loss in Task 2). Here, the occurrence of a sudden spike in
latency measurements (referred to as network volatility) can
be indicative of noise in the data. Similarly, sustained periods
of network volatility can indicate a persistent congestion
event. Thus, for both congestion and noise detection, network
volatility plays a significant yet common role. However, it is
unclear how one might best exploit such common features in
training an ML model, and what the performance implications
of incorporating or ignoring such commonalities may be.
In addition, the effort necessary to train a model becomes
multiplicative when considering multiple sub-tasks, as each
sub-task requires training its own ML model, a process then
further complicated by the paucity of labeled data. Last but not
least, the quest for developing trust in an ML model requires
being able to reason about its decisions or inferences, at least
at the level of individual sub-tasks.

To address the aforementioned challenges and in an effort
to catalyze the research and operator communities’ efforts
on the application of ML for networking tasks, we report
in this paper on the design and implementation of a novel

machine learning framework called ARISEﬂ On the one hand,
ARISE allows network operators to leverage their domain
expertise in the form of labeling functions (i.e., programmatic
representations of domain knowledge and heuristics related
to specific networking tasks). This way, operators are able
to automatically label large training data sets without the
need for any crowdsourcing or manual labeling that may be
impractical in the networking domain. At the same time, by
relying on multi-task learning (MTL), ARISE enables related
network classification tasks to train concurrently, thereby ex-
pediting the training process and improving the classification
accuracy of related tasks through information sharing in the
hidden layers. In this sense, ARISE has much in common
with existing alternative learning paradigms such as meta-
learning [S)]. Lastly, ARISE also enables network operators to
begin reasoning about the decisions made by their ML models,
enabling further trust on the behalf of network operators
in their models as a result of their ability to interpret the
reasoning behind their models’ decisions. In short, ARISE
provides a practical framework for supporting the fast and
efficient training of multiple ML models in ways that exploit
the commonality of distinct tasks without reducing accuracy
and afford opportunities for reasoning about inferences made
by the trained ML models.

Recent studies that focus exclusively on traditional single-
task learning (STL) techniques have begun to tackle some of
the issues that existing STL models and statistical methods
face. These studies often involve the use of campus networks
as rich data sources to overcome the data problem that has
plagued the application of ML in the networking domain [6],
the application of scalable techniques to overcome the data
labeling problem [2], and the development of customized
models for individual network management tasks (see §[[I-B).

But unlike these state-of-the-art efforts, ARISE goes beyond
STL models and makes the following novel contributions:

e ARISE leverages shared layers and uses individual task-
specific head layers in model training. The former capture
commonalities among features across different tasks in a
principled manner using MTL and are trained only once.
The latter provide a means for adding new tasks “on the fly”
in a way that only requires training the head layers. MTL
has already proven to generalize better than STL models
due to implicit data augmentation [/]; i.e., the sharing
of information across tasks in the model resulting in an
enhanced availability of data on which to train.

e As a framework at the intersection of multi-task and meta-
learning, ARISE combines the best of both worlds; i.e., fast
adaptation to new unseen tasks with efficient training of
new models. As such, it addresses limitations that restrict
the use of many ML methods in practice (especially for
networking tasks), and we provide concrete examples on
how ARISE overcomes these limitations.

e ARISE can succinctly capture domain knowledge in three
ways, including through the use of labeling functions, in
the design of shared layers, and by deciding which task-
specific head layer to call by the shared layer. This novel

I'The source code for ARISE can be found at https:/gitlab.com/onrg/arise,

feature of ARISE can be leveraged to begin reasoning about
the decisions taken by MTL models at the sub-task level in
a qualitative manner.

e More broadly, while data programming and MTL are
well-studied and the availability of their implementations
notwithstanding, our key contribution is in the adaption
of these ideas to the application domain of networking.
In doing so, we solve several domain-specific adaptation
challenges including data imbalance issues, support for time
series datasets, and network task-specific feature extraction
from those datasets. None of these aspects are available in
existing implementations of data programming and MTL.
To evaluate ARISE, we compare the F1 scores and training

times of MTL and STL models across different sub-tasks
such as loss, noise, congestion, and changepoint classification
using CAIDA’s Ark and RIPE’s Atlas datasets [8], [9]. We
also compare the resulting F1 scores of both STL and MTL
models to similar classification tasks conducted via traditional
statistical techniques and demonstrate that these methods are
often extremely ineffective in the context of network mea-
surements. Our results show that MTL models can be trained
with over 40% accuracy improvements (as measured by the F1
score) and up to 8x faster when compared to STL models, and
are especially performant in the context of larger and noisier
datasets. We show that MTLs generalize better than STLs and
exhibit reduced training overheads when implementing new
sub-tasks, facilitating model scaling. Moreover, MTLs can be
used to perform classification tasks on measurement data while
enhancing an operator’s ability to reason about classification
decisions that the model makes at the sub-task level.

II. MOTIVATION AND BACKGROUND

With growing traffic volumes and continued innovations in
today’s networks, operators are struggling to keep pace with
the rate of expansion and lack the capacity to effectively utilize
all the measurement data they routinely collect to perform
an ever-growing number of tasks (e.g., congestion detection,
identifying noise, etc.). This has resulted in renewed interest
in the efficacy of ML-based tools to assist in processing
available measurement data while simultaneously automating
the execution of a myriad of tasks.

A. Motivation

1) Networking problems involve tasks composed of multiple
sub-tasks with overlapping characteristics: Many network
problems exhibit telltale indicators of their presence in mea-
sured network data (e.g., latency measurements, NetFlow,
etc.). Features such as large proportions of measurement noise
or high levels of network congestion often act as symptoms
of other underlying issues (e.g., packet loss events or denial
of service attacks). Hence, detecting network problems with
ML-based approaches typically involves the execution of
classification tasks that are multi-task in nature. For example,
consider the two sample tasks, Task 1 and Task 2, introduced
above. Both tasks are of potential interest to network operators
and researchers alike, and both tasks are inherently dependent
on multiple sub-tasks (e.g., Task 1 involves identifying and

https://gitlab.com/onrg/arise

removing noise present in the input data, identifying network
congestion events, and detecting subsequent changepoints in
the latency measurements).

The aforementioned characteristics can appear in many dif-
ferent forms, and there is often a significant degree of overlap
between these characteristics across sub-tasks. We refer to
these overlapping features as composite characteristics. For
example, consider noise and congestion events as they occur
on a network. Figure [I] depicts a brief period of latency
measurement data (obtained from CAIDA’s Ark project [8];
more details in § similar to that which a network
operator or researcher might observe. Within the depicted
period, we hypothesize two distinct network events (noise and
congestion) that an operator or researcher may wish to detect.
Sustained periods of higher

latency with lesser degrees
of intermittent volatility

Brief periods of increased
measurement volatility —‘

250 r“'
200 l——‘

150

100

Round Trip Time (ms)

50

100 200 300 400 500 600 700 800 900 1000
Measurement Index
Figure 1: Visualization of composite characteristics in time
series network data.

On the left of Figure |I| (between indices 300 and 400),
we observe a brief moment of network volatility, which
we define as a latency spike in the time series data that
significantly exceeds the average round-trip times (RTTs) of
prior measurements. An operator may wish to classify this
momentary behavior as measurement noise to either remove
it from consideration for the task at hand (e.g., when seeking
to analyze the overall behavior of the network without the
presence of confounding variability in latency measurements),
or to employ it as an indicator of some other behavior that
may be of interest. Shortly after this brief period of volatility,
a similar pattern occurs when the latency measurements spike
and remain increasingly volatile for a more sustained period
of time (see measurements between indices 500 and 800 in
Figure [I). This behavior may indicate a period of network
congestion, where a sustained increase in traffic rates might
result in additional latency in communications between net-
work hosts.

While there are no commonly agreed upon specific cri-
teria for classifying network features such as measurement
noise [4], underlying attributes such as network volatility are
commonly shared between distinct network features that an
operator may wish to classify. And as the classification of
these features relies so heavily on the identification and clas-
sification of such shared components, the information sharing
capabilities of MTL make ARISE a promising tool to begin
classifying (and distinguishing between) network features such
as loss, noise, and congestion.

Given the prevalence of noise and congestion in network-
related issues, as well as the degrees of similarity between
their underlying characteristics, we use noise and congestion
as two canonical examples of sub-tasks in this paper. We
also employ loss (outage) and changepoint classification as
two additional examples of sub-tasks that could be useful
in identifying and addressing more significant problems in a
network. Each of these classification tasks relies to some extent
on the interpretation of variation between successive latency
measurements in network data. For example, a changepoint
may occur when the consistent behavior of a network shifts
from one behavioral pattern to another (such as before, during,
or after a congestion event). Similarly, a packet loss event may
occur whenever the connection fails or the measured latency
drops to zer0E| Thus, we posit that the information sharing
capabilities of MTL will allow for ARISE to more effectively
classify network features such as loss, noise, changepoints,
and congestion, in comparison to prior efforts.

2) Model scaling is impossible with single-task learning
(STL): Despite the presence of composite characteristics in the
aforementioned sub-tasks, traditional ML-based approaches
are limited in their ability to adapt this information to the
training of different task-specific models. For example, to
form a cohesive network classification task, traditional ML
techniques rely on several distinct learning models (one per
sub-task) where each model is trained separately, then chained
together to obtain holistic, task-specific answers. We refer to
the models based on this stepwise approach as single-task
learning models, or STLs.

Training an STL for a new sub-task “on the fly” (henceforth
referred to as model scaling) will result in a multiplicative
increase in training times. This is due to the fact that the
new sub-task must be trained, tweaked, tuned, and re-trained
separately from the remainder of the model. Even in cases
where additional compute resources are readily available (e.g.,
via cloud offloading of ML model training) or where parallel
training of multiple STL models (each per sub-task) is feasible,
the total training time for all STLs in a given task is equal to
the longest training time among the individual STL models.

Beyond simply increasing the amount of training time
required for holistic model development, the lack of infor-
mation sharing in STLs—especially in the face of composite
characteristics—also has a negative effect on the classification
accuracy of each individual model. Because of this lack
of information sharing, each model effectively discards any
information it gleans during its training process that it deems
not relevant to the task at hand, even if that information may be
relevant in the context of a different task. In effect, the model
is limited in its degree of accuracy and overall generalizability
as a direct result of its lack of information sharing.

Furthermore, the black-box nature of commonly-used STL
techniques makes it difficult for network operators to gain
insight into the root cause of individual classification decisions
(e.g., [10]). In other words, when a given model returns a
specific decision, it is generally impossible for the network

2In our datasets, packets that failed to arrive at their destination were
recorded with a latency of 0, indicating packet loss.

operator to reverse engineer the model’s decision-making
process to better understand why and how the model arrived
at its decision and not at some other outcome.

B. Prior Efforts and their Limitations

Applying ML to solve networking problems is of great
importance to the community, and previous efforts in this
area can be roughly grouped into three categories. The first
category concerns techniques based on supervised learning
(e.g., regression) to infer a continuous variable (e.g., RTT,
loss), or on classification to assign observations to a set of
pre-established classes (e.g., traffic types) [11], [12]. Com-
plementary to these techniques are statistical methods such
as expectation maximization [13], [[14], with one such naive
method being the use of simple filters such as p+30 to classify
latency measurements as noise [4]. Other examples include
changepoint classification (e.g. [[15]), which allow operators to
identify changepoints in recorded data. Typical shortcomings
of these techniques are (i) their inability to capture operators’
domain knowledge, (ii) their inherent need for labeled datasets
that are hard to come by in the networking domain, and
(iii) their difficulties in accurately quantifying changepoints
and other network features without significant operator input.
Existing methods for changepoint classification also require
that the entire collection of time-series data being analyzed be
gathered and known beforehand. As a result, they must operate
offline and could therefore not be used effectively in online,
real-time network management scenarios. See Appendix B for
details on the shortcomings of naive methods for changepoint
classification in time series measurement data.

The second category of efforts are unsupervised learning
techniques such as clustering and Principal Component Anal-
ysis (PCA) to detect anomalies in network data (e.g., BGP
[1O0] and traffic measurements [16], [17], [18]], [19]), help
with network diagnosis [20]], and perform event detection [21]].
These efforts suffer from a general inability to interpret their
decisions or reason about their underlying decision-making
processes, and as such, pose a significant obstacle with respect
to the adoption of ML-based methods to address networking
problems. For example, Ringberg et al. [16] show that PCA-
based techniques for network classification problems are sen-
sitive to changes in the level of traffic aggregation, and their
efficacy may be polluted by large anomalies in the available
network data. These factors make it difficult for network
operators to successfully employ PCA-based techniques due
to the extent of manual tuning required to achieve sufficient
performance and due to their lack of generalizability to diverse
data sources or types. These observations point towards an
urgent need for models and techniques that provide operators
with opportunities to reason about the inferences made and to
develop trust in the inference processes.

The third category of efforts consists of learning techniques
that leverage weakly supervised learning. These efforts attempt
to combine and learn noisy labels from many weak sources
to build a predictive model. The most popular forms of weak
supervision are distant supervision [22], [23] and crowdsourc-
ing [24], [25], both of which suffer from issues such as

inaccuracy and inadequate coverage. Addressing these issues
is the dual objective of Snorkel [26]], which combines labels
from different weak supervision sources to increase the accu-
racy and coverage of training sets using data programming,
where users can programmatically create lower-quality train-
ing datasets [27]. Inspired by this data programming paradigm,
two recent efforts (EMERGE [2] and NoMoNoise [4]) seek
to classify network features using weak supervised learning.
However, these efforts in their current form have limitations
that restrict their use in practice. For one, while effective in
classifying measurement noise, neither effort is designed to
scale with the addition of new sub-tasks or the performance
demands imposed by larger training datasets. Furthermore,
while sufficient for the classification of a single sub-task, both
approaches are lacking with respect to their abilities to handle
multiple tasks and leverage the composite characteristics of
distinct features across sub-tasks. Lastly, neither of these
efforts provide any means to begin reasoning about decisions
taken by the models at the local (e.g., LIME [28], SHAP [29])
or global (e.g., Bastani et al. [30]) levels. ARISE builds on
these prior works and leverages classification methods from
both EMERGE and NoMoNoise in both the STL and statistical
models (respectively) that we employ to evaluate ARISE.

In addition to efforts in networking, recent endeavors in the
field of ML have attempted to leverage MTL for several widely
varied application domains such as intrusion detection [31],
data augmentation for convolutional neural networks [32], HIV
therapy screening [33]], etc. While such efforts are promising
in their respective fields, to the best of our knowledge, ours is
the first effort to apply MTL to networking tasks.

Also relevant in this context are prior efforts regarding other
related learning paradigms such as meta-learning, or learning
to learn, which attempts to leverage common representations
of underlying information to quickly adapt existing models to
novel tasks [34]. While the meta-learning paradigm appears
promising in theory, there are several aspects that make it
impractical for applied use in the context of networking. For
one, previous efforts involving meta-learning (such as [35]],
[36], [37]) have typically relied on large, labeled datasets (e.g.,
Omniglot [35]], ImageNet [38], and MNIST [39]), but such
types of datasets are generally unavailable in the networking
domain. Furthermore, prior efforts exploring the intersection
of meta-learning and MTL have shown that gradient-based
meta-learning algorithms can be much more costly and time-
consuming to train when compared to MTL classifiers [5].
Thus, while learning paradigms such as meta-learning are
promising in their ability to generalize to novel tasks with
minimal examples, ours is the first effort to practically leverage
meta-learning to further enhance the application of MTL for
networking tasks.

Note that meta-learning also refers to any underlying al-
gorithms or model structures that assist an ML model in
learning more effectively, such as by leveraging AutoML [40]]
techniques to select optimal model hyperaparameters with
minimal operator effort. Hyperparameter optimization (HPO)
strategies can be an effective tool in the construction of ML
models that are both fair (with respect to the range of tasks
being trained in a given model) and resilient. Here, an ML

/

be

ARISE Framework

Task 1

N

v
Labeling Combined Multi-Task T
RmEHETE Weakly 5 Operation (1 Classifier | ' oo

Labeled

I

Unlabeled
Data

. Sequence
Data
Defined Tasks *
________ 1 /

Labels

Input
Data

Figure 2: Design of the ARISE framework.

model is called resilient if it is largely immune to variations
in task specification and the underlying data distributions
associated with specific features in distinct datasets such as
those found across applications of ML models in network mea-
surements. However, HPO alone cannot effectively leverage
information sharing or composite characteristics to improve
model performance beyond what would be possible for a
conventional STL model. Thus while HPO and other meta-
learning strategies allow for significant potential improvements
of model performance compared to more traditional efforts,
both require additional insight before they can be leveraged to
their fullest extents for networking tasks. (See § for an
empirical investigation into the efficacy of prior meta-learning
efforts vs. our MTL approach.)

III. DESIGN AND IMPLEMENTATION OF ARISE

In this section we provide an overview of ARISE, describe
the design details of its individual components, and present
the technical specifications of its implementation.

A. Overview of ARISE

The main goal of this work is to design and build ARISE—a
novel machine learning framework motivated by the demands
of networking as an application domain for ML that overcomes
some of the aforementioned limitations. ARISE is novel in
that it combines two key ideas, namely (a) the use of weak
supervision-based data programming strategies to label vast
quantities of network measurements via labeling functions,
and (b) the use of multi-task learning (MTL) to enable the
sharing of information across sub-tasks during the training
process. ARISE also leverages ideas from meta-learning to
efficiently train models while allowing models to scale to new
unseen tasks, providing a practical demonstration of theoretical
guarantees shown in [3]]. While each of these ideas have been
utilized extensively in the ML community, to the best of our
knowledge, ours is the first effort to marry their strengths to
address limitations of ML in networking.

Key Insights. At a high-level, the augmentation of weak

supervision with multi-task learning provides the following

three key benefits, each of which will be described in detail
in § below:

e The resulting MTL models feature a set of layers that
are shared across multiple sub-tasks (i.e, “shared” layers)
and a set of task-specific individual layers (i.e., “head”
layers). These shared layers are trained only once while

new sub-tasks can be added “on the fly” by training only
the lightweight head layers. This meta-learning capability
facilitates model scaling, drastically reducing model training
times.

e Using the shared layers, researchers and operators can
capture composite characteristics across different tasks (e.g.,
the common role played by the network volatility feature
described previously). ARISE relies on a multi-task clas-
sification technique that allows the model to generalize
better due to implicit data augmentation. This technique
also ensures the accuracy of the model.

e ARISE is capable of leveraging available domain knowledge
at several stages in its design. These stages refer to the use
of labeling functions (i.e., simple programmatic represen-
tations of operator know-how), the creation of the shared
layers, and the exploitation of relationships between tasks
to improve the performance of prior stages. Including such
domain knowledge in the design of ARISE enables operators
to qualitatively reason about the decisions taken by MTL
models at the task level, thus lowering the adoption barrier
for network operators.

By incorporating these insights, ARISE thus allows operators
to begin leveraging their domain expertise to label data at
scale, reasoning about the use of composite characteristics to
improve classification accuracy, and examining the reasoning
behind model predictions. We are not aware of other efforts in
the context of networking that give operators the capabilities
provided by and implemented in ARISE.

B. Design Details

Figure 2] depicts the overall architecture of ARISE frame-
work. We describe each of the components below.

User interface. At its core, the success of ARISE is depen-
dent on its ability to capture and translate the domain expertise
of network operators into concrete, tangible heuristics ex-
pressed as literal lines of code (e.g., if a latency measurement
x is greater than the average p 4+ 30 for a given time series,
then x is a noisy measurement). To this end, we have designed
a simple interface that operators and researchers can use to
convert their domain knowledge regarding network events into
programmatic representations (e.g., using Python) referred to
as labeling functions.

Unlabeled data. Input data for ARISE can be collected us-
ing traditional measurement techniques (e.g., scamper [41])
or based on other vendor-specific representations (e.g., Net-
Flow). The only assumption that we make in the design of

ARISE is the possibility of extracting time series measurements
from a dataset. Time series are commonly used to provide
operators with a temporal view of their data so they can assess
networking problems at scale (e.g., to check the effectiveness
of a mitigation solution by looking at traffic patterns before
and after a congestion event).

def label_noise (latency, alpha):
noise_threshold = 1.5 % alpha
if latency >= noise_threshold:
return VOTE
else:
return NORMAL

def label_congestion(lat,

con_max = 1.5 % alpha

con_min = 1.2 * beta

if lat in range(con_min,
return VOTE

else:

return NORMAL

alpha, beta):

con_max) :

Labeling functions. Borrowing the idea of data program-
ming (e.g., see Ratner et al. [27]), operators can construct
simple labeling functions such as those shown above to
generate weak labels for large, unlabeled networking datasets
that can be used in ML model training.

In this paper, we use tsfresh [42] to extract feature-specific
threshold values for each dataset such as those used in [2],
[4]. We demonstrate how these thresholds can be used to
label data points with the help of the noise labeling function
label_noise shown above (where NORMAL and VOTE
correspond to the integer values 0 and 1). This function
labels each point as noise or normal while still accounting for
the baseline differences in each dataset’s individual behavior.
More concretely, this labeling function labels a measurement
as noise if its latency falls in the range [1.5 - o, 00), where
« is the value of the RTT at the 75 percentile for the
current dataset. A similar function can be used to label a
point as CONGESTION if the round-trip time of the input
measurements falls in the interval [1.2 - §,1.5 - «), where 3
is the RTT value at the 30" percentile for the current dataset.
We can also construct a LOSS labeling function that returns
a positive label if the input RTT is zero, as in our datasets, a
measurement of 0 indicates that a packet was lost.

We select the thresholds for these labeling functions by
manually examining several of the input datasets to determine
an appropriate latency range for each feature being classified.
We note that while these thresholds may change depending on
the specific application contexts and datasets on which ARISE
is implemented, other users of ARISE may easily develop their
own labeling functions by leveraging their knowledge of the
data and translating their domain heuristics into concrete la-
beling functions such as the label_noise and label_congestion
functions shown above. As labeling functions are intended
to distinguish between characteristics based on an operator’s
understanding of the underlying data, they can (and should) be
adapted for specific contexts based on an operator’s familiarity
with a given dataset.

Weakly labeled data. Applying labeling functions to un-
labeled datasets results in the generation of weak labels,
which can then be used to train and evaluate a downstream
classification model. To this end, users must separate the
weakly labeled data into training, testing, and validation sets,
similar to what they would do for a traditional ML model. In
the case of ARISE, as there are no definitive “ground truth”
labels with which to compare, the weak labels generated by the
labeling functions also serve as the ground truth with which
ARISE will evaluate itself against to improve its performance
during the training process. Once the data has been labeled
and partitioned into these training and evaluation sets, we then
construct the isolated classification layers that perform each
individual sub-task.

Tasks. In ARISE, tasks such as Task 1 or Task 2 (in §[I)
entail multiple sub-tasks, and each sub-task corresponds to a
specific task head in the underlying model which is responsible
for leveraging the insights of the shared layer to perform
feature classification on the input data. For example, a model
seeking to perform Task 1 would employ four distinct task
heads—one for each of the sub-tasks (noise, changepoint,
and congestion classification), and one for the composite
task representing the union of all three. When defining task
heads, we also assign and specify any relevant implementation
parameters such as the desired loss, activation, or output
functions of the task head, as well as the scoring metrics
(e.g., F1 score) used to evaluate each task’s performance. Once
the head layers are defined, we merge them into a combined
operation sequence that is specific to the Snorkel library [43]]
and acts as a logical container for the individual classification
elements in the MTL model.

Combined operation sequence. The task heads in ARISE
each rely on the same shared layer(s) to process the input data
and generate insights regarding the underlying patterns that
comprise the features being classified (e.g., detecting network
volatility as described in §[[I-AT). By combining the individual
operation sequences associated with each sub-task, we can
construct a shared layer that feeds into each of the respective
task heads in the model. We can also adjust the design
of the combined operation sequence to modify the model’s
information sharing capabilities, allowing us to specify exactly
what sources of information are shared between which layers
of the model.

In our implementation of ARISE, the operation sequences
are designed to facilitate complete information sharing be-
tween all tasks. As a result, the shared layer is able to learn
both the individual and composite characteristics that comprise
the features being classified. It also acts as a form of implicit
data augmentation, where each task receives additional infor-
mation to learn from during the training process—namely, the
output of other tasks. This design enables the MTL model
to “reuse” information learned in the shared layer in the
classification of multiple tasks, and allows individual task
heads to benefit from the presence of other tasks by learning
how other tasks’ predictions correlate with their own.

This implicit data augmentation reduces the risk of under-
fitting a model to the tasks at hand. Indeed, while each task
employs the shared layer in its classification decisions, the

task heads operate independently from one another, allowing
them to make their decisions irrespective of any restrictions
posed by other task heads. By the same logic, since the
MTL classifier must optimize its performance with respect
to each of its classification tasks during training, implicit data
augmentation also reduces the risk of overfitting the model to
any one specific task.

Alternate implementations of information sharing, other
than complete sharing, is also possible in ARISE. For example,
by specifying exactly which layers of the MTL model share in-
formation with one another, one may choose to isolate specific
relationships between network characteristics or remove the
influence of two unrelated, dissimilar tasks from one another
in the training process. After the model structure has been
established, the operation sequence and list of tasks can be
passed to the multi-task classifier to train the final model.

Multi-task classifier. After applying weak labels to the
data, constructing individual task heads, and architecting the
information sharing capabilities of the shared layer, all that
remains is to train the final model. To select hyperparameters
such as the learning rate for a given dataset and training
iteration, we leverage insight from meta-learning techniques
such as AutoML [40] to select the optimal hyperparameters
for a given dataset on the tasks at hand. See Appendix C for
selection and tuning of model hyperparameters.

After establishing the model’s hyperparameters and passing
in the operation sequence of tasks, the model can be trained
and consequently evaluated on the testing sets of input data
by comparing the model’s predicted labels to the “ground
truth” labels generated by the provided labeling functions.
At this stage, users may also define new tasks and insights
by providing additional labeling functions or modifying the
underlying structure of the shared or head layers. Given the
modular nature of ARISE, new tasks can easily be added or
removed from the framework “on the fly,” allowing for the
quick adjustment of the model architecture in a principled and
efficient manner.

We note that unlike prior multiclass classification efforts,
the use of a multi-task classifier has clear advantages in that it
allows us to train multiple related yet distinct sub-tasks con-
currently, and thus classify measurements exhibiting multiple
features at the same time (e.g., noise and congestion). This is
essential when working in the networking domain, as features
such as the ones we are classifying often overlap in terms of
the given measurements they affect. In contrast, a multiclass
classification system would allow at most one feature to be
identified for each given measurement, thereby nullifying any
of the benefits that information sharing provides.

C. Implementation

To implement ARISE, we build upon the key elements and
weak supervision components employed in NoMoNoise [4]]
and EMERGE |[2], and MTL components from Ratner et
al. [44]E] From each dataset, we extract a number of features
and time series characteristics using tsfresh [42] that we then

3We thank the authors of these frameworks for open-sourcing their code to
the community.

employ as thresholds in the development of our labeling
functions (in § [I-B). Next, the input data to the ARISE
pipeline is initially processed by a multilayer perceptron
(MLP) module, then sent to task-specific head modules that
perform the final classification. This MLP module allows each
task to ‘eavesdrop’ on the others, enabling them to learn from
other labeling functions and heuristics they are not explicitly
associated with. For example, the NOISE classification task
likely identifies and categorizes measurements it observes
that exhibit increased latency beyond the norm for a given
dataset. After the shared layer learns to recognize this feature,
when the CONGESTION classifier attempts to identify similar
characteristics, it is able to leverage the same insights from
the shared layer, allowing it to exploit existing information
already maintained within the model to train a more accurate
classifier in a shorter period of time.

Our multi-task model utilizes a standard multi-task classifier
[43] and employs two densely connected hidden layers shared
between all tasks that subsequently feed into the N task-
specific head layers. In comparison, the conventional STL
models which we evaluate ARISE against employ two hidden
layers per task; we find that incrementing the number of
hidden layers in the STL models further offers little to no
benefit in the resulting accuracy, and the additional layers
tend to increase training times significantly. We also evaluate
several optimization and pre-processing strategies, which we
discuss in Appendix C. Overall, this means that for a model
or application requiring /N distinct sub-tasks, the single-task
method would require the training of 2/V hidden layers, while
our multi-task approach would only require 2+ NN total layers
to be trained. This improvement can result in a drastic decrease
in model training time as we show in § [[V-C|

We base the single-task component of our analysis on the
EMERGE framework described in [2]], which is intended to
perform weak supervision in the context of a single-task noise
classification. We modify this framework to include additional
capabilities such as congestion, outages, and changepoint
detection by writing new labeling functions. We also evaluate
the efficacy of statistical classifiers such as those used in
EMERGE [2]] and NoMoNoise [4] in comparison to ARISE.
All models were trained and evaluated on a CloudLab.US [45]
server running Ubuntu 16.04 LTS with an Intel Xeon D-1548
64-bit processor and 8GB of memory.

IV. EVALUATION OF ARISE

In this section, we describe our datasets and the experiments
we conduct to evaluate the ARISE framework and compare it
against alternative learning methods.

A. Datasets Used

In our experiments, we use traceroute and ping
datasets from the CAIDA Ark [8] and RIPE Atlas [9] projects,
respectively. From the CAIDA dataset, we select 28 distinct
network source/destination pairs from the at12-us vantage
point located in Tucker, Georgia. These measurements span
24 hours on January 1, 2019, and contain a total of 75,359
latency measurements which serve as training sets in our

evaluationE] Individually, these contain between 2,000 to 4,000
measurements, with an average of approximately 2,700 round-
trip time measurements per source/destination pair.

For the RIPE Atlas data, we select a series of 2.5 million
latency measurements from the 24.5 million entries in the
original datasetE] These measurements contain source and des-
tination IP addresses, average round-trip times, and measure-
ment timestamps. We split them into 100 time-series training
subsets containing 25,000 latency measurements each. We use
the RIPE dataset as an example of a similar, yet significantly
more complex alternative to the CAIDA traceroute data to
examine the efficacy of ARISE in the context of larger and
noisier datasets. Note that the RIPE Atlas datasets contain
measurements from multiple hosts to multiple destinations,
resulting in much noisier traffic from a large number of
different flows rather than a single flow. We average the
training times and F1 scores of each model on both datasets in
the evaluations below, and compare the results of increasing
both the quantity of data and noise contained within it for the
STL and MTL approaches.

B. Experiments

To evaluate ARISE, we conduct several experiments and
report on (i) the efficacy of our MTL models against prior
STL efforts (in terms of time, accuracy, and scalability to
novel sub-tasks), (ii) the effectiveness of our MTL approach
in comparison to existing meta-learning methods, and (iii) the
ease-of-use of ARISE when applied in practice.

Initially, we train three STL models based on the EMERGE
framework [2] to individually classify latency measurements
in a network time series as either LOSS, NOISE, or
CONGESTION. We use the output of our original labeling
functions as our models’ ground truth under the assumption
that operators can define their own labeling functions using
their domain expertise to accurately represent the characteris-
tics of the features they wish to classify. We also train MTL
models and compare their efficacy with three naive statistical
classifiers employed by prior efforts such as EMERGE [2] and
NoMoNoise [4]] (i.e., Overly Robust Covariance Estimation or
ORCE, FElastic Ellipse or EE, and p1+20). As tools often used
by network operators [2]], these naive classifiers also serve as
a baseline in the absence of ground truth data.

We record the times taken for each model to train, as well
as the resulting F1 scores (defined as the harmonic mean of
precision and recall, or

_ tp
tp + 1 (fp + fn)

where tp is the number of true positives and fp,fn are the
number of false positive and negative predictions the model
makes). We use the F1 score as our primary evaluation metric
as it allows us to more effectively account for the potential
sparsity of some features amongst the time-series in which

Iy

4The CAIDA UCSD IPv4 Routed /24 Topology Dataset - January 1, 2019,
https://www.caida.org/catalog/datasets/ipv4_routed_24_topology_dataset/.

"We utilized the ping-2021-03-01T0000 dataset from the Atlas daily
archives for March 1, 2021, which can be accessed via the RIPE Atlas
Measurement Results API [46].

we seek to classify them. We then conduct the same analyses
via the multi-task approach, using the same labeling functions
and evaluation metrics within ARISE, recording the model
training times and F1 scores upon completion. In both cases,
our selection of model hyperparameters (e.g., learning rate) is
informed by meta-learning techniques such as AutoML [40],
discussed in Appendix C.

To demonstrate the scalability of ARISE, we examine the
effects of adding new classification tasks into the pipeline.
In particular, we construct and add a CHANGEPOINT clas-
sification task to both the STL and MTL models on top
of the loss, noise, and congestion tasks described previously
and examine the same performance metrics after training
the models. We then compare the efficacy of meta-learning
methods such as ensemble learning to that of our MTL models
and report on the performance of ARISE as informed by such
meta-learning techniques. Lastly, we explore the performance
benefits of composing existing sub-tasks in the MTL model
to conduct combined network tasks as described in § [II| and
demonstrate the interpretative capabilities of ARISE as they
could be leveraged in an applied context. In each case, we
conduct the same experiments using both the CAIDA and
RIPE datasets.

C. STL vs. MTL

1) Training Times and Model Accuracy: When training in
series on the CAIDA Ark datasets (as shown in Table [I),
our STL models take 135.4 + 96.15 + 143.4 = 374.95
seconds on average to train and evaluate all three sub-tasks. In
comparison, our MTL approach is able to train and evaluate
the same sub-tasks in an average of 15.01 seconds (nearly
96% faster). If the STL models were trained in parallel, the
total duration would still be equal to the longest training time
across all three tasks—in this case, 143.4 seconds, which our
MTL approach outperforms by nearly 90%. Furthermore, each
of the tasks in the MTL model demonstrate equivalent or
improved accuracy in comparison to their STL counterparts,
with an average F1 score increase of 2.23 percentage points per
task as depicted in Figure [3a The naive methods (also shown
in Figure [3a) depict the accuracy of the statistical classifiers
described in § These methods are able to identify some
portions of loss, noise, and congestion in the measurement
data, but are overall largely unable to classify any sub-tasks
accurately. Due to their modest-at-best F1 scores, we do not
consider these naive methods for CAIDA’s Ark data in the rest
of the paper.

To further generalize our findings, we examine the effects of
increasing the quantity of available training data for each of the
naive, STL, and MTL models. To this end, we use the latency
data gathered by the RIPE Atlas project [9] and employ the
same labeling functions, hyperparameter optimizations, and
metrics of analysis as used for the CAIDA datasets, to compare
the performances of each approach with respect to the training
times and predictive accuracy that each model attains. We also
train the same naive classifiers (ORCE, EE, and u + 20) on
the RIPE Atlas datasets to ensure that their poor performance
on the CAIDA data cannot be attributed to some underlying
characteristics in these specific datasets.

https://www.caida.org/catalog/datasets/ipv4_routed_24_topology_dataset/

e o o ¢~
~ © © o

F1 Score

o
o

Loss
Congestion
Noise

I
U

I
>

EE u+2o
(a) CAIDA Ark Scores

Loss
Congestion
Noise

iy
o

F1 Score
e o o o
o N o© ©

I
5

I
>

EE u+20

(b) RIPE Atlas Scores
Figure 3: Average F1 score by sub-task comparing naive

methods with both STL and MTL approaches. Higher F1
scores are better.

Method Task Training | g,
Time

o | singe LOSS 1354s | 8.22s

| NOISE 143.45s | 8.80s

< CONGESTION | 96.15s | 11.02s

e . LOSS

S hﬁlsllt: NOTSE 15.01s | 3.54s
CONGESTION

o | Single LOSS 19275 | 0.865s

£ he NOTSE 197.3s | 0.850s

: CONGESTION 203.2s 0.987s

= . 1L0SS

. th:lt: NOISE 80.11s | 1.22s
CONGESTION

Table I: Training time with standard deviations (SDs) for loss,
noise, and congestion sub-tasks on the CAIDA Ark and RIPE
Atlas datasets. Lower training times are better.

After training the models on the RIPE Atlas data, we find
that our multi-task approach adapts well to the new datasets,
while the single-task models struggle to perform even the
most basic tasks (e.g., LOSS detection). We show the average
duration and standard deviation of training times of the three
sub-tasks for the RIPE Atlas datasets in Table [l As in the
case of the CAIDA datasets, our MTL approach trains much
faster than the STL equivalent, training all three sub-tasks on

average in 34.90 seconds. In comparison, the STL method
takes 192.7 + 197.3 + 203.2 = 593.2 seconds on average
to train all three tasks in series. If the STL approach were
parallelized, the training duration would still be equal to the
longest training time of the set of tasks (143.4 seconds), which
our MTL model still outperforms by nearly 83%.

To complement these results, Figure [3b|depicts the F1 scores
of each sub-task for the naive, STL, and MTL approaches
on the RIPE Atlas datasets. From this figure, we draw three
key observations. First, the MTL model resulting from the
ARISE framework outperforms the STL models by over 75%.
This demonstrates the fact that ARISE significantly benefits
from implicit data augmentation while maintaining model
accuracy. Second, we note that the resulting F1 scores are more
varied across all STL models, while they are more consistent
in our MTL approach. Lastly, we observe that the naive
methods consistently underperform when compared to the STL
and MTL models, failing to effectively classify any of the
designated sub-tasks. As this behavior has been documented
and reflects the findings shown in and [2]], we focus only on
STL and MTL models for the remaining experiments involving
the RIPE Atlas data.

2) Model Scalability: Next, to demonstrate how ARISE
facilitates improvements in model scalability, we implement an
additional sub-task (CHANGEPOINT detection) in each model
pipeline to observe the resulting changes in performance.
For CHANGEPOINT classification, our labeling function is as
follows: we label a given measurement as a change point if
the distance of a measurement to the average of its neighbors
exceeds a certain threshold. For the CAIDA datasets (which
exhibit a fairly uniform distribution of latencies across all
subsets), we select a threshold of 30ms as our changepoint
indicator as it appears suitable for the distributions on which
we are testing. For the RIPE Atlas datasets, we use & (one
half of the standard deviation for a given dataset) as our
changepoint threshold, as it better accounts for the noisier
nature of the underlying distribution of the data.

Given the modular nature of ARISE, the incorporation of
this sub-task into the framework is straightforward. Its imple-
mentation requires only the definition of the additional labeling
function, which is then passed to ARISE alongside the other
labeling functions to first label the data, then subsequently
create, train, and evaluate the MTL model. In contrast, the
process for adding CHANGEPOINT classification to the STL
models is much more involved. To add this sub-task in the
STL approach, we repeat the data pre-processing and label
generation steps manually, and re-generate the probabilistic
heuristics that the STL models employ during the training
process. Even if these steps were automated to streamline the
process for creating new STL classification tasks, it would still
result in STL models that suffer from the same limitations
regarding the extensive amounts of time necessary to pre-
process the data and train the model to a sufficient level of
accuracy.

After incorporating CHANGEPOINT classification and re-
training both STL and MTL models on the CAIDA datasets,
we observe that ARISE-based MTL models outperform the
STL approach to an even greater extent than in our initial

1.0 0.977 %:296 0.989
0.91
o
o 0.81
O
0
—
w 0.7 ¥ Loss
W Congestion
0.6 | =ONge
== Noise
2@ Changepoint

It
wn

STL
(a) CAIDA Ark

1.0/ = Loss 0.998 0.994 981
mmm Congestion
0.9 == Noise
M 8 Changepoint
S 0.81
O
0
T 07

0.540

STL
(b) RIPE Atlas

Figure 4: Average F1 score by task after the addition of
changepoint classification. Higher F1 scores are better.

experiments as Figure [#a] shows. More concretely, in adding
this sub-task to ARISE, we find that the classification accuracy
improves by an average of 12.7% when compared to that of
the STL models. We also find that the F1 scores of the other
tasks within the model improve slightly (by 0.7% on average),
while the average training times increase by only 4.07 seconds
(see Table [II).

In comparison, the corresponding STL experiments result
in no improvement in the performances of other classification
tasks, and increase the average training time for a collection
of models trained in series by 52.30 seconds with less than
desirable classification accuracy. We also note that during
training, the new task employs the early stopping capabilities
of the STL models (described in Appendix C) much earlier
and more frequently than other tasks due to a lack of notable
performance improvements with subsequent training iterations.
Thus, the resulting training times are shorter, but at the cost of
significantly worse classification accuracy. If the STL models
were trained concurrently, the training duration would be equal
to the length of the longest individual training period across all
tasks—in this case, 143.4 seconds, which is still significantly
longer than the average training time of our MTL approach.

We also train the STL and MTL models on CHANGEPOINT
classification using the RIPE Atlas datasets and the change-
point labeling function mentioned previously. Figure [
shows the comparison of F1 scores after the addition of
CHANGEPOINT classification in the case of RIPE Atlas. We
find that our MTL approach continues to outperform against
the STL equivalents, but to a less significant degree than
in prior experiments. Given the quantity of noise present in
the input data, both approaches struggle to properly classify
network changepoints to varying extents, with STL attaining
an average changepoint classification accuracy of just over
50%, and MTL achieving just under 70%. We show the timing

Method Task Training | oy,
Time
L.OSS 135.4s 8.22s
Single NOISE 143.4s 8.80s
= Task CONGESTION 96.15s | 11.02s
: CHANGEPOINT | 5230s | 5.84s
g LOSS
S | Mul NOISE 19.08s | 3.32s
Task CONGESTION
CHANGEPOINT
L.OSS 192.7s 0.865s
Single NOISE 197.3s 0.850s
g Task CONGESTION 203.2s | 0.987s
= CHANGEPOINT 208.6s 0.637s
5 LOSS
& | Muld NOISE 1133s | 4.00s
Task CONGESTION
CHANGEPOINT

Table II: Training times with SDs for all classification sub-
tasks on the CAIDA Ark and RIPE Atlas datasets. Lower
training times are better.

results of training MTL models for RIPE datasets in the lower
half of Table [

D. Meta-Learning vs. MTL

In implementing the additional CHANGEPOINT classifica-
tion sub-task to examine model scalability as part of ARISE,
we observe in § that in the case of the CAIDA Ark
dataset, the MTL approach is able to leverage information
sharing to allow both the fast adaptation of existing models to
new tasks, and the enhancement of other classification tasks
as a result of new information being incorporated throughout
the model. In this sense, the reported results indicate that
MTL provides a way to incorporate meta-learning—defined
as efficient and fast adaptation to new tasks—in a pragmatic
fashion, an effort that prior works such as [5]] have endeavored
to accomplish theoretically. However, we also notice that in
the case of the RIPE Atlas dataset, both STL and MTL models
struggle when asked to include the new task.

Motivated by these observations, we choose to also evaluate
the efficacy of meta-learning methods such as ensemble learn-
ing to perform this CHANGEPOINT classification task. To do
so, we feed the predictive output from existing STL models
(namely, the noise and congestion classification models) into
a new hidden layer acting as a meta learner that we then
train to perform changepoint classification. In Table [T, we
show the average F1 scores of each type of model (STL, MTL,
and ensemble/meta-learning) across both the CAIDA Ark and
RIPE Atlas datasets. We note that while this ensemble model
manages to outperform the STL approach, our MTL method
outperforms the meta-learning effort by a significant margin.

To explain this result, we note that MTL models lever-
age similar optimization formulations as some existing meta-
learning efforts (such as gradient-based meta-learning [3])). In
addition, ARISE already leverages meta-learning techniques

Dataset STL Ensemble Model | MTL
CAIDA Ark | 0.554 0.686 0.989
RIPE Atlas 0.506 0.578 0.695

Table III: Average F1 Scores for CHANGEPOINT classification
in each of the single-task (STL), meta-learning (Ensemble),
and multi-task (MTL) approaches.

through HPO and information sharing, thus benefitting from
both meta- and multi-task learning. As a result, we focus in
the remainder of the paper on the comparison between ARISE
and the existing STL models.

E. ARISE in Practice

1) Tasks with Multiple Sub-tasks: Beyond isolated feature
classification, the modular nature of ARISE is also effective in
enabling the construction of complex tasks involving multiple
sub-tasks with composite characteristics. To demonstrate this,
we combine several task-specific labeling functions to create
new, specific tasks capable of identifying characteristics in
conjunction with one another. These tasks use the output of
relevant task heads and the insights from the shared layer
to conduct their analyses. By leveraging the insights already
discovered in training on relevant sub-tasks, these tasks can be
added to a multi-task model with less performance overhead
than an additional STL would incur. Consequently, the same
information sharing capabilities that can enhance the accuracy
of individual sub-tasks can also be used to train new classifi-
cation tasks in a fraction of the time.

In contrast, single-task learning requires that we train and
chain N independent STLs together (one per relevant sub-
task) to fulfill a combined classification task. In this approach,
the accuracy of the final classification is also effectively
limited by the performance of the least accurate model in the
chain (the “weakest link”). If one sub-task fails to perform
sufficiently, it is likely that the combination of tasks relying
on it will be insufficient as well. Thus, we do not train
an additional STL on these combined tasks, and instead
consider the comparable STL performance to be the worst-
case accuracy of the related tasks (i.e., the STL accuracy of
TASK 1 = min{NOISE, CHANGEPOINT, CONGESTION},
while TASK 2 = min{NOISE, CHANGEPOINT, LOSS}).

We model Tasks 1 and 2 (from § [[) using ARISE to
illustrate how a network operator might interact with our
framework. Recall that Task 1 seeks to isolate and remove
noisy data points from a series of measurements, then classify
all changepoints leading to a congestion event. A single-task
implementation of this would employ each of the NOISE,
CHANGEPOINT, and CONGESTION sub-tasks separately in
isolated STLs, but in the context of ARISE, we are able
to perform this task using a total of four task heads (one
for the composite task and one for each sub-task) and the
shared layers that have already been trained. To implement
this, we define a labeling function [; that returns a positive
prediction if any of the labeling functions for the related
sub-tasks (I3, I3, and l4, respectively) also return a positive
prediction. In terms of code, we use the logical OR (V)

1.0
0.91
(]
S 0.8
3 Loss
= 0.7 Congestion
e Noise
Changepoint
0.6 Task 1
0.5 Y Task 2
(a) CAIDA Ark
1.0 =@ Loss 1.000 0-9972_8_6
W Congestion
0.9 === Noise
o = Changepoint
S 0.8 mewa Task 1
b N\ Task 2
T 0.7 0.606
0.64 0540)
0.51

(b) RIPE Atlas

Figure 5: Average F1 scores for all Tasks and sub-tasks. Higher
F1 scores are better. The F1 scores for Tasks 1 and 2 in
the STL models are equal to the worst-case score among the
related sub-tasks.

operation between labeling functions, resulting in functionality
akin to Iy = l5VI3VI4. Similarly, Task 2 uses the same method
but with different sub-tasks. That is, Task 2 employs each of
the NOISE, CHANGEPOINT, and LOSS sub-tasks to remove
noisy measurements, identify change points, and then classify
instances of packet loss that follow.

Figures [5a] and [5b] show the results of composing sub-tasks
for the CAIDA and RIPE datasets, respectively. In Figure [5a]
we see that the average F1 scores for Tasks 1 and 2 in the
MTL model are 0.989 and 1.0. In contrast, the comparable
STL scores are min{0.995,0.554,0.907} = 0.554 for Task 1
and min{0.995,0.554,0.997} = 0.554 for Task 2, indicating
that our methods significantly outperform the STL equivalent.
While the tasks exhibit significant improvements on model
accuracies for the CAIDA’s datasets, the accuracies of the tasks
are lower for the RIPE datasets due to the inherent noise in the
data’s distribution. The average F1 scores for Tasks 1 and 2 are
0.886 and 0.779 in MTL, compared to the average of 0.506
in STL. Thus, despite the confounding presence of noise in
the distribution of data, the MTL accuracy of combined tasks
(see Task 1 and Task 2 in Figure [5b) is still significantly better
than the equivalent performance in STL.

To complement Figure 5} we show the average training
times for both Tasks on each dataset in Figure [l Note
that while the average training time did increase from the
previous trial without composite tasks by 12.6 seconds in
the CAIDA trials and 56.8 seconds in the RIPE Atlas trials,
the construction of similar composite tasks in STL would
require the model to re-learn all of the previous characteristics
exhibited by loss, noise, congestion, etc., to classify such a

300 9 291.9s 283<§ Task 1
250 % W\ Task 2
O \
Q
£ 2004 \
= \
g\ 150 4 x 143.45 135{5_
C
® 100 \ %
= \ \
50 \\\ % 3175 3175
STL (Sequential) STL (Parallel) MTL
(a) CAIDA Ark
600 Gﬁ mss Task 1
\ S\ Task 2
@ 5001 \
) \
£ 400 \
[\
()]
£ 3004 2919 x
I
£ 200 x KX
\ 143.4s % s l%
N\

STL (Sequential) STL (Parallel) MTL

(b) RIPE Atlas

Figure 6: Average resulting training times for composite Tasks.
Lower training times are better.

task. In contrast, our approach requires only that the model
train one new task head to leverage the shared layer’s insights,
and trains much faster as a result.

If trained sequentially, the average STL training time
to classify these tasks would the sum of the average
times for each related sub-task. More concretely, the STL
average training time on the CAIDA datasets would be
> {NOISE,CHANGEPOINT,CONGESTION} = 96.15 +
52.3 + 143.4 = 291.85 seconds for Task 1 and 96.15 +
52.3 + 135.4 = 283.85 seconds for Task 2. Similarly, Task
1 would take 609.1 seconds on the RIPE Atlas datasets and
Task 2 would take 604.5 seconds. If the STL training were
parallelized (meaning each task trained separately but at the
same time), the resulting training times for the composite
tasks would be equal to the worst-case time of each of
the related tasks (i.e., the maximum time from the NOISE,
CHANGEPOINT, and CONGESTION sub-tasks for Task 1 and
the NOISE, CHANGEPOINT, and LOSS sub-tasks for Task
2). We show the theoretical results of this parallelization
in Figures [6a and [6b] alongside the MTL and sequential
STL models. Though this parallelization may result in faster
training times for STL models in some cases (i.e., Task 1
in Figure [6D), these models do not possess the information
sharing capabilities that MTL classifiers do and thus fail to
attain the same level of classification accuracy.

In both cases, our MTL approach trains significantly faster
on a larger number of tasks as it effectively leverages the
shared layer and composite characteristics to train new tasks
with reduced performance overhead.

2) Task-specific interpretability: Finally, we demonstrate
how operators can use ARISE to reason about the deci-
sions made by the resulting MTL models in the context
of networking tasks. We note that our discussions regarding
interpretability in this section are (a) intentionally qualitative
and minimally quantitative, and (b) at the (local) sub-task level
rather than (global) task level. There are two main reasons for
these limitations. First, our goal is to lower the adoption barrier
that efforts like ARISE face today by proposing an initial set
of promising methods. Second, creating globally interpretable
models is an involved process requiring participation from
several stakeholders including network operators, researchers
from both the ML and networking communities, and industry
practitioners [48]. In what follows, we discuss how ARISE
facilitates interpretability at the sub-task level, enabling op-
erators to better trust and understand the decisions made by
ML-based tools.

To reason about the decisions made, we encode the op-
erators’ domain knowledge in three stages (see Figure [/)):
the labeling stage, or Stage 1, (i.e., during the creation
and application of labeling functions that are designed to
directly capture an operator’s know-how in the form of simple
programs); the composition stage, or Stage 2, (i.e., during the
identification of composite characteristics across sub-tasks and
training of shared layers by using those characteristics); and
the production stage, or Stage 3, (i.e., how operators leverage
relationships between sub-tasks to inform their understanding
of a model’s decision-making procedures and consequently
improve upon the design in stages 1 and 2).

In Stage 1, operators can employ their heuristic-based
labeling functions to generate weak labels for all data points
within a dataset. However, these labels do not necessarily
reflect the true categorical classifications of all data points.
To illustrate, consider a subset of latency data from CAIDA’s
Ark project. The noise and congestion thresholds generated by
the labeling functions (described in § [[lI-B) overlaid on top of
this subset are shown in Figure [8] These thresholds represent
the values an operator could use to classify measurements
as instances of either noise or congestion—but how do we
distinguish between the two? Said differently, operators can
loosely classify entire datasets but possess no insight into
the reasoning of classification decisions beyond their initial
assumptions regarding the data being used. Consequently,
operators cannot accurately infer the distribution of network
features they wish to classify to any greater extent than
that provided by their original heuristics. In the context of
Figure [8] this suggests that operators in Stage 1 are only able
to qualify extreme measurements such as those high enough
to be considered only noise/congestion, or those low enough
to be considered neither noise nor congestion. The isolated
use of basic labeling functions yields crude results that are
particularly ineffective in distinguishing network features that
exhibit similar characteristics (e.g., the measurement entries
near the labeling thresholds in Figure [§] which cannot be easily
distinguished as either noise or congestion).

In Figure 9] we show the crude classification of measure-
ment data points (Figure [8) at Stage 1, where the percentage
values associated with each box represent the approximate

Stage 1
Noise
Unlabeled
Input Data . .
L Labe!|ng Noise apd
Functions congestion
Operator defines Congestion
relevant features
a”"ﬁlii?i‘f;"°“ el
labeled data !

Operator provides domain

functions and dictates what @

knowledge via labeling
features to classify

| cIaSS|f|cat|on |

Operator applles domain
knowledge to identify
common characteristics
and design the shared
layer accordingly

Stage 3
Noise > Is noise?
y
Combined Is n0|se.and
task congestion?
1
Congestion === Is congestion?
1 1
Composite
1 1 i
feature Task head Predicted labels

classification (True/FaIse)

Operator interprets
predictive results and
relationships between
classification decisions

e

Figure 7: Task-specific interpretability stages in ARISE.

—— RTT
=== Congestion Threshold
= Noise Threshold

102

wq»ﬁ«v"uq.w {11 M WL Ll

Round Trip Time (ms)

10!

AN

[[T

0 200 400

600 1000

Measurement Index
Figure 8: Applying labeling functions to raw data. Any measurements above the noise threshold (red) are labeled as noise,

while any measurements between the noise and congestion threshold (purple) are labeled as congestion. Measurements in blue

are good/benign (i.e. neither noise, nor congestion).

Stage 1

Stage 2

Stage 3
Is noise?

Noise I—f (19%)
Combined Is noise anti
task congestion?
1%)
Is congestion?
Congestion |—0| (35%)

Figure 9: Feature classification by interpretability stage in
ARISE using data from Figure [8] ~55% measurements were
labeled as either noise or congestion while the remainder were
unlabeled or “good” measurements such as those below the
congestion threshold in Figure [§]

Unlabeled
Input Data

Noise &
congestion
(25%)

Labeling
Functions
(55%)

percentage of measurements in our subset of data that were
labeled positively. The individual noise and congestion boxes
reflect the percentage of measurements that were labeled with
relative certainty, whereas the combined ‘Noise & Congestion’
box represents the percentage of measurements that fell within
an area of uncertainty while applying our labeling functions.
At the end of Stage 1, a majority (approximately 25%) of
the features classified by ARISE are contained within the
uncertain ‘Noise & Congestion’ category. To reduce this
uncertainty and improve our classification accuracy, we then
move to leverage the common characteristics across sub-tasks
in ARISE’s shared layers.

In Stage 2, operators can begin leveraging task commonal-
ities during the training process to restructure ARISE’s shared
layers and inform its classification decisions. In identifying the
relationships between noise and congestion (e.g., measurement

volatility as described in § [[I), operators can begin to dis-
tinguish between measurements that fall into areas of uncer-
tainty regarding multiple feature classification categories (e.g.,
latency measurements surrounding the noise and congestion
thresholds in Figure [8), allowing them to refine the boundaries
of their labeling functions and develop a stronger intuition
regarding ARISE’s classification procedures. We see this in
action in Stage 2 of Figure 0] where ARISE’s information
sharing capabilities enable us to identify some features that
were misclassified in Stage 1 as a result of the initial reliance
on naive labeling functions. Consequently, the uncertainty of
classifications in Stage 2 is dramatically reduced (dropping
from 25% to 10%) while each of the noise and congestion-
specific labels grow more confident in their classification accu-
racy. However, ARISE’s information sharing abilities alone are
not enough to eradicate uncertainty in feature classification, as
the complex relationships between distinct sub-tasks may not
be automatically captured by ARISE’s training procedures, or
new relationships may arise that network operators had not
previously anticipated. Thus, we turn to operator expertise
to further refine the information sharing and interpretability
components of ARISE.

In Stage 3, operators employ ARISE to its fullest extent
by engaging their domain expertise with the results of clas-
sification predictions across sub-tasks to then infer causality
behind specific decisions. After training the model in ARISE,
an operator can then evaluate its predictions on sample data
to identify, isolate, and further leverage the relationships that
arise between network features in refining ARISE’s shared lay-

ers and information-sharing capabilities. This allows operators
to identify network features from measurement data efficiently
with a high rate of accuracy while also enabling them to
interpret the reasoning behind ARISE’s classification deci-
sions. Thus, operators can accurately interpret the reasoning
behind ARISE’s policies in nearly every classification decision
and can further improve the explainability of questionable
decisions by implementing additional classification tasks to
isolate inter-task relationships and leverage operator expertise.
In the context of Figure [9] this means that Stage 3 of ARISE
can provide network operators with significant improvements
to classification confidence, as the uncertainty of noise vs.
congestion classification falls to its lowest rate among the three
stages while task-specific classification confidence reaches its
peak. Thus, we observe that ARISE excels in enhancing the
local interpretability of ML models and classification systems
and provides a meaningful avenue to improve operator trust
in, and understanding of, the ML management tools they
employ in their networks. We leave the further exploration
and refinement of model interpretability to future work.

V. DISCUSSION

Implications of ARISE. Our findings suggest that multi-
task learning models informed by meta-learning techniques
have the ability to significantly improve the applicability of
machine learning in the networking domain. Our experiments
indicate that MTL typically outperforms prior efforts in both
single-task and meta-learning from an empirical and theoret-
ical perspective, resulting simultaneously in enhanced model
performance, shorter training times, and the added benefits
of providing additional insight into the reasoning behind its
classification decisions. As a result, frameworks such as ARISE
have the potential of allowing operators to leverage the full
power of ML at scale in their networks by overcoming the
limitations of prior efforts and providing insight into the
reasoning behind their classification decisions.

Using ARISE for new classification tasks. Researchers and/or

network operators may wish to use ARISE to generate a multi-

task model for networking tasks other than the ones considered
in this paper. The following describes a step-by-step approach
for doing so, and we illustrate the different steps with the
example of an amplification-style DDoS attack detection task.

o Identify a data source (e.g., NetFlow) and generate the time
series for the network features of interest such as heavy
hitters (e.g., in terms of number of flows per second, unique
number of source IP addresses, etc.).

e Translate the available domain heuristics into concrete la-
beling functions that can be applied as code. For example,
instances where the number of flows per second > A and the
number of distinct sources > B are labeled as indications
of the onset of a DDoS attack.

o Construct the task heads and shared layers, employing either
complete information sharing (as discussed in § or
some alternative information sharing paradigm. For exam-
ple, if all attacks share certain heavy hitters-based features,
then these features can be used to create shared layers. At
the same time, if the attacks differ in their protocol-specific

features, then those features can be used to train attack-
specific head layers (e.g., ICMP vs. NTP vs. DNS).

e Train, test, modify, and refine the model’s hyperparameters
using either HPO or other elements of domain expertise.
Limitations of ARISE. ARISE is designed to facilitate easy-
adoption in different applied settings, and the considered
labeling functions illustrate this design objective. However,
adapting the model structure and underlying architecture of
the shared and head layers is a challenge that depends greatly
on both the features being classified and the datasets being
used. Furthermore, the interpretative capabilities of ARISE
depend on the abilities of the network operators employing
the framework, as the operators must be able to leverage
their domain knowledge to effectively intuit the reasoning or
causality behind certain classification decisions. Thus, while
ARISE shows promise in enabling networking domain experts
to begin reasoning about the decisions made by their tailor-
made classification models, such interpretative capabilities are
not yet accessible to all users such as those with less relevant

domain expertise.

VI. SUMMARY AND FUTURE WORK

The use of ML for networking faces several obstacles
including a lack of labeled datasets, scarcity of operators’
domain expertise during the labeling process, multiplicative
model training times with increasing number of network tasks,
and a general inability to reason about the decisions made by
the trained models. In this paper we propose ARISE, a novel
framework to overcome those obstacles. ARISE incorporates
operator expertise in the form of labeling functions; combines
innovations in weak supervision, multi-task learning, and
meta-learning to address prior limitations regarding model
scalability, long training times, etc.; and enables the adoption
of ML for networking by democratizating the pipeline with
task-specific interpretability.

We demonstrate the efficacy of ARISE by using two large
datsets of real-world network measurements, considering dif-
ferent tasks such as inferring loss, congestion, change points,
and noise, and comparing the performance of ARISE-based
MTL vs. STL models. Our results show that in addition to
outperforming naive statistical methods, MTL models can be
trained up to 8x faster with over 40% accuracy improvements
as measured by F1 score when compared to prior STL efforts.
Furthermore, our experiments suggest that MTL models aided
by meta-learning techniques (e.g., hyperparameter optimiza-
tion) can outperform explicit meta-learning methods such as
ensemble learning. We also report findings that show the
promise of MTL models for providing a means for reasoning
about their decision-making process, at least at the level of
individual tasks.

As part of our future work, we plan to expand the capabil-
ities of ARISE in three different directions. The first direction
concerns using ARISE to rethink cyber attack detection tasks
in terms of a hierarchical structure based on attack goals,
vulnerabilities exploited, and other domain-specific aspects.
This way, instead of building flat multi-class models to detect
all possible attacks or building several specialized task-specific

models, attack detection models could be built based on hier-
archical relationships between attacks, enabling unprecedented
information sharing throughout the hierarchy. The second
direction focuses on leveraging an ARISE-like framework to
drastically transform current network management practices
through the use of a conversational intelligence approach
whereby operators will be able to “tell” the network what to
do by directly “talking” to an intelligent network management
agent. While a narrow version of this approach is already
supported in ARISE, we intend to investigate the end-to-
end design of such as approach by leveraging existing NLP
techniques [49], [50] and demonstrating its feasibility with a
spectrum of illustrative network management task examples.
Finally, to further increase operators’ trust in trained learning
models, we plan to enhance the robustness of ARISE with
adversarial examples—intentional feature perturbations that
can cause a model to make false predictions.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful feed-
back. This work is supported by the National Science Founda-
tion through CNS 1850297, CNS 2145813, and OAC 2126281,
and a UO VPRI fellowship. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of NSF or UO.

REFERENCES

[1] N. Feamster and J. Rexford, “Workshop on self-driving networks.” https:
//nst-srn-2018.cs.princeton.edu/nst-srn-report.pdf, 2018.

[2] Y. Lavinia, R. Durairajan, R. Rejaie, and W. Willinger, “Challenges in

Using ML for Networking Research: How to Label If You Must,” in

Proceedings of the Workshop on Network Meets Al & ML, NetAl 20,

(New York, NY, USA), p. 21-27, Association for Computing Machinery,

2020.

K. Claffy, D. Clark, J. Heidemann, F. Bustamante, M. Jonker, A. Schul-

man, and E. Zegura, “Workshop on Overcoming Measurement Barriers

to Internet Research (WOMBIR 2021) Final Report,” vol. 51, p. 33-40,

July 2021.

[4] A. Muthukumar and R. Durairajan, “Denoising Internet Delay Mea-
surements using Weak Supervision,” in 2019 18th IEEE International
Conference On Machine Learning And Applications (ICMLA), pp. 479—
484, IEEE, 2019.

[5] H. Wang, H. Zhao, and B. Li, “Bridging Multi-Task Learning and Meta-

Learning: Towards Efficient Training and Effective Adaptation,” 2021.

A. Gupta, C. Mac-Stoker, and W. Willinger, “An Effort to Democratize

Networking Research in the Era of AI/ML,” in Proceedings of the 18th

ACM Workshop on Hot Topics in Networks, pp. 93—100, 2019.

[7]1 J. Baxter, “A model of inductive bias learning,” Journal of artificial
intelligence research, vol. 12, pp. 149-198, 2000.

[8] “CAIDA Ark Datasets.” www.caida.org/projects/ark/topo_datasets.xml.

[9]1 “RIPE Atlas.” https://atlas.ripe.net, 2018.

[10] K. Xu and J. Chandrashekar and Z.L. Zhang, “A First Step toward

Understanding Inter-domain Routing Dynamics,” in ACM SIGCOMM

workshop on Mining network data, 2005.

T. T. Nguyen and G. Armitage, “A survey of techniques for internet

traffic classification using machine learning,” IEEE Communications

Surveys & Tutorials, vol. 10, no. 4, pp. 56-76.

N. Williams, S. Zander, and G. Armitage, “A preliminary performance

comparison of five machine learning algorithms for practical ip traffic

flow classification,” ACM SIGCOMM CCR, 2006.

A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering using

machine learning techniques,” in PAM, pp. 205-214, Springer, 2004.

G. Comarela, R. Durairajan, P. Barford, D. Christenson, and M. Crovella,

“Assessing Candidate Preference through Web Browsing History,” in

proceedings of ACM SIGKDD, 2018.

[3

=

[6

=

[11]

[12]

[13]

[14]

[15]

[16]
(17]
[18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]
[41]
[42]
[43]

[44]

D. Wang, Y. Yu, and A. Rinaldo, “Optimal change point detection
and localization in sparse dynamic networks,” The Annals of Statistics,
vol. 49, pp. 203-232, Feb. 2021.

H. Ringberg and A. Soule and J. Rexford and C. Diot, “Sensitivity of
PCA for Traffic Anomaly Detection,” SIGMETRICS, 2007.

A. Lakhina, M. Crovella, and C. Diot, “Diagnosing Network-wide
Traffic Anomalies,” in ACM SIGCOMM, 2004.

A. Lakhina, M. Crovella, and C. Diot, “Mining Anomalies Using Traffic
Feature Distributions,” ACM SIGCOMM, 2005.

J. Camacho, A. Pérez-Villegas, P. Garcia-Teodoro, and G. Macia-
Fernandez, “PCA-based Multivariate Statistical Network Monitoring for
Anomaly Detection,” Computers & Security, 2016.

X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, W. Hong, and G. Ian-
naccone, “MIND: A Distributed Multi-Dimensional Indexing System for
Network Diagnosis,” in IEEE INFOCOM, 2006.

M. Syamkumar, S. K. Mani, R. Durairajan, P. Barford, and J. Som-
mers, “Wrinkles in Time: Detecting Internet-wide Events via NTP,” in
proceedings of IFIP Networking, 2018.

A. W. Moore and D. Zuev, “Internet traffic classification using Bayesian
analysis techniques,” in ACM SIGMETRICS, 2005.

R. Bunescu and R. Mooney, “Learning to extract relations from the web
using minimal supervision,” in ACL, 2007.

M.-C. Yuen, I. King, and K.-S. Leung, “A survey of crowdsourcing
systems,” in IEEE SocialCom, 2011.

T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré, “Holoclean: Holistic data
repairs with probabilistic inference,” VLDB Endowment, 2017.

A. J. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré,
“Snorkel: Rapid training data creation with weak supervision,” VLDB
Endowment, 2017.

A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré, ‘“Data
programming: Creating large training sets, quickly,” in Advances in
neural information processing systems, pp. 3567-3575, 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why Should I
Trust You?’: Explaining the Predictions of Any Classifier,” CoRR,
vol. abs/1602.04938, 2016.

S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting
Model Predictions,” in Advances in Neural Information Processing
Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, eds.), pp. 47654774, 2017.

O. Bastani, C. Kim, and H. Bastani, “Interpreting Blackbox Models via
Model Extraction,” CoRR, vol. abs/1705.08504, 2017.

B. Li, Y. Lin, and S. Zhang, “Multi-Task Learning for Intrusion
Detection on Web Logs,” J. Syst. Archit., vol. 81, p. 92-100, nov 2017.
J. Yang, X. Sun, Y.-K. Lai, L. Zheng, and M.-M. Cheng, “Recognition
from Web data: A progressive filtering approach,” IEEE Transactions
on Image Processing, vol. 27, no. 11, pp. 5303-5315, 2018.

S. Bickel, J. Bogojeska, T. Lengauer, and T. Scheffer, “Multi-Task
Learning for HIV Therapy Screening,” in Proceedings of the 25th
International Conference on Machine Learning, ICML 08, (New York,
NY, USA), p. 56-63, Association for Computing Machinery, 2008.

L. Weng, “Meta-Learning: Learning to Learn Fast,” lilianweng.github.io,
2018.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science,
vol. 350, no. 6266, pp. 1332-1338, 2015.

D. J. Rezende, S. Mohamed, I. Danihelka, K. Gregor, and D. Wierstra,
“One-Shot Generalization in Deep Generative Models,” 2016.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lilli-
crap, “Meta-Learning with Memory-Augmented Neural Networks,” in
Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, p. 1842-1850,
JMLR.org, 2016.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, pp. 248-255, leee, 2009.

L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141-142, 2012.

F. Hutter, L. Kotthoff, and J. Vanschoren, eds., Automated Machine
Learning - Methods, Systems, Challenges. Springer, 2019.

“Scamper.” https://www.caida.org/tools/measurement/scamper/,
“tsfresh.” https://tsfresh.readthedocs.io/en/latest/, 2019.

“Multi-Task Learning (MTL) Basics.” |https://www.snorkel.org/
use-cases/multitask-tutorial, 2019.

A. Ratner, B. Hancock, J. Dunnmon, F. Sala, S. Pandey, and C. Ré,
“Training Complex Models with Multi-Task Weak Supervision,” Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
p. 4763-4771, 2019.

https://nsf-srn-2018.cs.princeton.edu/nsf-srn-report.pdf
https://nsf-srn-2018.cs.princeton.edu/nsf-srn-report.pdf
www.caida.org/projects/ark/topo_datasets.xml
https://atlas.ripe.net
https://www.caida.org/tools/measurement/scamper/
https://tsfresh.readthedocs.io/en/latest/
https://www.snorkel.org/use-cases/multitask-tutorial
https://www.snorkel.org/use-cases/multitask-tutorial

[45]
[46]

“Cloudlab.us.” https://www.cloudlab.us/, 2021.

“RIPE Atlas Measurement Results API.” https://beta-docs.atlas.ripe.net/
apis/measurement-results/measurement-results.html,

V. Pimpalkhute, A. Pandit, M. Mishra, and R. Singhal, “Accelerating
Gradient-based Meta Learner,” CoRR, vol. abs/2110.14459, 2021.

H. Bastani, O. Bastani, and C. Kim, “Interpreting predictive models for
human-in-the-loop analytics,” arXiv preprint arXiv:1705.08504, pp. 1-
45, 2018.

A. Alsudais and E. Keller, “Hey Network, Can You Understand Me?,”
in 2017 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 193-198, IEEE, 2017.

R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev, “Net2text:
Query-guided summarization of network forwarding behaviors,” in /5th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), pp. 609-623, 2018.

C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change
point detection methods,” Signal Processing, vol. 167, p. 107299, 2020.
P. Fryzlewicz, “Wild binary segmentation for multiple change-point
detection,” The Annals of Statistics, vol. 42, Dec 2014.

[47]

(48]
[49]

[50]

[51]

[52]

APPENDIX
A SOURCE CODE

The source code and the datasets used in this work can be
found at https://gitlab.com/onrg/arise.

B CHANGEPOINT CLASSIFICATION

The ruptures [S1] Python library for offline changepoint
detection provides a function to generate time-series data by
sampling from either a uniform or Gaussian normal distri-
bution and prescribing specific changepoints throughout the
time-series with which to compare. As a baseline, we sample
1,000 values from a uniform distribution containing three
changepoints at indices 250, 500, and 750 of the time-series.
We then employ the binary segmentation [52] classification
method with ruptures’ default recommended parameters to
observe its effectiveness. Note that in this case, the binary
segmentation method is provided the number of changepoints
to expect and classify.

70

60

50

40

0 200 400 600 800 1000

Figure 10: Using ruptures to classify known changepoints.
True changepoints are shown by the transitions in background
color, predicted changepoints are shown via the dotted lines.

As Figure [T0] shows, ruptures is quite capable of identifying
static changepoints when provided the number of changepoints
to expect and in the presence of relatively little noise in the
data. However, when attempting to classify more complex
examples where the number of changepoints is not known
or only a portion of the time-series is available on which to
classify (as is often the case when working with measurement
data), ruptures’ classification capabilities quickly fall short.

We again sample 1,000 points from a uniform distribution,
this time with 10 prescribed changepoints contained within
the data. We use the window-sliding segmentation method
of changepoint classification to identify changepoints without
providing the number of changes to expect, and instead provide

the method with a penalty function p = In(N) - 0% (ruptures’
recommended default, where N is the number of samples and

o is the standard deviation of the noise) to isolate changepoints
without needing to know the number of changes beforehand.

1 11 1 I I I | 1 1

80 1 11 1 I O I | 1 1
1 11 1 1 1

1

1

20 1 11
1 11 1

0 200

400 600 800 1000

Figure 11: Classifying an unknown quantity of changepoints
using window-sliding segmentation. True changepoints are
shown by the transitions in background color, predicted
changepoints are shown via the dotted lines.

As Figure suggests, the window-segmentation method
struggles to accurately classify changepoints on time-series
data when not provided the number of changes to expect.
And while the penalty function could be modified further to
better represent the distribution of this data, such efforts would
be impractical (if not impossible) for a network operator to
perform in the context of each of their individual datasets.
Other changepoint classification efforts similar to ruptures
suffer from similar limitations in that they (i) require additional
contextual information regarding the distribution of time-
series data that network operators cannot possess, and (ii) are
extremely vulnerable to noise and suffer when not provided
sufficient information regarding the behavior of the data. Thus,
we turn to ML to address the shortcomings of these naive
techniques.

C ML TRAINING AND TUNING

To train our classification models, we first establish a
set of functional hyperparameters for STL and MTL. These
parameters influence the underlying behavior of a model, and
include components such as the learning rate, number of
training iterations to perform, and any other technical opti-
mizations an operator may wish to implement. To select these
hyperparameters, we initially attempted to manually iterate
across several possible values at different scales to identify an
optimal set of parameters, but quickly found that this approach
was not practical in the context of the model and datasets we
employ. For one, despite our best efforts, attempting to train
our models with hyperparameters chosen by naive selection
failed to result in satisfactory model performance with respect
to the F1 score when evaluated on the withheld testing set.
In addition, we also found that the optimal parameterization
for a given model was dependent on the specific dataset on
which it was trained. As our analysis of ARISE relies on
evaluating its performance across multiple distinct datasets and
the amount of time it takes to train effectively on said datasets,
we concluded that such an approach would be ineffective
for the context of our experiments (especially when used
in the context of real-world applications). Instead, we chose
to leverage insight from meta-learning techniques such as
AutoML [40] to quickly iterate across many different potential
hyperparameter values and select the resulting values that
perform best on the dataset and tasks at hand. By automating

https://www.cloudlab.us/
https://beta-docs.atlas.ripe.net/apis/measurement-results/measurement-results.html
https://beta-docs.atlas.ripe.net/apis/measurement-results/measurement-results.html
https://gitlab.com/onrg/arise

Hidden Layers F1 Score Training Time SD
2 (base) 0.554 4+ 0.03286 52.30s 5.84s
3 0.565 +0.03418 134.43s 27.15s
5 0.561 £ 0.03458 145.60s 26.26s
10 0.560 &+ 0.03244 177.65s 37.45s

Table IV: Additional training experiments conducted on the
CHANGEPOINT classification sub-task for the CAIDA Ark
datasets depicting the impact of increasing the number of
hidden layers in the STL models. F1 score is £ the Standard
Error.

this process, we were able to evaluate a significantly larger
portion of the hyperparameter space in a fraction of the time,
and thus improve the performance of both the STL and MTL
models as a result.

From here, we then evaluate other HPO strategies such as
learning rate schedulers that linearly decrease the learning rate
upon subsequent training iterations, which we found to be
particularly effective in our ARISE-based models as it allows
the MTL models to remain more accurate and consistent in
their resulting classification capabilities. We found that while
some hyperparameters (primarily the model learning rates)
required substantial optimization, others were less dependent
on the dataset or tasks at hand and were thus able to remain
fixed for the duration of our experiments (e.g., the number of
training epochs was set to 20 for the STL models and 10 for
the MTL models, as increasing the number of epochs beyond
these values yielded little to no improvement in terms of the
model accuracy and often resulted in extended training times).

In addition to optimizing the hyperparameters of each
model, we also evaluate the effects of increasing the number
of hidden layers in the STL models beyond the baseline of
two hidden layers established in [2]. While we found a depth
of two hidden layers to be effective for each of the LOSS,
NOISE, and CONGESTION sub-tasks in the CAIDA datasets,
we found that the STL models were less performant when
considering the CHANGEPOINT sub-task or when trained on
the RIPE Atlas datasets. To determine whether this lack of
performance is due to an insufficient number of hidden layers
in the STL models, we evaluate the effect of increasing the
number of hidden layers from two to three, five, and ten hidden
layers by adding in additional dense layers and retraining each
of the STL models. We show the results of these experiments
in Table for the CHANGEPOINT sub-task on the CAIDA
datasets and note that retraining the STL models with addi-
tional hidden layers for the LOSS, NOISE, and CONGESTION
sub-tasks in the RIPE Atlas datasets yielded similar results. As
incorporating additional hidden layers appears to provide no
significant benefit to the STL models’ F1 scores, we elect to
retain our initial baseline of two hidden layers as it achieves
near equivalent performance to each of the other model depths
in the least amount of time.

Each model also requires a scoring metric to evaluate its
performance after the conclusion of the training process. We
use the F1 score of each model as this numerical measure,
providing equal weight to the importance of both precision and
recall in evaluating our models. Given the number of training

datasets from RIPE and CAIDA, we calculate and report the
average of F1 scores across those datasets. To train effectively,
each model also requires a loss function that will be used to
evaluate the predictions of the current training iteration with
respect to the intended or “ground truth” output. For STLs, we
use binary cross entropy as our standard loss function to reflect
the STLs’ ability to produce only True/False predictions. For
MTLs, we use a generic cross entropy loss function to better
support future ARISE-based efforts that may wish to employ
more than simple binary classification on a single task (i.e.,
enabling models to vote ABSTAIN for a certain input if
insufficient evidence is presented in training, or combining
predicted labels for more complex feature classification).

We also employ various optimization and data pre-
processing strategies to further enhance the performance of
the STL models such as L2 regularization, dropout, and early
stopping to enable the early termination of the training process
when a lack of performance improvements from subsequent
iterations is detected [2]. In these models, early stopping is
triggered when the model’s loss function fails to decrease by at
least 0.01 over the course of five subsequent training iterations.
This optimization also means that the number of STL training
iterations actually performed is often far fewer than 20 epochs
(as indicated above), with the number of observed iterations
frequently ranging approximately between 9 and 13 (compared
to 10 epochs in our MTL approach). We also leverage a data
augmentation strategy similar to that described in [2], where
additional examples of each network feature are synthesized
and inserted into the training sets to provide the STL models
with more examples to learn from. This helps to ensure both
that the STL models have enough examples of the features
they are learning to identify, and make them more robust in
adapting to more widely varied datasets. We choose not to
implement similar optimizations in our MTL approach both
for the sake of simplicity and to show how MTL compares
against a more complex and better optimized combination of
STL models.

Jared Knofczynski is a Ph.D. student in the Department of Computer Science
at the University of Oregon. His work has been recognized with several
awards, including the Phillip Seeley Graduate Fellowship, UO VPRI Fellow-
ship, Ripple UBRI Scholarship, and Jean Wittemyer Memorial Scholarship.

Ramakrishnan Durairajan is an Assistant Professor in the Department
of Computer Science at the University of Oregon. His research has been
recognized with NSF CAREER, NSF CRII, Ripple faculty fellowship, UO
faculty research award, several best paper awards, and has been covered in
several fora.

Walter Willinger is Chief Scientist at NIKSUN, Inc. Before joining NIKSUN,
he worked at AT&T Labs-Research and at Bellcore Applied Research. He is
co-recipient of the 1995 W.R. Bennett Prize Paper Award, the 1996 WR.G.
Baker Prize Award, and of the 2005 and 2016 ACM/SIGCOMM Test-of-Time
Paper Awards.

	Introduction
	Motivation and Background
	Motivation
	Networking problems involve tasks composed of multiple sub-tasks with overlapping characteristics
	Model scaling is impossible with single-task learning (STL)

	Prior Efforts and their Limitations

	Design and Implementation of Arise
	Overview of Arise
	Design Details
	Implementation

	Evaluation of Arise
	Datasets Used
	Experiments
	STL vs. MTL
	Training Times and Model Accuracy
	Model Scalability

	Meta-Learning vs. MTL
	Arise in Practice
	Tasks with Multiple Sub-tasks
	Task-specific interpretability

	Discussion
	Summary and Future Work
	References
	Appendix
	Biographies
	Jared Knofczynski
	Ramakrishnan Durairajan
	Walter Willinger

