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ABSTRACT
Cloud-hosted services are being increasingly used in online busi-
nesses in e.g., retail, healthcare, manufacturing, entertainment due
to benefits such as scalability and reliability. These benefits are fu-
eled by innovations in orchestration of cloud platforms that make
them totally programmable as Software Defined everything Infras-
tructures (SDxI). At the same time, sophisticated targeted attacks
such as Distributed Denial-of-Service (DDoS) are growing on an
unprecedented scale threatening the availability of online businesses.
In this paper, we present a novel defense system called Dolus to
mitigate the impact of DDoS attacks launched against high-value
services hosted in SDxI-based cloud platforms. Our Dolus system
is able to initiate a ‘pretense’ in a scalable and collaborative man-
ner to deter the attacker based on threat intelligence obtained from
attack feature analysis in a two-stage ensemble learning scheme.
Using foundations from pretense theory in child play, Dolus takes
advantage of elastic capacity provisioning via ‘quarantine virtual
machines’ and SDxI policy co-ordination across multiple network
domains to deceive the attacker by creating a false sense of success.
From the time gained through pretense initiation, Dolus enables
cloud service providers to decide on a variety of policies to mitigate
the attack impact, without disrupting the cloud services experience
for legitimate users. We evaluate the efficacy of Dolus using a GENI
Cloud testbed and demonstrate its real-time capabilities to: (a) detect
DDoS attacks and redirect attack traffic to quarantine resources to
engage the attacker under pretense, and (b) coordinate SDxI policies
to possibly block DDoS attacks closer to the attack source(s).
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1 INTRODUCTION
Cloud computing has become an essential aspect of online services
available to customers in major consumer fields such as e.g., retail,
healthcare, manufacturing, and entertainment. On-demand elasticity,
and other benefits including diversity of resources, reliability and
cost flexibility have led enterprises to pursue the development and
operations of their applications in a “cloud-first" fashion [1].

Technological trends indicate that the aforementioned benefits
typically rely on software-centric innovations in the orchestration of
cloud resources. These innovations include cloud platforms based
on Software Defined everything Infrastructures (SDxI) that allow
programmability to achieve capabilities such as speed and agility [2]
in elastic capacity provisioning. Additionally, they provide opportu-
nities to create Software-Defined Internet Exchange Points (SDXs)
between multiple Software-Defined Network (SDN) domains (or
Autonomous Systems (ASes)) that can enable application-specific
peering, knowledge sharing of cyber threats, and other cross-domain
collaborations [3].

While the adoption of SDxI-based clouds is starting to mature,
sophisticated targeted attacks such as Distributed Denial-of-Service
(DDoS) attacks are simultaneously growing on an unprecedented
scale. DDoS attacks can have significant effects on cloud-hosted
services (i.e., attack “targets”) and are continual threats on the avail-
ability of online businesses to customers. If successful, they also
cause significant loss of revenue/reputation for a large number of



ICDCN ’18, January 4–7, 2018, Varanasi, India R. L. Neupane et al.

enterprises for extended periods of time. From the customers’ per-
spective, application consumption interruptions due to cyber attacks
can lower their overall Quality of Experience (QoE) and can lead
to loss of trust, or in worst cases, the termination of cloud-hosted
application provider services.

Given the benefits of SDxI-based cloud platforms, the traditional
Intrusion Prevention Systems (IPS) and Intrusion Detection Systems
(IDS) solutions are undergoing major transformations. Recently, de-
fense strategies such as SDN-based “moving target defense” [4] [5]
have been proposed to protect networks and users against DDoS
attacks by migrating networks and users from targeted virtual ma-
chines (VMs) to other healthy/safe VMs in a cloud platform. How-
ever, such strategies may cause the application response behavior to
change to an extent that alerts the attacker that a high-value target has
been hit. Given such a discovery that a service provider is moving
a target in order to shelter from the attack impact, the attacker may
then deflect more resources to seek ransom demands in order to stop
the DDoS on the target.

Moreover, if the DDoS attack flows are blacklisted, traditional
approaches allow defense only at the attack destination side i.e.,
any related traffic is dropped at the target-end. In such cases, the
attacker still can escalate the DDoS attacks by crossing many other
neighboring domain paths, who may not be inclined to drop the
attack flow traffic assuming it may be legitimate traffic of a peer
network. We suppose that SDxI-based cloud platforms can facilitate
capabilities for coordination of policies and creation of incentives
to block such targeted attack flows closer to the attack source side,
which can then mitigate the impact on resource flooding for all the
providers involved. However, this might require the target service
provider to buy some time in order to bring ‘humans into the loop’ to
actually enforce attack traffic blocking measures closer to the attack
source side.

In this paper, we address the above challenges and present a novel
defense system called Dolus (named after the spirit of trickery in
Greek Mythology) to mitigate the impact of DDoS attacks launched
against high-value services hosted in SDxI-based cloud platforms.
The DDoS attack detection is performed in the Dolus system using
the threat intelligence obtained from attack feature analysis in a
two-stage ensemble learning scheme that we developed. The first
stage focuses on anomaly detection to identify salient events of in-
terest (e.g., connection exhaustion), and the second stage is invoked
to distinguish the DDoS attack event type amongst the 5 common
attack vectors: DNS (Domain Name System), UDP (User Datagram
Protocol) fragmentation, NTP (Network Time Protocol), SYN (short
for synchronize), SSDP (simple service discovery protocol). Our
Dolus system1 is novel owing to a scalable and collaborative de-
fense strategy that uses foundations from pretense theory in child
play [8] [9] along with SDxI-based cloud platform capabilities for:
(a) elastic capacity provisioning via ‘quarantine VMs’, and (b) SDxI
policy co-ordination across multiple network domains. Such a strat-
egy is aimed at preventing the disruption of cloud-hosted services by
deceiving the attacker through creation of a false sense of success,
and by keeping the attacker from recognizing that a high-value target
has been impacted and is being moved.
1 Dolus system is openly available to the community here: [6]. A demonstration of Dolus,
along with the attack generation scheme that we consider in this paper, is available
here [7].

We evaluate the efficacy of our Dolus system using a GENI
Cloud [10] testbed that contains three SDN switches, two slave
switches and a single root switch. The slave switches are each at-
tached to users and attackers, a quarantine VM, and a connection
to the root switch. Likewise, the root switch is connected to elastic
VMs, each of which could serve as a candidate for the target applica-
tion (i.e., a video gaming portal) hosting that could be compromised
by the attackers. All switches are connected to a unified SDN con-
troller located in the cloud service provider domain, which directs
the policy updates. Our experiment results demonstrate the real-time
capabilities of our Dolus system to: (a) detect DDoS attacks and
redirect attack traffic to quarantine resources to engage the attacker
under pretense, and (b) coordinate SDxI policies to possibly block
DDoS attacks closer to the attack source(s) without affecting the
(benign) cloud users/customers.

The remainder of this paper is organized as follows: In Section 2,
we discuss related works. We describe our overall system and de-
fense methodology in Section 3. Section 4 presents our evaluation
experiments in a GENI Cloud testbed. Section 5 concludes the paper.

2 RELATED WORK
Defense against flooding attacks such as DDoS typically involves
attack traffic feature learning that provides intelligence on where the
attack is coming from, and the specific attack type(s) [11] [12] [13].
Analysis of features such as source IP, destination IP, source port,
destination port, size of packets, packet identifiers commonly help
in subsequent filtering of flooding attacks. Authors in [14] show
that the Internet traffic patterns are distinguishable, which can help
filter and isolate attack traffic flows. Once attack flows are filtered,
blacklists are created [15], which can then be used to “scrub” the
flows through scrubbing SaaS services as a low-cost solution [16].

A number of other network-based defense strategies have been
proposed in efforts that involve analysis of traffic and dynamic
updation of rules to effectively reroute malicious traffic. Such ef-
forts include [17], where a network reacts to targeted attacks us-
ing accountability and content-aware supervision concepts. Simi-
larly, using volume counting, authors in [18] provide a DDoS de-
fense mechanism that involves monitoring SDN traffic flows in
OpenFlow-enabled switches. In the context of programmability of
SDN switches to mitigate targeted attacks, authors in [19] present a
programming framework. In another similar effort, authors in [20]
propose a memory-efficient system that uses Bloom filter and mon-
itoring tools to dynamically update SDN rules to mitigate DDoS
attacks. Also leveraging the dynamic rule update feature of SDN, au-
thors in [21] analyze the probability that a flow is traced back across
multiple ASes’ hops by sampling the probability and the analyzing
signatures of attack traffic flows.

Alternately, cloud service providers allow mitigation of DDoS
attacks by utilizing the elastic capacity provisioning capabilities in
the cloud platforms that allow “moving target defense” (MTD) tech-
niques to be implemented. MTD basically involves replication and
live migration [22] of compromised application services (with pre-
attack state information) in new VM(s) to redirect legitimate users,
and keep attackers in a quarantine VM(s) [5]. As an added defense
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strategy, authors in works such as [23] present a survey of SDN-
based mechanisms to detect attacks closer to the attackers/attack
sources.

There have been efforts that seek to implement defense mech-
anisms using some form of ‘trickery’ to engage an attacker. For
example, authors in [24] introduce the notion of tricking the attack-
ers through IP randomization methods in decoy-based MTD efforts.
In contrast, the notion of pretense in our Dolus approach is akin
to Honeypots and Honeynets which are effective in gaining infor-
mation about possible attacks based on minimal active interactions
with attackers [25]. Primarily they are used in a setting to either
gain more information about potential attacks or the behavior of
attackers. Our work is complementary to Honeypots/Honeynets: we
employ pretense to deceive attackers by rerouting and responding to
attack traffic using quarantine VMs. Dolus system’s pretense theory
is mainly built upon the work in [8] and [9] belonging to the field
of child pretend play psychology. Our novel defense by pretense
mechanism for effective mitigation of DDoS attacks is inspired by
the authors’ experiments where they show children (analogous to
our attackers) various pictures of the animals along with a mismatch
of the sounds made by the associated animals. Observations are
made on how a pretense is effective based on how long it takes
for a child to understand/protest that the information portrayed is
actually false. In our case, the longer an attacker is tricked by our
pretense, the more time a cloud service provider has to perform MTD
mechanisms, strategize on patching identified vulnerabilities, as well
as implement a SDxI-based infrastructure policy coordination for
mitigation of the impact of a DDoS attack.

3 DOLUS DEFENSE METHODOLOGY
In this section, we first present an overview of our proposed Dolus
system. Following this, we describe the attack model that we assume
to design our defense. Lastly, we detail our defense solution that
uses a ‘defense by pretense’ scheme.

3.1 Dolus System Overview
The pretense in the Dolus system is designed to create stimulus from
the target side that matches the initial expectation of an attacker
that a high-value target has not yet been compromised through an
automated bot activity. Pretense theory concepts from [8] motivate us
to address the issue of how a cognitive agent can present a pretense
world, which is different from the real world using the following
four steps:

(a) The basic assumption(s) or premise(s) that is used by a pre-
tender on what is being pretended.

(b) Inferential elaboration which details of what goes into or what
actually happens in the process of pretense.

(c) Appropriate behavior production which answers the question
of whether the pretender was successful on the audience being
tricked.

(d) Balancing and steering the effects of pretense.
For use cases to guide our design, we borrow ideas from an

example experiment from [9], where a child (i.e., the attacker in
our case) is shown the image of a dog that makes the sound of a
duck. In this situation, the child protests saying that it is not the
sound that a dog makes. However, if the same child is shown an

Figure 1: Illustration of the proposed Dolus system scheme
wherein the attacker is tricked by redirection of the attack
traffic to a quarantine VM for pretense initiation, while the
providers work collaboratively to block the attack traffic closer
to the source side.

image that seemingly looks like a duck (in reality, it is not) and
makes the sound of a duck, then there is no protest and the child
falls for the pretense. However, given additional observation time,
the child realizes he/she has been tricked and protests. Thus, we can
see that an effective pretense in our case can be designed as shown
in Figure 1 by creating pertinent stimulus from the target side i.e.,
redirecting attack traffic to a quarantine VM that mimics original
target behavior, when our two-stage ensemble learning algorithm
can blacklist the attacker flows from benign user flows. This in turn
could help in keeping an attacker distracted for a brief period of time
when the pretense is in effect.

From the time gained through such a pretense initiation, Dolus
enables cloud service providers to decide on a variety of policies
by dynamically generating network policies using Frenetic [26] to
mitigate the attack impact, without disrupting the cloud services
experience for legitimate users. In the worst case, destination-side
blocking can be enforced. Alternately, if the cloud service provider
uses the attack intelligence information and successful pretense
time to coordinate the ‘humans in the loop’ of neighboring SDN-
enabled domains, together they can direct a unified SDN controller
that directs SDN-enabled switches to actually enforce attack traffic
blocking measures closer to the attack source side.

3.2 Attack Model
DDoS attacks aim to overwhelm network-accessible devices such as
networks, firewalls and end-systems in enterprises by sending pack-
ets at excessively high rates. With cloud-hosted applications with
large monetary value becoming highly common, DDoS attacks can
cause ‘Loss of Availability’ for users/customers and can be used for
extortion from vulnerable online businesses. Common DDoS attack
event types are amongst the 5 common attack vectors: DNS (Do-
main Name System), UDP (User Datagram Protocol) fragmentation,
NTP (Network Time Protocol), SYN (short for synchronize), SSDP
(simple service discovery protocol). For the purposes of our work,
we assume the DDoS attacker uses SYN [27] and ICMP/Ping [28]
flooding. Such attacks typically inundate a networks’ resources with
Echo Request packets. We also assume that the attackers’ traffic
is sent constantly and may or may not solicit a response in return.
Such attacks can bring the network to a standstill due to the high
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volume of both incoming and outgoing traffic. To effectively capture
the semantics of this attack model and to exhaust the target applica-
tion services, we generate and emit synthetic ping and HTTP traffic
using hping3 [29] and SlowHTTPTest [30] tools, respectively.
Furthermore, to capture the dynamics of an attacker, we randomly
change the number of attack packets emitted by these tools.

Figure 2: Cross-domain physical setup in a Dolus system deploy-
ment to share threat intelligence for a unified controller to co-
ordinate policy management with a federation of ASes to block
attack traffic closer to the source side.

3.3 Defense by Pretense Scheme
Figure 2 depicts the cross-domain setup in a Dolus system deploy-
ment to implement a defense by pretense scheme. To complement
Figure 2, interactions between different phases of a Dolus system
configured for spoofing pretense are shown in Figure 3 and Algo-
rithm 1, respectively.
Attack Detection. First, traffic within a cloud provider’s network
(which is generated by the SDN switches) or across multiple tran-
sit provider ASes (which are composed of SDX plus SDN switch
substrates) is monitored using a Frenetic runtime [26]-enabled mon-
itoring subcomponent (line 24 of Algorithm 1). Next, in order to
learn and classify the attacks (line 25 of Algorithm 1), we employ a
two-stage ensemble learning scheme on the incoming traffic, both
from the attackers and from the benign users. In order to differentiate
attackers from benign users, the first stage handles outlier detection
to identify salient events of interest (e.g., connection exhaustion),
whereas the second stage handles outlier classification to distinguish
different event types (e.g., DDoS attack).

Algorithm 1: Dolus system phases for spoofing pretense
Input: attacker_ID = attacker ID,
src_ip = source IP,
dst_ip = destination IP,
no_o f _packets = number of packets,
spoo f _dst_ip = spoofed IP,
black_ip blacklisted IP list
Result: Attack traffic will be redirected to the quarantine VM

and DDoS blocking policy will be generated
1 function initQuarantine()
2 createVM();
3 updatePolicy(src_ip);
4 do
5 redirectTraffic();
6 pretense_data = generateUsingScapy();
7 vmResponse(spoof_dest_ip, src_ip, dst_ip,

pretense_data);
8 while timeout == false;
9 end

10 function updatePolic� (src_ip)
11 logAttackTraffic();
12 new_policy = generateNewPolicy();
13 collaborate(new_policy);
14 end
15 function collaborate (new_policy)
16 advertisePoliciesToNeighbors(new_policy);
17 black_ip = updateList(src_ip);
18 redirectTraffic();
19 end
20 function redirectTra f f ic ()
21 sendTrafficToQuarantineVM();
22 end
23 functionmain ()
24 /* Receive incoming data from external machine */

data = monitorPackets(attacker_ID, src_ip,
no_of_packets, start_time, end_time);

25 attack = twoStageEnsembleLearning(data);
26 /* Update policy in case of attack detected */

if attack == true then
27 initQuarantine(src_ip);
28 end
29 decideToStopOrContinue();
30 end

Outlier Detection. We use basic/static methods such as multivariate
Gaussian to detect outliers and build upon our prior work on detect-
ing network-wide correlated anomaly events [31, 32] that are typical
of the traffic from multiple attack sources. Specifically, the outlier
detection is a composition of many efficient, multivariate outlier de-
tectors or hypotheses functions: H = {h1,h2, ...,hn } and the result,
F, is an ensemble of the different hypotheses. Furthermore, we note
that the traditional methods for ensemble learning use averaging or
majority voting [33]. In our case, to achieve higher accuracy with a
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Figure 3: Sequence diagram of the Dolus system interactions for attack detection, quarantine setup, pretense initiation/maintenance
and DDoS attack impact mitigation.

minimum size of the training dataset D, we use the Bayesian voting
scheme [34] as the ensemble method to predict the result for new
data x , which can be represented as Equation 1.

F =
’
h2H

h(x)P(h |D) (1)

Final ensemble result F consists of all of the hypotheses in H,
and each hypothesis h weighted by its posterior probability P(h |D).
The posterior probability is proportional to the likelihood of the
training data D times the prior probability of h (2).

P(h |D) / P(h)P(D |h) (2)

Outlier Classification. The outliers detected are classified into ei-
ther interesting events (e.g., attacks) or erroneous conditions (e.g.,
router failure). We use a simple classifier to this end: if the final
ensemble results of consecutive events (detected in the first stage)
fall in the same range, we classify them as an attack; otherwise, we
ignore those events. We remark that the above two-stage ensemble
learning scheme requires a sizable amount of data to classify the
attacks effectively. To overcome this challenge, we initially let the
attacker(s) to attack the cloud services. However, we also monitor
the incoming traffic carefully and make sure that the attack does not
disrupt the network resources. Once an attack is classified, which
are shown separately in Figure 2, we reroute the attack traffic using
Frenetic runtime to quarantine VM (QVM) along with sample server
responses (see lines 1 through 22 of Algorithm 1).
Quarantine Setup. Dolus calls the quarantine setup procedure
(lines 1 to 9) where a new QVM is instantiated using a cloud plat-
form’s elastic provisioning capability and the update policy routine is
invoked (line 3). In the update policy routine (lines 10 to 14), we log
the attack traffic to prevent future attack events as well as invoke the
Frenetic runtime to generate new policies (line 12). Frenetic executes
Python scripts to identify suspicious packets, learn from patterns and
directs switches to redirect packets to QVMs. We then advertise this
information (attack intelligence) to the neighboring switches (line
13), where, apart from the policy updates, the IP addresses of the

attackers are blacklisted. Following this, based on the stored attack
traffic logs, the QVM uses Scapy libraries [35] to generate responses
with spoofed IP addresses and pretends as the targeted VM under
attack from the perspective of the attacker(s) (lines 20 to 22).
Pretense Initiation. Subsequently, depending on the nature and
volume of the incoming data, we decide either to move forward with
the pretense or drop the traffic—which is the third step of production
of appropriate behavior in pretense theory (lines 28 to 30). In order
to gain more information about the attackers/attacks, we typically
continue the process of pretense. While we continue the pretense, we
routinely update attack intelligence such as the attacker’s IP, targeted
VM’s IP where service(s) under attack is hosted, type of attacks, etc.
Furthermore, we assume that an attacker has enough knowledge on
how a successful attack should affect our system, which is another
reason why we keep the attacker involved in the system as long as is
usually expected. If we drop the attack traffic too early or keep it in
the system for too long, they might potentially infer our pretense.
Pretense Maintenance. Finally, we redirect the flow of the attack
traffic by pushing a new policy from the unified controller running
in the cloud to the switch(es). This will redirect the attacker’s traffic
that is intended for the targeted VM towards the QVM. The QVM
then responds to the attacker’s traffic as though it is the targeted
VM/server under attack with spoofed IP address and hostname of
the target, which creates the pretense effect, from an attacker’s per-
spective, that the targeted DDoS attack is successful. Depending on
the nature of the attack, we want the attacker to believe that services
are no longer up/available on the targeted VM. We therefore allow
the QVM to continue to respond to the attacker for a limited amount
of time t . We tune t based on the type of attack traffic and how the
targeted VM would respond if it was under attack. For example, if
the targeted VM went down after 10 seconds of attack, the QVM
would do the same by not responding at the same time with a vari-
able random delay factor of [-1,1] seconds added. This allows the
attacker to see that the services are available until, suddenly, they no
longer are.
Policy Decision Making. In this sense, our defense maintains the
pretense: gives the attacker the confirmation of a successful attack,
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when in reality the service has not been affected at all as seen in the
Figure 5 considering the scenario that the user is running a video
gaming portal application. This also gives us sufficient time to collect
information about the attackers and their attack patterns. We use the
collected information to create a blacklist of attacker information.
To help network administrators effectively manage the network in
the face of attacks, our system also consists of a Administrator
User Interface module and a unified controller module that can
be customized in a Dolus system instance deployment depicted in
Figure 2. The User Interface shown in Figure 4 can be used for e.g., to
enforce users to adhere to the policies generated by Frenetic runtime
when they connect to the cloud. Policies generated by Frenetic
internally are updated through the User Interface using JSON arrays.
These policies (e.g., open/block flows) could be installed in the
switches using the unified controller module, which is also linked
with a back-end database that logs traffic characteristics and user
profiles.

The after effects of our pretense only lasts for as long as they are
needed. During the pretense, the attackers’ traffic continues to be
redirected a QVM near the attacker. However, this process need not
continue indefinitely. That is, once if it has been determined that
the attack traffic is no longer impacting the network, the policies
can be updated to redirect the attacker traffic back to where it was
prior to the start of pretense. There are several reasons to do this:
(i) changes in the dynamics of the attack (e.g., bandwidth usage
dropping back down to normal, absence of SYN packets in a SYN
flooding attack, fixing of malware in an affected machine and hence
it is no longer an attacker, etc.) calls for network policy changes so
that the network resources can be effectively used, (ii) changes in
traffic e.g., IP address change in incoming service requests sent from
a benign user must be serviced to meet the service level agreement
(SLA), and (iii) to save the operational cost of QVMs by reusing
them for a different purpose e.g., periodic backups.

Figure 4: Administrator User Interface of an Dolus system in-
stance.

Threat Intelligence Sharing. Algorithm 1 runs in the monitor com-
ponent and coordinates/shares intelligence with the switches de-
ployed in the network and across different providers. This in turn
enables a collaborative environment among providers such that the
targeted attacks can be detected closer to the source without af-
fecting the cloud infrastructure. A natural question is why would a
provider share the attack intelligence, especially in a business that
is driven by competition? We posit that the coordination among

different ASes/providers is mutually beneficial for all the entities
involved. Of course, a particular AS/provider can decide not to share
the attack intelligence to others. However, if an AS experiences an
attack and if it shares the intelligence with other ASes, a global and
unified hardening of infrastructure against such targeted attacks can
be achieved. In addition, any downtime is money lost in a business;
sharing the attack intelligence in turn provides a cheaper alternative
to lost downtime and business.

Figure 5: Video gaming portal application running in a SDxI-
based cloud platform with cross-domain network collaboration.

4 PERFORMANCE EVALUATION
We evaluate the efficacy of our Dolus system using a realistic, GENI
Cloud [10] testbed as shown in Figure 9. The testbed contains three
SDN switches, two slave switches and a single root switch. The
slave switches are each attached to users and attackers, a quarantine
VM, and a connection to the root switch. Likewise, the root switch is
connected to elastic VMs, each of which could serve as a candidate
for the target application (i.e., a video gaming portal) hosting that
could be compromised by the attackers. All switches are connected
to a unified SDN controller located in the cloud service provider
domain, which directs the policy updates. In the following, we show
the attack detection and classification accuracy using our two-stage
ensemble learning scheme and then present results from two sets
of experiments that were run for a maximum of 28 seconds to show
how our Dolus implementation can be used in real-time to restore
cloud services under DDoS attack situations.

4.1 Attack Detection and Classification
Using the Dolus system, we monitor different types of data that are
permitted to enter the GENI Cloud testbed depicted in Figure 9. We
send both normal and attack traffic (i.e., our datasets) to the targeted
server to test the efficacy of our two-stage ensemble learning scheme.
Our evaluation results span over two instances of learning of datasets
as explained in the following.

The first instance shows multiple traffic types from a single at-
tacker VM to a single target node. For this instance, we divide
⇠180,000 lines of data into two sets, one for training and the other
to test the accuracy of our scheme. Furthermore, the types of traffic
used to create these instances are composed of SlowHTTPTest, iperf,
VLC and ICMP ping. Figure 6 shows the two confusion matrices
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(a) Attack detection.

(b) Attack classification.

Figure 6: Confusion matrices for attack detection and classifi-
cation for multiple traffic flows sent to a single server.

Table 1: Overall Attack Detection and Classification Time and
Accuracy

Tests Time (in Seconds) Accuracy (in %)

Single server stage 1 <1 99.99
Single server stage 2 <1 99.98

Multiple hosts stage 1 7 89.12
Multiple hosts stage 2 13 98.49

for attack detection and classification in a normalized fashion. We
note that both the detection and the classification of attack took less
than a second. In addition to the rapid detection and classification,
our approach is highly accurate as shown in Table 1, where stage 1
is the detection stage and stage 2 is the classification stage.

In the second instance, we consider multiple traffic types to mul-
tiple hosts. This instance is composed of 2.5 million rows per test,
totaling 5 million rows of data. The types of traffic that we use to
create this dataset include SlowHTTPTest, iperf, VLC, scp, wget,
and ICMP ping. This dataset also contains some unlabeled/undefined
data for the scheme to assess and classify the training data to eval-
uate the effectiveness of our two-stage ensemble learning scheme.

(a) Attack detection.

(b) Attack classification.

Figure 7: Confusion matrices for attack detection and classifi-
cation for multiple traffic flows sent to multiple hosts.

Figure 7 shows the two confusion matrices in normalized form for
attack detection and classification. Detection and classification of at-
tack took ⇠7 and ⇠13 seconds, respectively. Despite the slowdown in
attack detection/classification in comparison with the first instance,
the accuracy of our approach is still high as shown in Table 1.

While the two-stage ensemble learning scheme is effective in
detecting test data, a new attack that has not been used in training
could initially go undetected and impact services. However, with
pertinent labeling of attack traffic flows during training, the accuracy
of the ensemble learning scheme can be improved significantly. We
depict the outlier detection and classification for a trained cased in
Figure 8, where we make use of 60% of the data as training data
and 40% as test data for the same dataset used in the 2nd instance.
For the purpose of our evaluation, the sorted dataset has randomized
time stamps.

Though the dataset that we use is discrete with differences in
traffic such as protocol, bytes transmitted, number of packets, source
and destination addresses, our two-stage ensemble learning scheme
is effective in detecting the attacks with good accuracy and efficiency.
The ensemble learning scheme can further be modified based on
other characteristics of network traffic, and such modifications are
beyond the scope of the work in this paper.
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(a) Attack detection. (b) Attack classification.

Figure 8: Confusion matrices for outlier detection and classification for multiple traffic flows comprising of familiar attack flows.

Figure 9: GENI Cloud testbed setup used to evaluate the Dolus system performance.

4.2 Time to Restore a Cloud-hosted Application
Service

Figure 10 compares the time taken by our Dolus system to stop a
DDoS attack versus MTD-based and no defense strategies. After a
warm-up period of 6 seconds, we start the SlowHTTPTest and hping3
at the 7th second from the attackers. In a SDxI-based cloud network
with no defense strategy, the services are immediately affected by
the attack traffic. Similarly, the MTD-based defense strategy takes
⇠6 seconds to mitigate the attack traffic impact. However, our Dolus
system supported service on the other hand, does not suffer from
any loss of availability in comparison with the other two strategies.
This is due to the sharing of attack intelligence between the slave

switches and redirection of attack traffic to quarantine VMs closer
to the attackers, making the cloud network completely oblivious to
the attackers.

4.3 Amount of Traffic Processed at the Root
Switch

Figures 11 and 12 depict the amount of traffic processed (in Bytes)
at one of the slave switches and the root switch. From Figure 12,
it is evident that the SDxI-based cloud network is oblivious to the
attack traffic impact, complementing the result in Figure 10. Since
the slave switch represented in Figure 12 redirects attack traffic to
the quarantine VMs, we observe a 5X increase in the amount of
traffic processed in comparison with the root switch.
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Figure 10: Comparison of the cloud service restoration time metric with cases of: no Defense, with MTD and with Dolus.

Figure 11: Traffic processed (in Bytes) in one of the slave switches.

Figure 12: Traffic Processed at the root switch only shows user traffic proving that the attack traffic is redirected to quarantine VM.

Overall, we find that our Dolus can effectively detect DDoS
attack and redirect traffic in real-time i.e., on the order of seconds

depending on the knowledge of the DDoS attack pattern, and block it
closer to the attack source in 1-2 seconds if automated policy updates
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are possible in the cross-domain setting. However, if humans need to
be brought into the loop, the time to block the attack can be adjusted
so that there is enough time for cross-domain manual coordination
during which an effective pretense of the quarantine VM is deceiving
the attacker with a false sense of success.

5 CONCLUSION AND FUTURE WORK
Recent innovations in the orchestration of cloud resources are fu-
eled by the emergence of the Software-Defined everything (SDx)
Infrastructure (SDxI) paradigm. At the same time, the sophistication
of Distributed Denial-of-Service (DDoS) attacks are growing on
an unprecedented scale, and online businesses in retail, healthcare
and other fields are under constant threat. In this paper, we pre-
sented a novel defense system called Dolus to mitigate the impact
of DDoS attacks against high-value services hosted in SDxI-based
cloud platforms. We proposed a defense by pretense mechanism that
can be used during defense against flooding attacks, which involves
a two-stage ensemble learning algorithm to analyze features in order
to determine where an attack originates from, and the attack type.
Using blacklisting information, our pretense initiation builds upon
pretense theory concepts in child play psychology to trick an attacker
through creation of a false sense of success.

Our above approach takes advantage of elastic capacity provi-
sioning in cloud platforms to implement moving target defense
techniques that does not affect the cloud-hosted application users,
and contains the attack traffic in a quarantine VM(s). With the time
gained through effective pretense initiation, cloud service providers
could coordinate across a unified SDxI infrastructure involving mul-
tiple ASes to decide on policies that help in blocking the attack
flows closer to the source side. Performance evaluation results of our
Dolus system in a GENI cloud testbed show that our approach can
be effective in filtering, detection and implementation of SDxI-based
infrastructure policy coordination for mitigation of the impact of
DDoS attacks.

As part of future work, we plan to extend our Dolus system
components to address more complex targeted attacks such as Ad-
vanced Persistent Threats (APTs) as part of cyberhunting workflows.
This will require advanced data sampling/analysis, as well as rele-
vant machine learning techniques to help SDxI-based cloud service
providers to visualize collateral effects in invoking one or more de-
fense mechanisms.
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