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Abstract

Cloud-hosted services are being increasingly used in online businesses in e.g.,
retail, healthcare, manufacturing, entertainment due to benefits such as scalabil-
ity and reliability. These benefits are fueled by innovations in orchestration of
cloud platforms that make them programmable as Software Defined everything
Infrastructures (SDxI). At the same time, sophisticated targeted attacks such as
Distributed Denial-of-Service (DDoS) and Advanced Persistent Threats (APTs)
are growing on an unprecedented scale threatening the availability of online busi-
nesses. In this paper, we present a novel defense system called Dolus to miti-
gate the impact of targeted attacks launched against high-value services hosted in
SDxI-based cloud platforms. Our Dolus system is able to initiate a ‘pretense’ in a
scalable and collaborative manner to deter the attacker based on threat intelligence
obtained from attack feature analysis. Using foundations from pretense theory in
child play, Dolus takes advantage of elastic capacity provisioning via ‘quarantine
virtual machines’ and SDxI policy co-ordination across multiple network domains
to deceive the attacker by creating a false sense of success. We evaluate the effi-
cacy of Dolus using a GENI Cloud testbed and demonstrate its real-time capabil-
ities to: (a) detect DDoS and APT attacks and redirect attack traffic to quarantine
resources to engage the attacker under pretense, (b) coordinate SDxI policies to
possibly block attacks closer to the attack source(s).
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1. Introduction1

Cloud computing has become an essential aspect of online services available2

to customers in major consumer fields such as e.g., retail, healthcare, manufactur-3

ing, and entertainment. On-demand elasticity, and other benefits including diver-4

sity of resources, reliability and cost flexibility have led enterprises to pursue the5

development and operations of their applications in a “cloud-first” fashion [1].6

Technological trends indicate that the aforementioned benefits typically rely7

on software-centric innovations in the orchestration of cloud resources. These8

innovations include cloud platforms based on Software Defined everything In-9

frastructures (SDxI) that allow programmability to achieve capabilities such as10

speed and agility [2] in elastic capacity provisioning. Additionally, they provide11

opportunities to create Software-Defined Internet Exchange Points (SDXs) be-12

tween multiple Software-Defined Network (SDN) domains (or Autonomous Sys-13

tems (ASes)) that can enable application-specific peering, knowledge sharing of14

cyber threats, and other cross-domain collaborations [3].15

While the adoption of SDxI-based clouds is starting to mature, sophisticated16

targeted attacks such as Distributed Denial-of-Service (DDoS) attacks and Ad-17

vanced Persistent Threats (APTs) are simultaneously growing on an unprece-18

dented scale. DDoS attacks can have significant effects on cloud-hosted ser-19

vices (i.e., attack “targets”) and are continual threats on the availability of online20

businesses to customers. If successful, they also cause significant loss of rev-21

enue/reputation for a large number of enterprises for extended periods of time.22

From the customers’ perspective, application consumption interruptions due to23

cyber attacks can lower their overall Quality of Experience (QoE) and can lead24

to loss of trust, or in worst cases, the termination of cloud-hosted application25

provider services.26

Different from DDoS attacks, APTs are a form of attacks that are character-27

ized by computer viruses/trojans/worms, which hide on network devices (personal28

computers, servers, mobile devices). The nature of APT attack behavior is to ex-29

filtrate data from within the network, to devices outside the network. While DDoS30

attacks are large scale and forthright with a goal of obvious disruption, APTs are31

quite the opposite, subtle and secretive while also ranging from small to large32

scale attacks. The aim of the long-term attack is to go unnoticed for as long as33

possible so that maximum exfiltration can occur. Many APTs will attempt to ex-34

ploit both Zero-Day attacks (faults in software which have not been discovered35
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by the application developers or hardware vendors and can be exploited) as well36

as human error (e.g., the curiosity of finding a flash drive in a parking lot, tak-37

ing it, and attempting to use it). A combination of these methods are also used38

for initially breaking into an application system as well as spreading through an39

enterprise infrastructure [4].40

Given the benefits of SDxI-based cloud platforms, the traditional Intrusion41

Prevention Systems (IPS) and Intrusion Detection Systems (IDS) solutions are42

undergoing major transformations. Recently, defense strategies such as SDN-43

based “moving target defense” [5] [6] have been proposed to protect networks44

and users against DDoS attacks by migrating networks and users from targeted45

virtual machines (VMs) to other healthy/safe VMs in a cloud platform. However,46

such strategies may cause the application response behavior to change to an extent47

that alerts the attacker that a high-value target has been hit. Given such a discovery48

that a service provider is moving a target in order to shelter from the attack impact,49

the attacker may then deflect more resources to seek ransom demands in order to50

stop the DDoS on the target.51

Moreover, if the DDoS attack flows are blacklisted, traditional approaches al-52

low defense only at the attack destination side i.e., any related traffic is dropped53

at the target-end. In such cases, the attacker still can escalate the DDoS attacks54

by crossing many other neighboring domain paths, who may not be inclined to55

drop the attack flow traffic assuming it may be legitimate traffic of a peer net-56

work. We suppose that SDxI-based cloud platforms can facilitate capabilities for57

coordination of policies and creation of incentives to block such targeted attack.58

Threat intelligence collection and corresponding analytics can be developed to59

block malicious flows closer to the attack source side, which can then mitigate the60

impact on resource flooding for all the providers involved. However, this might61

require the target service provider to buy some time in order to bring ‘humans into62

the loop’ to actually enforce attack traffic blocking measures closer to the attack63

source side.64

The above defense strategies in SDxI-based cloud platforms could also be ap-65

plied to defend against APTs, however they pose a different set of challenges.66

Since the APTs attempt to be stealthy and commonly use Zero-Day attacks, it is67

difficult to detect them with existing IDS solutions. Many of these attacks go un-68

noticed for years, such as Red October, which was active for over five years [7].69

With such long lasting and subtle attacks, new threat intelligence collection meth-70

ods and corresponding analytics technologies are needed to detect APT related71

attacks quickly and defend against them before any further long term damage or72

exfiltration can be accomplished.73
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In this paper, we address the above challenges and present a novel defense74

system called Dolus (named after the spirit of trickery in Greek Mythology) to75

mitigate the impact of targeted attacks such as DDoS attacks and APTs launched76

against high-value services hosted in SDxI-based cloud platforms. Our Dolus77

approach is novel owing to a scalable and collaborative defense strategy which78

use foundations from pretense theory in child play [8] [9] along with SDxI-based79

cloud platform capabilities for: (a) elastic capacity provisioning via ‘quarantine80

VMs’, and (b) SDxI policy coordination across multiple network domains. Such a81

strategy is aimed at preventing the disruption of cloud-hosted services (i.e., Loss82

of Availability) and/or the exfiltration of data (i.e., Loss of Confidentiality) by83

deceiving the attacker through creation of a false sense of success, and by allowing84

the attacker to believe that a high-value target has been impacted or that high value85

data has been accessed or obtained.86

DDoS attack detection is performed in the Dolus system using the threat in-87

telligence obtained from attack feature analysis in a two-stage ensemble learning88

scheme that we developed. The first stage focuses on anomaly detection to iden-89

tify salient events of interest (e.g., connection exhaustion), and the second stage90

is invoked to distinguish the DDoS attack event type amongst the 5 common at-91

tack vectors: DNS (Domain Name System), UDP (User Datagram Protocol) frag-92

mentation, NTP (Network Time Protocol), SYN (short for synchronize), SSDP93

(simple service discovery protocol).94

Dolus uses an automated defense strategy that we developed to mitigate APT95

attacks, which we refer to as Automated Defense against Advanced Persistent96

Threats (ADAPTs). Our goal in ADAPTs design is to detect which devices may97

be infected by an APT, by pursing tracking for data exfiltration outside of an98

enterprise network. Once a device is suspected of being infected by an APT,99

the device’s traffic can be rerouted so that it does not leave the enterprise net-100

work, but can instead be analyzed to determine what is being exfiltrated or what101

has been compromised. In order to detect possible APTs and identify systems,102

which have been compromised by an APT, we use a concept called Suspicious-103

ness Scores [10]. A Suspiciousness Score is assigned to each device on or off the104

network. Each device will be assigned a score which is calculated based upon its105

total number of unique destinations contacted, total number of connections, and106

total number of bytes transmitted. Using these scores we create a baseline for the107

entire network. Consequently, devices which are ‘suspicious’ will stand out with108

higher scores. Suspiciousness Scores are calculated for internal devices, external109

devices and domains. Consequently, an external device or domain, which we find110

to be suspicious can later be blocked from devices on the internal network.111
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In addition to the baseline scoring for individual devices and the overall net-112

work, we also introduce a novel concept of Targeted Suspiciousness Scores. Such113

a scoring overcomes limitations in effectiveness of tracking suspiciousness while114

accurately detecting a variety of attack traffic with unique characteristics. E.g.,115

we can differentiate APT attacks involving malicious data exfiltration from their116

variants such as Advanced Persistent Miner (APM) attacks (also referred to as117

cryptojacking attacks), which involve malicious resource exfiltration by infecting118

user devices with miners such as CoinHive and geth for cryptocurrency mining119

purposes [11].120

We evaluate the efficacy of our Dolus using two GENI Cloud [12] testbeds,121

one for DDoS detection and the other for APT attacks detection. The DDoS de-122

tection testbed contains three SDN switches, two slave switches and a single root123

switch. The slave switches are each attached to users and attackers, a quarantine124

VM, and a connection to the root switch. Likewise, the root switch is connected125

to elastic VMs, each of which could serve as a candidate for the target application126

(i.e., a video gaming portal) hosting that could be compromised by the attackers.127

All switches are connected to a unified SDN controller located in the cloud ser-128

vice provider domain, which directs the policy updates. Our experiment results129

demonstrate the real-time capabilities of our Dolus system to: (a) detect DDoS130

attacks and redirect attack traffic to quarantine resources to engage the attacker131

under pretense, and (b) coordinate SDxI policies to possibly block DDoS attacks132

closer to the attack source(s) without affecting the (benign) cloud users/customers.133

The APT detection testbed with ADAPTs is similar to the DDoS detection testbed134

but features dynamic traffic manipulation, monitoring, and analysis to calculate135

Suspiciousness Scores for each device on the network.136

We also present experiment results for targeted suspiciousness based detec-137

tion of APM attacks before and after whitelisting in order to evaluate the detec-138

tion accuracy effectiveness. Lastly, we demonstrate ‘defense by pretense’ traffic139

characteristics in comparison to normal traffic characteristics to show our pre-140

tense novelty. Specifically, we show a resource allocation ‘fading pretense’ de-141

fense mechanism, where resource limitations are emulated in order to diminish142

the value of the compromised resources in the middle of an APM attack. Our143

findings show how the defense mechanism eventually influences an attacker’s de-144

cision to abandon the resource being exfiltrated when its money-making potential145

drops notably.146

Another testbed development contribution that is used in our evaluation exper-147

iments is an Administrative User Interface (Admin UI) which we developed for a148

network administrator to defend against targeted attacks. The Admin UI acts as a149
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central analytics hub for defense against both types of targeted attacks considered150

in this paper. The Admin UI informs the administrator of total bytes being trans-151

mitted through each switch connected to the controller. The administrator can152

also update policies dynamically and on-the-fly, thus allowing for customization153

of the network data flows allowing for human control of any data flowing through154

the network. The Admin UI also displays suspiciousness scores for each device155

on the network, as well as overall network suspiciousness. The administrator can156

then use this information to determine if a device has cause for closer investigation157

to determine if an APT exists on the device or if the device has been compromised158

by other means.159

The remainder of this paper is organized as follows: In Section 2, we discuss160

related work. Section 3 provides an overview of the Dolus System design. In161

Section 4, we provide detailed description of Dolus defense methodology against162

DDoS attacks. Section 5 details our Dolus strategy for defense against APT163

attacks. Section 6 evaluates the performance of Dolus system in GENI Cloud164

testbeds. Section 7 concludes this paper.165

2. Related Work166

2.1. Attack Defense using Trickery167

There have been efforts that seek to implement defense mechanisms using168

some form of ‘trickery’ to engage an attacker. For example, authors in [13] in-169

troduce the notion of tricking the attackers through IP randomization methods170

in decoy-based MTD efforts. In contrast, the notion of pretense in our Dolus171

approach is akin to Honeypots and Honeynets which are effective in gaining in-172

formation about possible attacks based on minimal active interactions with attack-173

ers [14]. Primarily they are used in a setting to either gain more information about174

potential attacks or the behavior of attackers.175

Our work is complementary to Honeypots/Honeynets: we employ pretense176

to deceive attackers by rerouting and responding to attack traffic using quaran-177

tine VMs. Dolus system’s pretense theory is mainly built upon the work in [8]178

and [9] belonging to the field of child pretend play psychology. Our novel defense179

by pretense mechanism for effective mitigation of targeted attacks is inspired by180

the authors’ experiments where they show children (analogous to our attackers)181

various pictures of the animals along with a mismatch of the sounds made by the182

associated animals. Observations are made on how a pretense is effective based on183

how long it takes for a child to understand/protest that the information portrayed184

is actually false. In our case, the longer an attacker is tricked by our pretense, the185
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more time a cloud service provider has to perform MTD mechanisms, strategize186

on patching identified vulnerabilities, as well as implement a SDxI-based infras-187

tructure policy coordination for mitigation of the impact of a targeted attack.188

2.2. Defense against DDoS Attacks189

Defense against flooding attacks such as DDoS typically involves attack traf-190

fic feature learning that provides intelligence on where the attack is coming from,191

and the specific attack type(s) [15] [16] [17]. Analysis of features such as source192

IP, destination IP, source port, destination port, size of packets, packet identifiers193

commonly help in subsequent filtering of flooding attacks. Authors in [18] show194

that the Internet traffic patterns are distinguishable, which can help filter and iso-195

late attack traffic flows. Once attack flows are filtered, blacklists are created [19],196

which can then be used to “scrub” the flows through scrubbing SaaS services as a197

low-cost solution [20].198

A number of other network-based defense strategies have been proposed in199

efforts that involve analysis of traffic and dynamic updation of rules to effectively200

reroute malicious traffic. Such efforts include [21], where a network reacts to tar-201

geted attacks using accountability and content-aware supervision concepts. Simi-202

larly, using volume counting, authors in [22] provide a DDoS defense mechanism203

that involves monitoring SDN traffic flows in OpenFlow-enabled switches. In204

the context of programmability of SDN switches to mitigate targeted attacks, au-205

thors in [23] present a programming framework. In another similar effort, authors206

in [24] propose a memory-efficient system that uses Bloom filter and monitoring207

tools to dynamically update SDN rules to mitigate DDoS attacks. Also leveraging208

the dynamic rule update feature of SDN, authors in [25] analyze the probability209

that a flow is traced back across multiple ASes’ hops by sampling the probability210

and the analyzing signatures of attack traffic flows.211

Alternately, cloud service providers allow mitigation of DDoS attacks by uti-212

lizing the elastic capacity provisioning capabilities in the cloud platforms that213

allow “moving target defense” (MTD) techniques to be implemented. MTD ba-214

sically involves replication and live migration [26] of compromised application215

services (with pre-attack state information) in new VM(s) to redirect legitimate216

users, and keep attackers in a quarantine VM(s) [6]. As an added defense strat-217

egy, authors in works such as [27] present a survey of SDN-based mechanisms to218

detect attacks closer to the attackers/attack sources.219
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2.3. Defense against APT Attacks220

Techniques to detect APTs have been of interest to the community [28, 29,221

30, 30, 10, 31, 32, 33, 34, 35, 36, 37]. This includes finite angular state velocity222

machines and vector mathematics to model benign versus attack traffic, allowing223

a network operator to easily view the differences [34], assesing the outbound net-224

work traffic [10, 31], using honeypots [38] and using distributed computing [37].225

Another APT detection technique is based on a ranking system where all inter-226

nal hosts are ranked based on number of bytes sent outside the network, number227

of data transfers initiated to an entity outside the network, and number of dis-228

tinct destinations contacted outside the network per host [10]. Yet, another APT229

detection technique is to monitor attack traffic using a detector in an enterprise230

network [35].231

Potential countermeasures against APTs are discussed in [4, 39, 40, 41, 42,232

43, 44, 45]. Defense strategies include: (a) running routine software updates to233

avoid backdoors, bugs and vulnerabilities; (b) strengthening network access con-234

trol and monitoring services; (c) enabling strict Internet access policies; and (d)235

dropping encrypted traffic from unknown hosts. Similarly, authors in [4] discuss236

a number of counter measures against APTs including training users about social237

engineering attacks, blacklisting hosts, dropping packets, etc. Futhermore, SDN-238

based defense [43] involves: (i) defining and maintaining a network baseline to239

identify any deviation from the baseline through analytical tools, and (ii) updation240

of flow policies for (re)directing and blocking traffic in any of the network seg-241

ments. A framework that realizes such an SDN-based defense is discussed in [44].242

In a similar vein, authors in [45] provide a sandbox environment using which a243

security professional can emulate the propagation of APTs across an enterprise244

network environment.245

3. Dolus Defense Methodology246

In this section, we first present an overview of pretense theory. Following this,247

we describe how the pretense theory is used in our Dolus system design.248

3.1. Pretense Theory249

The pretense in the Dolus system is designed to create stimulus from the target250

side that matches the initial expectation of an attacker that a high-value target has251

not yet been compromised through an automated bot activity. Pretense theory252

concepts from [8] motivate us to address the issue of how a cognitive agent can253
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Figure 1: Illustration of the proposed Dolus system scheme wherein the attacker is tricked by
redirection of the attack traffic to a quarantine VM for pretense initiation, while the providers
work collaboratively to block the attack traffic closer to the source side.

present a pretense world, which is different from the real world using the following254

four steps:255

(a) The basic assumption(s) or premise(s) that is used by a pretender on what256

is being pretended.257

(b) Inferential elaboration which details of what goes into or what actually hap-258

pens in the process of pretense.259

(c) Appropriate behavior production which answers the question of whether the260

pretender was successful on the audience being tricked.261

(d) Balancing and steering the effects of pretense.262

For use cases to guide our design, we borrow ideas from an example experi-263

ment from [9], where a child (i.e., the attacker in our case) is shown the image of264

a dog that makes the sound of a duck. In this situation, the child protests saying265

that it is not the sound that a dog makes. However, if the same child is shown an266

image that seemingly looks like a duck (in reality, it is not) and makes the sound267

of a duck, then there is no protest and the child falls for the pretense. However,268

given additional observation time, the child realizes he/she has been tricked and269

protests.270
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3.2. Pretense in Dolus System Design271

In our Dolus system, effective pretense design methodology is illustrated in272

Figure 1. We create pertinent stimulus from the target side i.e., redirecting attack273

traffic to a quarantine VM that mimics original target behavior, when our two-274

stage ensemble learning algorithm (explained in Section 4.2) can identify and then275

blacklist the attacker flows while allowing benign user flows to continue unim-276

peded. This in turn could help in keeping an attacker distracted for a brief period277

of time while the pretense is in effect.278

From the time gained through such a pretense initiation, Dolus enables cloud279

service providers to decide on a variety of policies by dynamically generating net-280

work policies using Frenetic [46] to mitigate the attack impact, without disrupting281

the cloud services experience for legitimate users. In the worst case, destination-282

side blocking can be enforced. Alternately, if the cloud service provider uses the283

attack intelligence information and successful pretense time to coordinate the ‘hu-284

mans in the loop’ of neighboring SDN-enabled domains, together they can direct285

a unified SDN controller that directs SDN-enabled switches to actually enforce286

attack traffic blocking measures closer to the attack source side.287

Table 1: Objectives for the pretense zero-sum game considered in the Dolus System design.
Objective Attacker Defender
Goal Evade Defender’s detection Protect attacker’s target(s)
Trick Defender to provide access Attacker to reveal presence
Time Mislead defender to spend time

on false positives
Mislead attacker to spend time on
true negatives

Outcome Make defender believe that an
attack is simple

Make the attacker believe that the
target attack is successful

Attribution Hide attackers’ identity Induce attackers to believe that their
identities are unknown

The goal of our Dolus approach is to model the notion of pretense as a zero-288

sum game. Specifically, a zero-sum game is one in which the sum of the individual289

payoffs for each outcome is zero. That is, (1) loss to an attacker is gain for a de-290

fender and vice versa, and (2) total sum of gain and loss is (roughly) zero. There291

are two strategies to play a zero-sum game, one from an attacker’s perspective292

and the other from the defender’s perspective. Specifically, we plan to employ293

the following two strategies: (a) minimax strategy: minimizing defenders own294

10



maximum loss (from defenders perspective), and (b) maximin strategy: max-295

imize attacker’s own minimum gain (from attacker’s perspective). We explore296

these two strategies in our Dolus system on a number of objectives, which are297

summarized in Table 1.298

Our guiding strategy for targeted attack defense using pretense is to use a form299

of pretense machine learning which we propose to be understood as - If you don’t300

know the enemy and don’t know yourself, then you will succumb in every battle.301

If the attacker does not know you but you know the attacker, for some victories302

gained you will suffer some defeat. If the enemy knows you and you know yourself,303

you need not fear the result of a hundred battles.2304

For our defense by pretense strategy, we consider multiple vectors: (1) aware-305

ness of the attack surface, i.e., cloud/physical topology aware; (2) behavior and/or306

psychological aspects of the attacker, i.e., data science and pretense theory to307

understand an attacker’s desire and to identify an effective countermeasure; (3)308

development of theory and algorithms to deceive the attacker into a false sense309

of success without affecting the network resources; and (4) sharing multi-domain310

threat intelligence across SDxI entities.311

4. DDoS Attack Defense with Dolus312

In this section, we first describe the DDoS attack model that we assume to313

design our Dolus defense. Subsequently, we detail our DDoS defense solution314

that uses a ‘defense by pretense’ scheme in the Dolus system.315

4.1. Attack Model316

DDoS attacks aim to overwhelm network-accessible devices such as networks,317

firewalls and end-systems in enterprises by sending packets at excessively high318

rates from multiple attack points. With cloud-hosted applications with large mon-319

etary value becoming highly common, DDoS attacks can cause LoA for users and320

customers, and can be used for extortion from vulnerable online businesses. Com-321

mon DDoS attack event types are amongst the 5 common attack vectors: DNS322

(Domain Name System), UDP (User Datagram Protocol) fragmentation, NTP323

(Network Time Protocol), SYN (short for synchronize), SSDP (simple service324

discovery protocol). For the purposes of our work, we assume the DDoS attacker325

uses SYN [47] and ICMP/Ping [48] flooding. Such attacks typically inundate a326

2A quote modified from “The Art of War” by Sun Tzu.
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networks’ resources with Echo Request packets. We also assume that the attack-327

ers’ traffic is sent constantly and may or may not solicit a response in return. Such328

attacks can bring the network to a standstill due to the high volume of both incom-329

ing and outgoing traffic. To effectively capture the semantics of this attack model330

and to exhaust the target application services, we generate and emit synthetic ping331

and HTTP traffic using hping3 [49] and SlowHTTPTest [50] tools, respec-332

tively. Furthermore, to capture the dynamics of an attacker, we randomly change333

the number of attack packets emitted by these tools.334

Figure 2: Cross-domain physical setup in a Dolus system deployment to share threat intelligence
for a unified controller to coordinate policy management with a federation of ASes to block attack
traffic closer to the source side.
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4.2. Defense by Pretense Scheme335

Figure 2 depicts the cross-domain setup in a Dolus system deployment to im-336

plement a defense by pretense scheme. To complement Figure 2, interactions337

between different phases of a Dolus system configured for spoofing pretense are338

shown in Figure 3 and Algorithm 1, respectively.339

Figure 3: Sequence diagram of the Dolus system interactions for attack detection, quarantine
setup, pretense initiation/maintenance and DDoS attack impact mitigation.

Attack Detection. First, traffic within a cloud provider’s network (which is gen-340

erated by the SDN switches) or across multiple transit provider ASes (which are341

composed of SDX plus SDN switch substrates) is monitored using a Frenetic run-342

time [46]-enabled monitoring subcomponent (line 24 of Algorithm 1). Next, in343

order to learn and classify the attacks (line 25 of Algorithm 1), we employ a two-344

stage ensemble learning scheme on the incoming traffic, both from the attackers345

and from the benign users. In order to differentiate attackers from benign users,346

the first stage handles outlier detection to identify salient events of interest (e.g.,347

connection exhaustion), whereas the second stage handles outlier classification to348

distinguish different event types (e.g., DDoS attack).349

Outlier Detection. We use basic/static methods such as multivariate Gaussian to350

detect outliers and build upon our prior work on detecting network-wide correlated351

anomaly events [51, 52] that are typical of the traffic from multiple attack sources.352

Specifically, the outlier detection is a composition of many efficient, multivariate353

outlier detectors or hypotheses functions: H = {h1, h2, ..., hn} and the result,354

F , is an ensemble of the different hypotheses. Furthermore, we note that the355

traditional methods for ensemble learning use averaging or majority voting [53].356
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In our case, to achieve higher accuracy with a minimum size of the training dataset357

D, we use the Bayesian voting scheme [54] as the ensemble method to predict the358

result for new data x, which can be represented as Equation 1.359

F =
∑
h∈H

h(x)P (h|D) (1)

Final ensemble result F consists of all of the hypotheses in H, and each hy-360

pothesis h weighted by its posterior probability P (h|D). The posterior probability361

is proportional to the likelihood of the training data D times the prior probability362

of h (2).363

P (h|D) ∝ P (h)P (D|h) (2)

Outlier Classification. The outliers detected are classified into either interesting364

events (e.g., attacks) or erroneous conditions (e.g., router failure). We use a simple365

classifier to this end: if the final ensemble results of consecutive events (detected366

in the first stage) fall in the same range, we classify them as an attack; otherwise,367

we ignore those events. We remark that the above two-stage ensemble learning368

scheme requires a sizable amount of data to classify the attacks effectively. To369

overcome this challenge, we initially let the attacker(s) to attack the cloud ser-370

vices. However, we also monitor the incoming traffic carefully and make sure that371

the attack does not disrupt the network resources. Once an attack is classified,372

which are shown separately in Figure 2, we reroute the attack traffic using Fre-373

netic runtime to quarantine VM (QVM) along with sample server responses (see374

lines 1 through 22 of Algorithm 1).375

Quarantine Setup for Pretense. Dolus calls the quarantine setup procedure376

(lines 1 to 9) where a new QVM is instantiated using a cloud platform’s elas-377

tic provisioning capability and the update policy routine is invoked (line 3). In378

the update policy routine (lines 10 to 14), we log the attack traffic to prevent fu-379

ture attack events as well as invoke the Frenetic runtime to generate new policies380

(line 12). Frenetic executes Python scripts to identify suspicious packets, learn381

from patterns and directs switches to redirect packets to QVMs. We then adver-382

tise this information (attack intelligence) to the neighboring switches (line 13),383

where, apart from the policy updates, the IP addresses of the attackers are black-384

listed. Following this, based on the stored attack traffic logs, the QVM uses Scapy385

libraries [55] to generate responses with spoofed IP addresses and pretends as the386

targeted VM under attack from the perspective of the attacker(s) (lines 20 to 22).387

Subsequently, depending on the nature and volume of the incoming data, we388
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decide either to move forward with the pretense or drop the traffic—which is the389

third step of production of appropriate behavior in pretense theory (lines 28 to390

30). In order to gain more information about the attackers/attacks, we typically391

continue the process of pretense. While we continue the pretense, we routinely392

update threat intelligence such as the attacker’s IP, targeted VM’s IP where ser-393

vice(s) under attack is hosted, type of attacks, etc. Furthermore, we assume that394

an attacker has enough knowledge on how a successful attack should affect our395

system, which is another reason why we keep the attacker involved in the system396

as long as is usually expected. If we drop the attack traffic too early or maintain it397

for too long, attacker might potentially infer our pretense.398

Finally, we redirect the flow of the attack traffic by pushing a new policy from399

the unified controller running in the cloud to the switch(es). This will redirect400

the attacker’s traffic that is intended for the targeted VM towards the QVM. The401

QVM then responds to the attacker’s traffic as though it is the targeted VM/server402

under attack with spoofed IP address and hostname of the target, which creates403

the pretense effect, from an attacker’s perspective, that the targeted DDoS attack404

is successful. Depending on the nature of the attack, we want the attacker to405

believe that services are no longer up/available on the targeted VM. We therefore406

allow the QVM to continue to respond to the attacker for a limited amount of time407

t. We tune t based on the type of attack traffic and how the targeted VM would408

respond if it was under attack. For example, if the targeted VM went down after409

10 seconds of attack, the QVM would do the same by not responding at the same410

time with a variable random delay factor of [-1,1] seconds added. This allows the411

attacker to see that the services are available until, suddenly, they no longer are.412

Policy Decision Making. In this sense, our defense maintains the pretense: gives413

the attacker the confirmation of a successful attack, when in reality the service has414

not been affected at all considering the scenario that the user is running a video415

gaming portal application. This also gives us sufficient time to collect information416

about the attackers and their attack patterns. We use the collected information to417

create a blacklist of attacker information. To help network administrators effec-418

tively manage the network in the face of attacks, our system also consists of a419

Administrator User Interface (Admin UI) module and a unified controller module420

that can be customized in a Dolus system instance deployment depicted in Fig-421

ure 2. The Admin UI shown in Figure 4 can be used for e.g., to enforce users422

to adhere to the policies generated by Frenetic runtime when they connect to the423

cloud. Policies generated by Frenetic internally are updated through the User424

Interface using JSON arrays. These policies (e.g., open/block flows) could be in-425

stalled in the switches using the unified controller module, which is also linked426
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with a back-end database that logs traffic characteristics and user profiles.427

The after effects of our pretense only lasts for as long as they are needed. Dur-428

ing the pretense, the attackers’ traffic continues to be redirected a QVM near the429

attacker. However, this process need not continue indefinitely i.e., once if it has430

been determined that the attack traffic is no longer impacting the network, the poli-431

cies can be updated to redirect the attacker traffic back to where it was prior to the432

start of pretense. There are several reasons to do this: (i) changes in the dynamics433

of the attack (e.g., bandwidth usage dropping back down to normal, absence of434

SYN packets in a SYN flooding attack, fixing of malware in an affected machine435

and hence it is no longer an attacker, etc.) calls for network policy changes so436

that the network resources can be effectively used, (ii) changes in traffic e.g., IP437

address change in incoming service requests sent from a benign user must be ser-438

viced to meet the service level agreement (SLA), and (iii) to save the operational439

cost of QVMs by reusing them for a different purpose e.g., periodic backups.440

Figure 4: Administrator User Interface of an Dolus system instance.

Threat Intelligence Sharing. Algorithm 1 runs in the monitor component and441

coordinates/shares intelligence with the switches deployed in the network and442

across different providers. This in turn enables a collaborative environment among443

providers such that the targeted attacks can be detected closer to the source with-444

out affecting the cloud infrastructure. A natural question is why would a provider445

share the attack intelligence, especially in a business that is driven by competi-446
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tion? We posit that the coordination among different ASes/providers is mutually447

beneficial for all the entities involved. Of course, a particular AS/provider can de-448

cide not to share the attack intelligence to others. However, if an AS experiences449

an attack and if it shares the intelligence with other ASes, a global and unified450

hardening of infrastructure against such targeted attacks can be achieved. In addi-451

tion, any downtime is money lost in a business; sharing the attack intelligence in452

turn provides a cheaper alternative to lost downtime and business.453
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Algorithm 1: Dolus system defense algorithm against DDoS attacks
Input: attacker ID = attacker ID,
src ip = source IP,
dst ip = destination IP,
no of packets = number of packets,
spoof dst ip = spoofed IP,
black ip blacklisted IP list
Result: Attack traffic will be redirected to the quarantine VM and DDoS

blocking policy will be generated
1 function initQuarantine()
2 createVM();
3 updatePolicy(src ip);
4 do
5 redirectTraffic();
6 pretense data = generateUsingScapy();
7 vmResponse(spoof dest ip, src ip, dst ip, pretense data);
8 while timeout == false;
9 end

10 function updatePolicy(src ip)
11 logAttackTraffic();
12 new policy = generateNewPolicy();
13 collaborate(new policy);
14 end
15 function collaborate(new policy)
16 advertisePoliciesToNeighbors(new policy);
17 black ip = updateList(src ip);
18 redirectTraffic();
19 end
20 function redirectTraffic()
21 sendTrafficToQuarantineVM();
22 end
23 function main()
24 /* Receive incoming data from external machine */

data = monitorPackets(attacker ID, src ip, no of packets, start time,
end time);

25 attack = twoStageEnsembleLearning(data);
26 /* Update policy in case of attack detected */

if attack == true then
27 initQuarantine(src ip);
28 end
29 decideToStopOrContinue();
30 end
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5. APT Attack Defense with Dolus454

5.1. Attack Model455

APTs are long-term attacks and affect a target in four stages: preparation,456

access, resident, and harvest [7, 56, 57, 58, 59, 60, 61, 39]. In the preparation457

stage, attackers apply a reconnaissance tactic through social engineering (e.g.,458

via social networks) to bootstrap the attack [4]. Once the attack is bootstrapped,459

attackers identify a vulnerability, and/or a vulnerable target and send malwares460

either through email (e.g., spear phishing) or through third-party software/service461

(e.g., watering-hole attack) in the access stage. Subsequently, the malwares estab-462

lish external communication paths with attackers’ Command and Control (C&C)463

server(s), and spread across other targets in the resident stage; which is a slow and464

a stealthy phenomenon. Finally, in the harvest stage, attackers extract any vital465

information in an on-going fashion for extended periods of time.466

5.2. Defense by Pretense Scheme467

Our novel Dolus system with ADAPTs is designed to automatically defend468

against APT attacks. Its design is similar to the original Dolus system algorithm469

(i.e., Algorithm 1) for DDoS attack defense described in Section 5, however the470

threat intelligence collection and defense are adapted towards mitigation of APT471

attacks. More specifically, ADAPTs consists of: (1) a Suspiciousness Score-based472

detection mechanism, which is robust against the threshold evasion problem; (2)473

internal quarantine VMs (iQVMs), which are a minimal version of honeypots to474

mimic hosts internal to an organization, along with performance/topology views475

to aid network administrators; (3) a coordination mechanism driven by enterprise476

defense policies to share threat intelligence about APTs among hosts; and (4) net-477

work policy update mechanism to mitigate attack spreading based on coordinated478

intelligence using iQVMs. We outline each one these mechanisms/components in479

the remainder of this sub-section.480

Attack Detection. Inspired by the work of authors in [10] to identify hosts ex-481

hibiting suspiciousness in a network, we propose a Suspiciousness Score (SS) in482

a similar vein. We calculate SS based on captured network traces (.pcap) using483

three main features: destinations (dst), flows, and bytes.484
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Table 2: Features captured from a network trace for APT attack defense analytics.

Value Description

switch id ID of the switch which received the frame

trace id ID for the trace under consideration

frame number Order in which the frame was received

frame time Unix timestamp at which the frame was received

frame time relative Unix timestamp for frame receipt relative to last frame received

frame protocols Protocols used in the frame

frame len Size of the frame in bytes

ip src Source IP of the frame

ip dst Destination IP of the frame

Table 2 shows the list of values/features captured in network traces for APT485

attack defense analytics. For each packet trace, a trace id t is assigned. For each486

t, we perform the following: the features are normalized and their combined Root487

Mean Square Error (RMSE) values are calculated. Using the RMSE values, we488

calculate the Suspiciousness Scores of each device as follows. The Min and Max489

values (below) are assumptions made per device type regarding what one may490

expect the minimum and maximum values to be on the type of device, network491

and traffic expectations. These values are determined by the system/network ad-492

ministrators and could vary vastly depending on each ASeS or domain’s threat493

monitoring objectives.494

Destination suspiciousness for trace t:495

dsti = wdst ∗
numDsti − numDistMini

numDstMaxi − numDstMini

;wdst ∈ [0.0, 1.0] (3)

Flow suspiciousness for trace t:496

flowsi = wflows ∗
numFlowsi − numFlowsMini

numFlowsMaxi − numFlowsMini

;wflows ∈ [0.0, 1.0]

(4)
Bytes suspiciousness for trace t:497

bytesi = wbytes ∗
numBytesi − numBytesMini

numBytesMaxi − numBytesMini

;wbytes ∈ [0.0, 1.0] (5)
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Device suspiciousness for trace t is based on equations 3, 4 and 5 as shown498

below.499

ssi =

√
dst2i + flows2i + bytes2i

3
(6)

Note that for each device on the network i we calculate a Suspiciousness Score500

and the overall network suspiciousness for trace t is calculated based on ss for501

each individual device (equation 6) that is connected. That is, the sum of all ss502

for each devices on the network n is the overall network suspiciousness SS for that503

particular t.504

SSt =

√
(ss21 + ss22 + ss23 + ... + ss2n)

n
(7)

Relative change in device i’s suspiciousness score on new traffic t is simply505

given by:506

∆ssit =
ssit −

√
ss2i1

+ss2i2
+...+ss2it−1

t−1√
ss2i1

+ss2i2
+...+ss2it−1

t−1

(8)

In equations 3, 4 and 5, we assume the weight parameters i.e., wdst, wflows507

and wbytes to be equal to 1 in a general case of SS calculations. As shown later508

through experiment findings in Section 6, assigning suitable weights for a variety509

of suspicious traffic can minimize the RMSE in the attack detection accuracy, as510

opposed to the general case. Consequently, we extend SS calculations as detailed511

in Algorithm 2 by introducing a novel concept of Targeted Suspiciousness Scores512

for specific traffic types that a system/network administrator would like to clas-513

sify as suspicious. We remark that system/network administrators could whitelist514

certain traffic types, however none of the devices on the network will be entirely515

whitelisted. Thus, by using a targeted suspiciousness scoring for certain traffic516

types (e.g., for suspected APM-like traffic) can still be effective to detect mali-517

cious activities, even when whitelisting is performed for legitimate user traffic.518

Quarantine Setup for Pretense. VMs which are internal to an organization and519

which implement minimal versions of honeypot-like hosts are internal quarantine520

VMs (iQVMs), whose Suspiciousness Scores are monitored continuously. These521

are also the hosts that play the game of pretense i.e., they create a false notion of522

high-value targets within an organization with sensitive data to the external world.523

An attacker is lured to attack iQVMs first; they maintain pretense by sending data524

similar to what a host with sensitive data would send. Apart from monitoring the525
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Algorithm 2: Targeted Suspiciousness Score Calculations
Input: devices ∈ [1 . . . n] = array of all devices on the network,
maxTrace = Maximum number of packet traces to be evaluated,
t = current trace being evaluated
Result: Targeted Suspiciousness Scores calculated for each network device

after traffic analysis
1 function calcDst()

2 function calcF lows()

3 function calcBytes()

4 function calculateTargetedSuspiciousness(devicei)
5 calcDst(devicei, wdst);
6 calcF lows(devicei, wflows);
7 calcBytes(devicei, wbytes);
8 end function main()
9 do

10 for each devicei;
11 calculateTargetedSuspiciousness(devicei);
12 while t <= maxTrace;
13 end

data sent out of iQVMs, they also add weights to the calculated Suspiciousness526

Scores, overcoming the threshold evasion problem.527

To simplify the process of monitoring iQVMs and other hosts effectively, we528

also extend our Dolus related Admin UI for use with ADAPTs. This allows the529

administrator a more robust monitoring of the network with views separated based530

on the various requirements: devices connected to the network, blacklisted IPs,531

metrics, as well as any other the requirements of administrator. The user interface532

is developed using the traditional LAMP stack (Linux OS, Apache Web Server,533

MySQL, PHP), with views specifically built for ADAPTs including the following:534

1. SS view: Flot.js-based bar and line graphs as depicted in Figure 5 ex-535

cerpted from the Admin UI. SS per device or for the overall network can be536

viewed in temporal fashion as shown in Figure 6 extracted from the Admin537

UI. Moreover, when a suspiciousness score of a blacklisted device is shown538

to be above a certain threshold, an administrator can block all traffic from539

that device to the network or take an appropriate action.540
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Figure 5: Suspiciousness score per device over time.

Figure 6: Overall network suspiciousness score over time.

2. Upload policy view: This view on the user interface enables administra-541

tors to push NetKAT-based policies [62] to a centralized database, which542

stores device configurations, thresholds, policies maintained by the organi-543

zation. Interfaces are provided to select a specific device and a correspond-544

ing NetKAT policy to affect that device as shown in Figure 7.545
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Figure 7: Policy table view.

3. Network view: a vis.js-based view to monitor the network as a graph of546

connected devices as depicted in Figure 8.547

Figure 8: Network graph of all the connected devices.

Policy Decision Making. In ADAPTs, each device has a corresponding access548

control policy to control/configure it remotely. We call this a configuration policy,549
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which determines the virtual structure of the network and decides how traffic flows550

traverse through the network in normal versus attack conditions.551

Similarly, ADAPTs also features a defense policy for the enterprise network.552

The defense policy is reactive i.e., it will take effect when the original configura-553

tion policy has failed to communicate erratic host behaviors such as SS threshold554

changes, jump in the number of external hosts contacted, etc., or if an attack has555

be detected and communication privileges need revocation. The interface can fa-556

cilitate administrators to update policies directly in the event of an attack.557

Both these policies and the revocation/enabling functionalities are instantiated558

based on the policy updater mechanism, whose main objective is to simplify the559

learning curve for users/administrators to get proficient at writing policies (e.g.,560

using network programming languages such as Frenetic [46])—a daunting and te-561

dious task. With this in mind, the updater component can auto-generate policies562

based on simplified inputs that are provided via the user interface. For example, to563

minimize the process, the policy updater takes a generic command such as “user1564

to server1” and all possible configuration policies would be generated by the up-565

dater. The updater works with the centralized database and is pre-programmed566

with the network architecture.567

One of the advanced defense policies set by a system/network administrator568

could be a ‘defense by pretense’ policy. Such a policy can adopt our novel pretense569

concept that is adapted to a particular attack threat. Herein, we provide an example570

of one such policy viz., ‘fading pretense’ that can be used to defend against APM571

attacks. Invoking the defense policy on a compromised device essentially results572

in a situation where the defense mechanisms simulates resource limitations. Such573

a resource limitation diminishes the value of the compromised resources in the574

middle of an APM attack. This is because, by limiting the resource allocation575

through a hypervisor on a device that is part of a mining pool, the ability in terms576

of the computation speed of a miner software on that device to mine a single577

block (within a blockchain) can be slowed down. When the computation speed578

goes below a threshold, the overhead of communicating with this compromised579

miner device in a mining pool becomes excessively large, which in turn impacts580

the revenue for the attacker [63]. Eventually, such a scenario will influence an581

attacker to abandon the resources exfiltration on that device, and move onto other582

more-potent compromised devices with higher resource allocations. A realistic583

demonstration of the implementation of the ‘fading pretense’ policy is provided584

later in Section 6.585

Threat Intelligence Sharing. Our iQVM monitors also coordinate and share the586

APT threat intelligence such as SS thresholds, policy updates, etc. with other587
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hosts in the network. Apart from providing a collaborative environment amongst588

pertinent hosts to effectively counter APTs, the mechanism also provides a way589

to drill down on specific segments of the network with suspicious hosts. Further-590

more, we believe that the coordination mechanism will pave the way to achieve591

a global and unified hardening of the enterprise network against APTs. In addi-592

tion, any sensitive data sent out is money lost in a business; sharing the threat593

intelligence in turn provides a cheaper alternative to lost data and host/business594

downtimes.595

6. Performance Evaluation596

In this section, we describe the evaluation of our Dolus methodology in GENI597

Cloud testbeds for DDoS and APT attacks. For showing effectiveness of Dolus598

for each targeted attack type, we start by describing our testbed, followed by the599

experiments and results discussion. The source code and instructions to replicate600

below experiments are openly available at [64] [65].601

6.1. Dolus Experiments for DDoS Attack Defense602

6.1.1. Testbed Setup603

Figure 9: GENI Cloud testbed used to evaluate Dolus for DDoS attack defense.

We evaluate the efficacy of our Dolus system using a realistic, GENI Cloud [12]604

testbed as shown in Figure 9. The testbed contains three SDN switches, two slave605
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Figure 10: Confusion matrices for attack detection and classification for multiple traffic flows sent
to multiple hosts.

switches and a single root switch. Such a system could also be extended to host606

many more switches and devices. The slave switches are each attached to users607

and attackers, a quarantine VM, and a connection to the root switch. Likewise, the608

root switch is connected to elastic VMs, each of which could serve as a candidate609

for the target application (i.e., a video gaming portal) hosting that could be com-610

promised by the attackers. All switches are connected to a unified SDN controller611

located in the cloud service provider domain, which directs the policy updates.612

In the following, we show the attack detection and classification accuracy using613

our two-stage ensemble learning scheme and then present results from two sets of614

experiments that were run for a maximum of 28 seconds to show how our Dolus615

implementation can be used in real-time to restore cloud services under DDoS616

attack situations.617

6.1.2. Attack Detection and Classification Results618

Using the Dolus system, we monitor different types of data that are permitted619

to enter the GENI Cloud testbed depicted in Figure 9. We send both normal and620

attack traffic (i.e., our datasets) to the targeted server to test the efficacy of our two-621

stage ensemble learning scheme. Our evaluation results span over two instances622

of learning of datasets as explained in the following.623

The first instance shows multiple traffic types from a single attacker VM to624

a single target node. For this instance, we divide ∼180,000 lines of data into625

two sets, one for training and the other to test the accuracy of our scheme. Fur-626

thermore, the types of traffic used to create these instances are composed of627

SlowHTTPTest, iperf, VLC and ICMP ping. Figure 15 shows the two confu-628
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Figure 11: Confusion matrices for outlier detection and classification for multiple traffic flows
comprising of familiar attack flows.

Table 3: Overall Attack Detection and Classification Time and Accuracy

Tests Time (in Seconds) Accuracy (in %)

Single server stage 1 <1 99.99
Single server stage 2 <1 99.98

Multiple hosts stage 1 7 89.12
Multiple hosts stage 2 13 98.49

sion matrices for attack detection and classification in a normalized fashion. We629

note that both the detection and the classification of attack took less than a sec-630

ond. In addition to the rapid detection and classification, our approach is highly631

accurate as shown in Table 3, where stage 1 is the detection stage and stage 2 is632

the classification stage.633

In the second instance, we consider multiple traffic types to multiple hosts.634

This instance is composed of 2.5 million rows per test, totaling 5 million rows of635

data. The types of traffic that we use to create this dataset include SlowHTTPTest,636

iperf, VLC, scp, wget, and ICMP ping. This dataset also contains some unla-637

beled/undefined data for the scheme to assess and classify the training data to638

evaluate the effectiveness of our two-stage ensemble learning scheme. Figure 10639

shows the two confusion matrices in normalized form for attack detection and640

classification. Detection and classification of attack took ∼7 and ∼13 seconds,641

respectively. Despite the slowdown in attack detection/classification in compari-642

son with the first instance, the accuracy of our approach is still high as shown in643
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Figure 12: Comparison of the cloud service restoration time metric with cases of: no Defense,
with MTD and with Dolus.

Figure 13: Traffic processed (in Bytes) in one of the slave switches.

Table 3.644

While the two-stage ensemble learning scheme is effective in detecting test645

data, a new attack that has not been used in training could initially go undetected646

and impact services. However, with pertinent labeling of attack traffic flows dur-647

ing training, the accuracy of the ensemble learning scheme can be improved sig-648

nificantly. We depict the outlier detection and classification for a trained cased649

in Figure 11, where we make use of 60% of the data as training data and 40%650
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Figure 14: Traffic Processed at the root switch only shows user traffic proving that the attack traffic
is redirected to quarantine VM.
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Figure 15: Confusion matrices for attack detection and classification for multiple traffic flows sent
to a single server.

as test data for the same dataset used in the 2nd instance. For the purpose of our651

evaluation, the sorted dataset has randomized time stamps.652

Though the dataset that we use is discrete with differences in traffic such as653

protocol, bytes transmitted, number of packets, source and destination addresses,654

our two-stage ensemble learning scheme is effective in detecting the attacks with655

good accuracy and efficiency. The ensemble learning scheme can further be mod-656

ified based on other characteristics of network traffic, and such modifications are657
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beyond the scope of the work in this paper.658

6.1.3. Time to Restore a Cloud-hosted Application Service659

Figure 12 compares the time taken by our Dolus system to stop a DDoS at-660

tack versus MTD-based and no defense strategies. After a warm-up period of661

6 seconds, we start the SlowHTTPTest and hping3 at the 7th second from the at-662

tackers. In a SDxI-based cloud network with no defense strategy, the services are663

immediately affected by the attack traffic. Consequently, an absence of service664

availability after the 7th second as shown in the graph results in a situation where665

cloud service restoration does not occur. MTD-based defense strategy is able to666

restore the service after taking ∼6 seconds to mitigate the attack traffic impact.667

However, our Dolus system supported service on the other hand, does not suffer668

from any loss of availability in comparison with the other two strategies. This is669

due to the sharing of attack intelligence between the slave switches and redirec-670

tion of attack traffic to quarantine VMs closer to the attackers, making the cloud671

network completely oblivious to the attackers.672

6.1.4. Amount of Traffic Processed at the Root Switch673

Figures 13 and 14 depict the amount of traffic processed (in Bytes) at one of674

the slave switches and the root switch. From Figure 14, it is evident that the SDxI-675

based cloud network is oblivious to the attack traffic impact, complementing the676

result in Figure 12. Since the slave switch represented in Figure 14 redirects attack677

traffic to the quarantine VMs, we observe a 5X increase in the amount of traffic678

processed in comparison with the root switch.679

Overall, we find that our Dolus can effectively detect DDoS attack and redirect680

traffic in real-time i.e., on the order of seconds depending on the knowledge of681

the DDoS attack pattern, and block it closer to the attack source in 1-2 seconds682

if automated policy updates are possible in the cross-domain setting. However,683

if humans need to be brought into the loop, the time to block the attack can be684

adjusted so that there is enough time for cross-domain manual coordination during685

which an effective pretense of the quarantine VM is deceiving the attacker with a686

false sense of success.687

6.2. Dolus Experiments for APT Attack Defense688

6.2.1. Testbed Setup689

For the purposes of APT attack detection and defense, a modified GENI Cloud690

testbed was setup as shown in Figure 16. The purpose of the GENI Cloud Testbed691

is to simulate a collaborative cross-domain SDxI architecture with the core servers692
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and services located at the switch-root in the Clemson InstaGENI (blue) domain.693

Correspondingly, the user traffic originates from three other separate domains694

with two distinct paths to where the services are located. Since an APT is not695

a distributed attack, there was no need to consider multiple attack vectors from696

many directions. However, due to the nature of an APT attack being secretive and697

stealthy, we assume that an APT can be hiding anywhere in an SDxI. Our testbed698

is comprised of multiple open vSwitches (a slaves and a single root), numerous699

nodes (which are hosts), and a controller. The slave switches connect all the user700

nodes, and the root switch connects all the servers hosting the application system701

and related services to the slave switches. The controller in the setup is a stan-702

dalone node, running the monitor and policy updaters, calculating SS thresholds703

for nodes and the overall network, managing all the traffic and defense by pretense704

mechanisms of the Dolus system.705

Figure 16: GENI Cloud testbed used to evaluate Dolus for APT attack defense.

6.2.2. Suspiciousness Score Calculation Results706

In the first experiment, we randomly selected three hosts, and compromised707

them by running slowhttp attacks from attacker 1 and attacker 3, and a secure708
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Table 4: Suspiciousness Scores before Whitelisting

Node Command Score

Attacker1 slowhttp 8.8

Attacker2 scp 215.5

Attacker3 slowhttp 18.0

Server1 ping 17.3

Server2 Traffic Response 16.4

Server3 iperf -s 9.0

User1 iperf -c 5645.7

User2 wget 200.7

copy (scp) from attacker 2. This configuration allows us to compare the suspi-709

ciousness between a DDoS attack, and a file exfiltration attack. Before running710

the experiment, we specify minimum and maximum values for flows, connections,711

and bytes: the user and attacker nodes are each set to a minimum of 1 and a max-712

imum of 10 connections, a minimum of 100 and a maximum of 1,000 flows, and713

a minimum of 10 and a maximum of 100,000 bytes. The servers had a minimum714

of 10 and a maximum of 1000 connections, a minimum of 1,000 and maximum715

of 10,000 flows, and minimum of 100,000 and a maximum of 100000000 bytes.716

From the controller, we obtain the SS for these three attackers before (see717

Table 4) and after (see Table 5) whitelisting. Note that all devices have SS calcu-718

lated for them, as we don’t initially whitelist any devices or traffic on our testbed719

network. Attacker 2 exhibited the highest SS out of three, due to data exfiltra-720

tion [10]. The traffic that is being exfiltrated generates a much higher score than721

the regular traffic in the network.722

The purpose of whitelisting is to allow administrators to ignore traffic, which723

is not going outside of the network. For example, if we consider that both server724

1 and user 1 are within our own network, then any data transmitted between those725

two machines would not be data being exfiltrated from the enterprise network.726

Therefore, we can consider such traffic as benign. However, whenever we con-727

sider attacker 1 and server 1, since attacker 1 is compromised, we consider all728

traffic from attacker 1 to be possible data exfiltrated from the enterprise network.729
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Table 5: Suspiciousness Scores after Whitelisting

Node Command Score

Attacker1 slowhttp 8.8

Attacker2 scp 215.5

Attacker3 slowhttp 18.0

Furthermore, we consider a case where - if attacker 1 compromised user 1 within730

our network and then used user 1 to exfiltrate data from server 1 to user 1 then731

from user 1 to attacker 1. In such a case, we are able to detect the suspicious-732

ness between user 1 and attacker 1 since that is where the actual data exfiltration733

is taking place. As you can see in Table 5, we ignore the traffic between users734

and servers, even though there was data moving between them (as seen in Table735

4). Moreover, by considering the whitelisting prior to the Suspiciousness Score736

calculations, we decrease the overall time spent on speed of the calculations since737

we will need to calculate scores for only a portion of the network.738

6.2.3. Targeted Suspiciousness Score Effectiveness739

As an extension of our overall Suspiciousness Scores calculation, we also per-740

formed experiments using our novel Targeted Suspiciousness Scores detailed in741

Section 5.2. Similar to the previous experiment, we tested a variety of different742

types of network traffic with the addition of a two new types i.e., BitTorrent and743

cryptocurrency mining traffic. For generating the cryptocurrency mining traffic,744

we use a miner software called ‘geth’ which could be used for CPU resource ex-745

filtration. We also use variants of geth, where we limit the geth mining using746

various tools for both network rate limiting as well as CPU limiting. Both these747

variants could mimic the tools used by an attacker attempting to stealthily exfil-748

trate resources from an enterprise system without being detected. In addition to749

the cryptocurrency mining attack traffic, we also generated several types of be-750

nign, other attack, and suspicious traffic. We expected the BitTorrent traffic in751

particular to have similar characteristics and behave similar to the cryptocurrency752

mining traffic, since both use peer-to-peer protocols on distributed systems.753

Figure 17 shows the Overall Suspiciousness Score results from the different754

tests we ran over a ten minute period. We surprisingly found that the Overall755

Suspiciousness Scores indicate that the cryptocurrency mining traffic is far less756
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Table 6: Test traffic types for Targeted Suspiciousness Score effectiveness evaluation experiments.

Test Traffic Types

Devices Number of traces

geth Cryptocurrency mining

geth Cryptocurrency mining with trickle (network rate limited to 10 kbps download and upload)

geth Cryptocurrency mining with cpulimit (limited to 10% of total cpu)

ping Ping traffic on one of the IP addresses contacted during crypto mining

wget Traffic of a 121 MB video file download

scp Traffic of the same 121 MB video file upload

DDoS slowhttptest traffic against the same IP address used for scp

BitTorrent Up to 200 connections relating to downloading/seeding Ubuntu 17.10 iso

Figure 17: Overall Suspiciousness Score results that motivate the need for using targeted suspi-
ciousness to improve APT attack detection accuracy.

35



suspicious than the BitTorrent traffic, and even the wget and scp traffic. This757

is mainly due to the fact that the suspiciousness calculations in the general case758

were created to detect data exfiltration attacks, and do not account for the resource759

exfiltration characteristics of a cryptocurrency mining attack. This motivated us to760

reconsider the use of Overall Suspiciousness Scores, and introduce weights for a761

variety of suspicious traffic in order to minimize the RMSE in the attack detection762

accuracy.763

Figure 18: Distinct IP Addresses contacted per every 15 seconds.

Digging deeper as shown in Figure 18, we observed that - even though the764

Overall Suspiciousness Score for the benign bittorrent traffic was higher than765

cryptocurrency mining traffic, there is a distinct difference in the traffic varia-766

tion over time. The cryptocurrency mining traffic was far more varied in total767

distinct IP addresses contacted at any given period of time. We also saw highly768

similar results with the total flows over a given time period, and also for the total769

bytes transmitted over the same time period. This led us to conclude that there is770

a distinct difference in the variation of traffic over time when comparing BitTor-771

rent and cryptocurrency mining traffic. Specifically, BitTorrrent traffic will feature772

connections with a large number of IP addresses but will continue to maintain con-773

nections with the same number of IP addresses every few seconds with little or no774

change. In contrast, the cryptocurrency mining traffic will connect with many IP775

addresses, and the total number of distinct connections at any given period of time776
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will flucutate over a wide range. With the knowledge of such attack traffic fea-777

tures, suitable weights can be assigned in Targeted Suspiciousness Scores that will778

not trigger BitTorrent traffic on a network as suspiciousness, but will accurately779

detect unauthorized cryptocurrency mining traffic that are part of APM attacks.780

Figure 19: Demonstration of a Fading Pretense policy implementation to deter an APM attack
after its detection on a compromised device.

6.2.4. Fading Pretense Policy Demonstration781

The Fading Pretense policy can be implemented as an effective defense mech-782

anism against APM attacks as described earlier in Section 5.2. Herein, we de-783

scribe a demonstration of an experiment that illustrates how the fading pretense784

policy could deter an APM attacker in practice. Figure 19 shows the experiment785

conducted using a safe system zone, and an attacked system zone. The x-axis is an786

arbitrary unit of time progression that can be configured (on the order of several787

minutes, hours or even days) by the system/network administrator depending on788

the duration of the pretense policy being in effect. Behavioral psychology con-789

siderations also could be factored into determining the rate of progressive decline790

of the resource allocation on a compromised device. In any case, we can observe791

that three distinct phases of pretense should occur:792
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(Phase-1): Fading pretense begins. Assuming at time x=1, a resource exfiltration793

attack is detected to be occurring in an attacked system zone, at which point the794

attacker will have 100% availability to the system resources, and the fading pre-795

tense policy is initiated at time x=2.796

(Phase-2): Attacker is deterred. In the time after the fading pretense policy is in797

effect, the availability of the system resources is reduced progressively to 90%,798

60%, 30% and 10 % to ultimately cause the attacker to consider a redirection of799

the APM attack to a more-potent device with higher resource allocations.800

(Phase-3) Safe system zone restoration. Once the attacker is found to have been801

deterred at time x=6, the previously compromised device can be added to into the802

safe system zone with 100% availability of system resources. We remark that the803

safe system zone restoration should be performed only after suitable patching or804

system re-imaging in order to ensure that there is no re-occurrence of the APM805

attack on that particular device in the future.806

6.2.5. Time Overhead for Suspiciousness Score Calculation807

Table 7 shows the time taken by ADAPTs to calculate the ss for devices, each808

running on a single core. It also shows the number of traces, and their correspond-809

ing processing times. As high as 1.8 million packets for 8 devices can be processed810

under 100 seconds, which demonstrates the efficacy of ADAPTs. However, there811

is a linear increase in time as the number of traces grow. If such a linear increase812

does not meet the threat monitoring objectives of a domain, a parallel implementa-813

tion of ADAPTs can be extended and used on nodes with multi-core functionality814

to reduce the computation times in the Suspiciousness Score calculations.815

Table 7: Processing time taken by ADAPT with single threaded processing

Single Threaded

Devices Number of traces Time (in seconds)

3 590,492 50

6 1,249,490 77

8 1,839,982 94
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7. Conclusion816

Recent innovations in the orchestration of cloud resources are fueled by emer-817

gence of the Software-Defined everything Infrastructure (SDxI) paradigm. At the818

same time, the sophistication of targeted attacks such as Distributed Denial-of-819

Service (DDoS) attacks and Advanced Persistent Threat (APT) attacks are grow-820

ing on an unprecedented scale. Consequently, online businesses in retail, health-821

care and other fields are under constant threat of targeted attacks. In this paper,822

we presented a novel defense system called Dolus to mitigate the impact of DDoS823

and APT attacks against high-value services hosted in SDxI-based cloud plat-824

forms. We proposed a defense by pretense mechanism that can be used during825

defense against targeted attacks, which involves threat detection algorithms based826

on a number of attack vector features. Using blacklisting information, our pre-827

tense initiation builds upon pretense theory concepts in child play psychology to828

trick an attacker through creation of a false sense of success.829

Our above approach for DDoS and APT attacks defense takes advantage of830

elastic capacity provisioning in cloud platforms to implement moving target de-831

fense techniques that does not affect the cloud-hosted application users, and con-832

tains the attack traffic in a quarantine VM(s). With the time gained through ef-833

fective pretense initiation in the case of DDoS attacks, cloud service providers834

could coordinate across a unified SDxI infrastructure involving multiple ASes to835

decide on policies that help in blocking the attack flows closer to the source side.836

Performance evaluation results of our Dolus system in a GENI cloud testbed for837

DDoS attacks show that our approach can be effective in filtering, detection and838

implementation of SDxI-based infrastructure policy coordination for mitigation839

of the impact of the DDoS attacks. In addition, we also showed how the Do-840

lus system can be an effective defense using pretense against APTs and APMs.841

Using the general Suspiciousness Scores and a novel Targeted Suspiciousness842

Score concept, we proposed novel threat intelligence collection and accurate at-843

tack detection of subtle and secretive targeted attacks at a device level and also844

at a network-wide level. Further, we found that our Admin UI capability can845

greatly help network operators and cloud service providers to overcome their dif-846

ficulty in determining which devices on an enterprise network or a cloud service847

deployment may be compromised. Lastly, we demonstrated how a pertinent de-848

fense strategy such as a fading pretense policy can be effective in the mitigation of849

APM attacks that target resource exfiltration within an SDxI-based infrastructure.850

Future work can be pursued to investigate more sophisticated pretense schemes851

that use threat intelligence collection on effectiveness of a working pretense, and852
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initiate more involved adaptations. In addition, data analytics extensions can be853

pursued for more sophisticated targeted attacks with significantly larger number854

of features that need to be involved in effective detection and defense schemes.855
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