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ABSTRACT
A comprehensive understanding of outage threats is critical
for robust network design and operation, and evaluating cost
trade-offs for recovery planning. In this paper, we describe a
study of network infrastructure events due to outage events
and a framework for mitigating these risks through backup
routing and additional provisioning. We evaluate risk via the
concept of bit-risk miles, the geographically-scaled outage
risk of traffic in a network. Our focus on bit-risk miles allows
for first-of-its-kind analysis of the tradeoffs of shortest path
routing and risk-averse routing. We leverage the concept of
bit-risk miles to present RiskRoute, a flexible routing frame-
work that allows for backup routes to be configured to re-
spond to both historical and immediately forecasted outage
threats. Specifically, RiskRoute is an optimization frame-
work that minimizes bit-risk miles between arbitrary points
in a network. RiskRoute also reveals the best locations for
provisioning additional network infrastructure in the form of
new PoP-to-PoP links for single-network domains, and the
best new peering relationships for multi-network domains.
To assess and evaluate RiskRoute, we assemble diverse data
sets including (i) - detailed topological maps and peering
relationships of Internet Service Providers (ISPs) in the US,
and (ii) - historical information on different types of nat-
ural disasters which threaten physical infrastructure. Our
analysis reveals the providers that have the highest risk to
disaster-based outage events. We also provide provisioning
recommendations for network operators that can in some
cases significantly lower bit-risk miles for their infrastruc-
tures.

Categories and Subject Descriptors
C.2.3 [Computer Systems Organization]: Computer-
Communication Networks - Network Operations
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1. INTRODUCTION
Outages and loss of connectivity can have a significant

impact on businesses and users who depend on communica-
tions infrastructure. In recognition of this, high availability
is one of the most, if not the most, important operational
objective of Internet Service Providers. Indeed, five-nines
or 99.999% availability1 is routinely reflected in service level
agreements from ISPs and cloud computing providers.

This requirement presents significant design and engineer-
ing challenges as network outages can have a number of
causes, ranging from accidents (e.g., the Baltimore Howard
Street Tunnel fire [1] or Mediterranean Cable Cuts [2]), mis-
configurations (e.g., Pakistani Youtube routing [3]), terror-
ism (e.g., the World Trade Center attack [4] or a potential
Electromagnetic Pulse Attack [5]), or censorship (e.g., re-
sponse to the 2011 Egyptian uprising [6]). One cause of In-
ternet outages is natural weather-related phenomena, such
as hurricanes [7], earthquakes [8], or even small-scale thun-
derstorms (e.g., a recent measurements study [9] showed
that thunderstorms result in a three-fold increase in Internet
outages). Unique to a majority of weather-related outages
is (i) - the ability to assess short-term potential threats be-
fore they occur, specifically via weather forecast analysis,
and (ii) - the ability to assess long-term threats to specific
geographic areas based on historical records of events and
outages.

Our study of outage risk is informed by recent focus on
bit-miles of Internet traffic. The traffic exchange policy of
Level 3 [10] defines bit-miles as “the number of air miles
a party’s Internet network carries Internet traffic from the
source or destination”. Extending this concept, we present
a detailed characterization of network outage risk via the
introduction of Bit-Risk Miles.

Definition 1. The bit-risk miles of network traffic is the
geographic distance traveled by the traffic plus the expected
outage risk encountered along the specified routing path.

The bit-risk miles idea allows us to evaluate the trade-offs
between routing using a geographically short path (e.g., as
might be selected due to Service Level Agreements (SLAs)
that are focused on low latency) through infrastructure with
high outage risk versus using a geographically longer path
and directing traffic through infrastructure with low outage
risk.

1Specifying downtime will not exceed more than about 26
seconds over a 30 day period.



Leveraging this concept of bit-risk miles, we present a
generalized route optimization framework, which we call
RiskRoute. Our focus is the geographic scope of networks
(PoPs and links), which we collectively refer to as the phys-
ical infrastructure. The RiskRoute framework can be used
to suggest routing changes that will minimize outage risk
with respect to both historical and current outage forecasts.
While we focus on natural disaster events as threats in this
paper, our approach does not preclude other models for
threats such as hardware fails or misconfigurations. The
framework can be used to identify backup routes or pro-
visioning changes in network infrastructure that will reduce
bit-risk miles, and it can be used at both the intra- and inter-
domain levels. RiskRoute does not, however, specify the
mechanisms for deploying or implementing backup routes,
nor does it consider global properties of BGP convergence
in the case of inter-domain routing. Rather, our contribu-
tion is in the assessment of outage risk and development of
a higher level framework for minimizing risk.

While significant prior work has been done on recovering
from network outages after they have occurred (e.g., [11,
12], etc.), to the best of our knowledge, no prior studies
have examined the notion of proactively identifying routes
that avoid areas of high network risk. Motivating this is the
fact that preemptive avoidance of high risk areas is already
a standard practice of network service providers. For ex-
ample, the NTT, Level3, and Verizon networks all changed
routing before Hurricane Sandy (i.e., changed routing paths
to avoid certain risky PoPs) presumingly to mitigate or avoid
outages [13]. Unfortunately, these routing changes are cur-
rently done by-hand and are unlikely to be comprehensive
with respect to the possible range of outage threats. There-
fore, current best practices for preemptive routing changes
are slow to execute and can only reasonably be expected on
the largest of network links and for the most severe outage
events. The RiskRoute framework enables both fine adjust-
ments to routing tables in response to immediate threats as
well as provisioning changes that can increase the general
robustness of an infrastructure.

Our analysis explores the robustness of 23 networks in the
continental United States using ground truth PoP location
and connectivity information provided by ISPs. Our results
point to clear disaster provisioning recommendations to best
decrease the bit-risk miles of network traffic, including spe-
cific new links between currently unconnected PoPs and new
peering relationships between ISPs. In summary, this is the
first study to introduce the concept of bit-risk miles, to ex-
amine preventive routing based on probable future outage
events, and to offer case studies of routing during real-world
historical disasters and forecasts.

The remainder of this paper is structured as follows. Rel-
evant prior studies are discussed in both Sections 2 and 3.
The data sets used throughout the paper are described in
Section 4. The bit-risk miles concept is introduced in Sec-
tion 5, and exploited in the RiskRoute methodology in Sec-
tion 6. Our experiments on real-world networks, ranging
from small, local networks to nation-wide tier-1 ISPs are ex-
plored in Section 7, along with discussion about actionable
lessons learned from these experiments. We summarize and
describe future work in Section 8.

2. RELATED WORK
Outages in the Internet have been studied from the

viewpoint of Internet reachability [14, 15] and detect-
ing/localizing current network outages [11, 16, 17]. Analyz-
ing the robustness of networks has been the focus of studies
on network survivability [18], network resilience analysis [19,
20], and the development of resilient routing protocols [12,
21, 22, 23, 24]. Gorman considers the vulnerability of Inter-
net infrastructure to malicious attacks in [25]. In contrast to
this prior work on resilient routing, this study is the first to
consider preventive routing and the first to use risk analysis
to potentially avoid outages before they occur.

The experiments in this paper focus on Internet outage
risk from natural disasters2. While the greater Internet has
shown to be relatively robust to localized disaster events,
they can still leave large sections of the population without
network access for extended periods of time. This is a con-
sistent theme in multiple studies of major global disasters,
including the Fukushima earthquake and tsunami [8], the
September 11th attack [4], and Hurricane Katrina [7]. Even
small scale weather phenomena can affect network availabil-
ity, as one study by Schulman et al. [9] has shown that thun-
derstorms result in a three-fold increase in Internet outages.

Individual components of the RiskRoute methodology
have been applied in prior studies. For example, we use ker-
nel density estimations [27] to analyze disaster event proba-
bility. Kernel density approaches have been used in prior
networking-related studies including IP geolocation [28],
Point-of-Presence (PoP) identification [29], and network re-
siliency analysis [20]. With respect to prior work on network
resiliency, our work differs in that we analyze historical dis-
aster events, instead of arbitrary disaster likelihoods.

Active probe-based measurement techniques have been
proposed for network fault and outage monitoring (e.g., [30,
31, 32]). More recently, measurement-based methods have
been proposed for the monitoring the Internet during dis-
asters [33, 34]. Our study can inform the deployment and
configuration of these kinds of monitoring efforts in order
to make them more efficient and accurate. Data sets from
these studies (in conjunction with external event observa-
tions) can also be used to help augment the RiskRoute
framework to more accurately characterize outage risk for
specific networks.

3. BACKUP ROUTES AND PROVISION-
ING

The focus of our work is to develop methods for mitigating
the risk of outage threats to networks and thereby improve
their operational availability. From a practical perspective,
the issue of improving operational availability – especially
in a large network – is complex, thus it is important to be
clear on where RiskRoute fits in.

There are two general objectives for RiskRoute: to en-
able backup routes to be computed and to provide decision
support for provisioning new network infrastructure. With
respect to backup routes, prior work includes the study by
Gao et al. [35], which describes an inherently safe model for

2While civil engineering literature has also focused on net-
work robustness in the precence of natural disasters (e.g.,
[26]), their specific focus on transportation networks intro-
duces significant deviations with our study of Internet in-
frastructure under disasters.



backup routing at the inter-domain level that improves net-
work reliability. RiskRoute complements that work by pro-
viding a higher level framework for selecting backup routes
that mitigate risk. Furthermore, any routes specified by
RiskRoute would require evaluation of safety using methods
such as those described in [35]. For intra-domain routing,
the notion of computing backup paths to address failures
has been in practice for some time. For example, RFC 5714
specifies IP Fast Reroute - a mechanism for quickly repairing
the effects of location failures without the need to invoke a
routing update after the failure. RiskRoute fits very nicely
into the IP Fast Reroute framework by offering an algorithm
for backup/repair path calculation.

The problem of network provisioning the deployment of
new resources or capabilities in a network can be considered
in many ways depending on objectives. Standard methods
and practices for provisioning vary widely, are typically pro-
prietary and are based on both heuristics and optimization
methods (e.g., [36]). In this study, we consider network pro-
visioning from the perspective of PoPs and the links that
connect them. While this is certainly a coarse-grained per-
spective, we argue that it is the most relevant to mitigating
risk of outage threats from natural disasters, which is why
we adopt it in our study. RiskRoute does not preclude a
more fine-grained approach that is more tuned to threats
such as hardware failures within PoPs.

3.1 Putting RiskRoute into Practice
An objective of our work is to make the RiskRoute met-

ric useful in practice for the purpose of establishing backup
paths and/or alternative routes during outages in disaster
scenarios. The most natural way to accomplish this ob-
jective is to identify ways in which the metric can be di-
rectly incorporated into the routing configuration process.
In what follows, we describe general approaches to incorpo-
rating RiskRoute in routing configurations, but leave details
to future work.

To address robustness to disasters within a single do-
main, the RiskRoute metric can be used directly in stan-
dard intra-domain routing protocols such as OSPF or ISIS.
These protocols implement shortest path routing based on
link weights. The problem of optimizing link weights for
various operational objectives has been well studied in prior
work (e.g., [37]). The approach would simply be to create
link weights that are a composite metric based on opera-
tional objectives and RiskRoute. Alternatively, backup con-
figurations that use a composite link metric that includes
RiskRoute can be computed off line following the method
described in [38].

Another method for creating backup paths within a do-
main is based on the use of MPLS tunnels. Specifically, for
domains that use MPLS, the fast reroute mechanism can be
used to establish failover paths for single link or node fail-
ures (e.g., [39]). While this is a somewhat limited failure
model, the RiskRoute metric can be used directly to iden-
tify backup paths that can then be directly configured in a
network.

Finally, to address robustness beyond a given domain or
in PoPs where peering routers are located, the RiskRoute
metric can be used to identify service providers that may be
able to offer additional connectivity options. Over long time
scales, RiskRoute-based analysis can lead to new provider or
peering relationships. Over shorter time scales, RiskRoute

could be used in conjunction with the proposed BGP “add
paths”option as the basis for inter-domain fast path restora-
tion [40].

4. DATA SETS
One of the key contributions of our work is the consider-

ation of data assembled from primary sources (i.e., ground
truth). In the case of network topology, we use the latest
maps from service providers. For historical disaster events
and forecasts, we use several different US federal government
archives. The use of primary source-based data enhances the
quality and reliability of our results.

4.1 Networks
The ability to assess threats to real-world networks is de-

pendent on detailed topological maps of Internet Service
Providers that include accurate geolocation information. In
this study, we rely on the publicly available Internet Topol-
ogy Zoo [41] and Internet Atlas [42] projects. From these
online repositories, we obtain detailed geographic informa-
tion of 7 Tier-1 networks containing 354 total PoPs and 16
regional networks containing 455 total PoPs in the continen-
tal United States. Figure 1-(Left) and Figure 1-(Right) both
show the geographic placement of this network infrastructre.

Figure 1: Network and population data sets - (Left)
- Tier-1 infrastructure PoP locations and links,
(Right) - Regional infrastructure PoP locations and
links.

For the connectivity between PoPs, we use line-of-sight
to place links. While the actual network fiber bundles do
not follow line-of-sight (they are typically located along ma-
jor thoroughfares such as highways, railways, etc. [43, 44]),
their actual paths are often on reasonably direct routes be-
tween locations. With respect to between-AS relationships,
we examine the CAIDA AS Relationship Dataset [45] which
derives AS connectivity information from BGP announce-
ments. Figure 2 shows the AS-level connectivity for the 23
networks that we consider in our study.

We do not argue for the completeness of the network cov-
erage represented in this data corpus. We do, however, ar-
gue for the representativeness and accuracy of this data.
The omission of certain nodes and links of either national
or regional providers means that the density of network in-
frastructure is under-represented in our analysis, thus the
overall risks are may be slightly overstated.

4.2 Population Data
One component of the RiskRoute framework is incorpo-

ration of the impact, or effective size, of a particular net-
work outage. For the focus of our study, we examine im-
pact with respect to the estimated underlying population
serviced by the network routes. Several studies, including
[46], have correlated population density with Internet us-
age. To evaluate the size of the population serviced by each
network resource, we consider information from the United
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Figure 2: AS connectivity between all networks under consideration.

States Census survey [47]. The data set under evaluation is
at the resolution of census-block level, returning population
for 215,932 geographic partition regions in the continental
US. Using kernel techniques, a heat map of the population
(where lighter color indicates higher geo-spatial frequency
of population and darker colors indicate lower geo-spatial
frequency) from this data is shown in Figure 3-(Left). For
each network containing multiple PoP locations, we consider
a simple nearest-neighbor population assignment approach,
where the population for a given census block is assigned
to the nearest infrastructure location. An example of this
assignment is shown in Figure 3-(Right) for the Teliasonera
network.

Figure 3: (Left) - Population density of the con-
tinental United States, (Right) - Nearest-neighbor
assignment for Teliasonera network PoPs, with PoP
locations denoted by “x” marker.

4.3 Natural Disaster Events
We also use weather-related disaster data provided by the

US Federal Emergency Management Agency (FEMA) [48].
Due to our focus on events that affect Internet infrastruc-
ture, we only consider weather events that include severe
storms, tornadoes, and hurricanes. For these particular
events of interest, we observed 29,865 emergency declara-
tions from FEMA between 1970 and 2010 specified at the
United States county-level. Specifically, we find 20,623 se-
vere storm declarations, 6,437 tornado declarations, and
2,805 hurricane declarations. While other events recorded
by FEMA, such as volcanic eruptions, may also effect infras-
tructure, we ignore these events in this study due to their
extreme rarity. For completeness, we also consider recorded
events by the United States National Oceanic and Atmo-
spheric Administration (NOAA) [49] between the years 1970
and 2010. Specifically, this data contains 143,847 wind dam-
age events, and 2,267 earthquake events.

4.4 Forecasted Disaster Events
Finally, we perform natural language processing to parse

NOAA weather forecasts [50]. We examine three weather
events, Hurricanes Katrina, Irene, and Sandy, with 61, 70,

and 60 public advisory weather forecasts, respectively. Each
text forecast includes timestamps and the associated current
center of the hurricane and the radius of tropical and hur-
ricane force winds at the specified time. A selected portion
of this forecast text for Hurricane Irene reads as follows:

...THE CENTER OF HURRICANE IRENE WAS LOCATED
NEAR LATITUDE 35.2 NORTH...LONGITUDE 76.4 WEST.
IRENE IS MOVING TOWARD THE NORTH-NORTHEAST
NEAR 15 MPH...HURRICANE-FORCE WINDS EXTEND
OUTWARD UP TO 90 MILES...150 KM...FROM THE CEN-
TER...AND TROPICAL-STORM-FORCE WINDS EXTEND
OUTWARD UP TO 260 MILES...415 KM...

By natural language parsing, we translate this text to a
measure of forecasted outage risk in Section 5.3.

5. BIT-RISK MILES
For network traffic traveling between two PoPs (say, PoP

i and PoP j), our goal is to define a measure of the total
outage risk given the current routing. We define the bit-risk
miles measure with respect to four properties:

1. Geographic Distance - The geographic distance trav-
eled by the network traffic (defined as “bit-miles”
in [10]).

2. Outage Impact - The estimated impact of an outage
between the two PoPs.

3. Historical Outage Risk - The historical risk of encoun-
tering an outage.

4. Immediate/Forecasted Outage Risk - The current risk
of encountering an outage.

We define the bit-risk miles as the geographic distance
traveled by the packet (di,j) added to the impact scaled
(γi,j , calculated here using population data) risk of network
outage (historical risk, oh and immediate risk, of , calculated
here using natural disaster data). Therefore, we define the
bit-risk miles, ri,j (p), as,

ri,j (p) =
K∑

x=2

(
dpx,px−1 + γi,j (λhoh (px) + λfof (px))

)
. (1)

Where the routing path between i and j is denoted as
p = {p1, p2, ..., pK}, with p1 = i and pK = j, and where
pk is the k-th PoP traversed by the path between PoPs i
and j. The tuning parameters, λh > 0 and λf > 0, de-
termine the contribution of historical and immediate outage
risk to the bit-risk mile metric, respectively. This allows
network operators to directly adjust the risk-averseness of



their network routing. The larger these tuning parameters,
the longer the bit-miles of the routing paths and less likely
the routing path traverses high outage risk infrastructure.
In Section 7, we use the values 105 and 103 for λh and λf .

While it can certainly be the case that network physi-
cal infrastructure will survive light or moderate weather-
related disasters, we do not consider the “hardness” of any
infrastructure in our analysis. We simply argue that network
physical infrastructure is vulnerable to severe forms of dis-
asters (as previously seen in [4, 7, 8, 9]). In addition, while
there exist outage threats that are unsuitable for accurate
geospatial modeling (e.g., fires, backhoe fiber cuts, etc.), we
argue that focusing on natural disaster outages covers a wide
range of potential network threats.

We note that network administrators could easily insert
their own intuition about the risk and impact of outages
of their network infrastructure. In practice, the outage
risk value could also be derived from historical outage fre-
quency information, known ability to recover from outage
(i.e., outage duration information), and/or peering infor-
mation. Meanwhile, the impact of an outage could also be
influenced by traffic flows between two PoPs, SLA informa-
tion, or specific critical peering relationships. We leave this
extension of risk characterization up to individual network
administrators and offer the natural disaster and population
analysis presented here as an instructional case study using
the RiskRoute framework.

5.1 Outage Impact
From Census data, we estimate the amount of population

serviced by each network resource. A simple technique for
assigning population to network infrastructure is a nearest-
neighbor approach, where the population for a geographic
location is assigned to the closest network resource.

Using this nearest-neighbor model, we define ci as the
fraction of population serviced by PoP i, and the estimated
impact of an outage between PoPs i and j as, γi,j = ci + cj .
For geographically constrained regional networks, we only
consider the population confined to the states where these
networks have infrastructure.

5.2 Historical Outage Risk
The historical outage risk can be considered a prior on

the likelihood that physical infrastructure (i.e., a PoP) at
a specific location encounters an outage. For our study,
we construct geo-spatial outage probability estimates from
historical geospatial disaster data using nonparametric ker-
nel density estimates. For a set of observed disaster events
X = {x1,x2, ...,xN}, such that xi is the latitude/longitude
coordinates of event i, we obtain the kernel likelihood prob-
ability, p̂ (y), the estimated probability of disaster at lati-
tude/longitude location y, where,

p̂ (y) =
1

σN

N∑

i=1

K

(
(xi − y)

σ

)
(2)

We use a Gaussian kernel, where, K (z) = 1
2π exp

(−1
2 zT z

)
.

While we acknowledge that many of the disaster events have
strong seasonal correlations (e.g., tornados, hurricanes), for
simplicity, here we only consider a single outage probability
distribution for each disaster event type.

One of the benefits of this approach is that for each disas-
ter likelihood, the only tuning parameter is the bandwidth

(or variance) of the kernel function, σ, the geospatial con-
tribution of each event in our dataset. By properly setting
this bandwidth value, we avoid both overfitting or under-
fitting to the observed historical events. To determine the
optimal bandwidth value, we use 5-way cross validation [27]
(where the best bandwidth is found from 80% of the ob-
served events to fit the remaining 20%). The distance metric
we consider is the KL divergence [51]. The optimized kernel
bandwidth values are shown in Table 1 for all seven disas-
ter data sets. Intuitively, these bandwidth values return the
level of confidence in prediction for each event type, rang-
ing from events with the highest predictive resolution (i.e.,
NOAA wind data) to events with the lowest resolution (i.e.,
NOAA earthquake data). This value is, of course, dependent
on the number of historical events in our data set.

Table 1: Trained kernel density bandwidths for
FEMA and NOAA data.

Event Number of Optimal Kernel
Type Entries Bandwidth

FEMA Hurricane 2,805 71.56
FEMA Tornado 6,437 59.48
FEMA Storm 20,623 24.38
NOAA Earthquake 2,267 298.82
NOAA Wind 143,847 3.59

Using the optimized kernel bandwidths, we construct the
kernel density estimates from our database of natural dis-
aster events. Figure 4 shows the resulting geo-spatial like-
lihoods for the three FEMA data sets and two NOAA data
sets. As expected, hurricanes are more prevalent along the
Gulf Coast region, while severe storms are prevalent in the
central plain states, and earthquakes dominate the west
coast.

From Equation 1, we distill the historical outage risk down
to a single risk value for every router PoP location. We con-
sider the aggregated historical risk to be the sum of all five
outage probabilities, where for PoP location i the aggregate
risk, oh (i), is defined as the sum of all outage probabilities.
We note that individual events that network operators find
to be particularly disruptive for network service (e.g., flood-
ing events for network infrastructure that lies on the first
floor of a building, etc.) could be emphasized using this risk
metric calculation via user-defined weights. We leave these
network specific extensions to future work.

5.3 Forecasted Outage Risk
While the use of NOAA and FEMA data allows us to

assess the historical risk of a disaster event at a specified
physical infrastructure location (i.e., a PoP), there remains
the issue of determining the current risk to the network.
Events like tornados, hurricanes, and even earthquakes have
a time delay between knowledge of likely event occurrence
and impact. We examine tick-by-tick disaster forecasts, in
terms of both the disaster location and scope, to simulate
observing outage risks as disaster events happen.

In this study, we focus on historical records of hurricane
events to assess forecast outage risk. Using the NOAA fore-
cast text data described in Section 4.4, we parse this text
corpus to extract both the current center and intensity of
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Figure 4: Bandwidth-optimized kernel density estimates of NOAA and FEMA data from 1970 - 2010. (A)
- Hurricane likelihood, (B) - Tornado likelihood, (C) - Storm likelihood, (D) - Earthquake likelihood, (E) -
Damaging wind likelihood.

hurricane disaster events. Disaster-dependent measures of
risk are then defined given these two properties.

Specifically for hurricane events, we construct forecasted
risk likelihood using the two extracted disaster data points,
the radius of tropical-force wind and the radius of hurricane-
force wind. We declare the forecasted risk of an area un-
der tropical-force wind as γt, and the risk of an area under
hurricane-force winds as γh, with the probability of outage
given hurricane-force winds is higher than the outage prob-
ability for tropical-storm force winds, γh > γt (in Section 7
we use γt = 50 and γh = 100). An example weather fore-
cast risk is shown in Figure 5 for Hurricane Irene given our
dataset of advisory-dervied knowledge of the geographic area
of the disaster. As seen in the figure, at different time-steps
the current geographic impact-region of the storm is tracked.

Figure 5: Geo-spatial Disaster Forecast for Hurri-
cane Irene where the lighter blue area represents
tropical storm force winds and the darker red area
represents hurricane force winds. - (Left) - Fore-
cast for 11:00 AM 8/25/2011, (Center) - 5:00 PM
8/26/2011, and (Right) - Forecast for 8:00 AM
8/28/2011.

The final geo-spatial scope of all three hurricane events
considered in this paper can be seen in Figure 6. We remark
that the varying geographic location of these disasters allows
us to more fully evaluate the performance of network routing
during disasters.

6. RISKROUTEMETHODOLOGY
A consequence of the bit-risk miles concept is the ability to

estimate the risk for specified routes through the network’s
physical infrastructure. This leads to two questions. (1) -
For two PoPs, can we determine the routing through the
infrastructure that has the minimum bit-risk miles? and
(2) - What additional infrastructure (with respect to net-
work connectivity) would best decrease the outage risk in
the network? The RiskRoute methodology answers these
two questions for both the intradomain case (i.e., routing
through a single ISP) and the interdomain case (i.e., rout-
ing through multiple ISPs).

6.1 Intradomain RiskRoute
Consider a single ISP network with physical infrastructure

consisting of N PoPs. In this regime, for a given pair of
PoPs, RiskRoute examines the physical infrastructure (the
set of PoP nodes and links) to find the path through the
network such that these two specified PoPs are connected
and the bit-risk miles associated with this path is minimized.
We define this RiskRoute optimized path between PoPs i
and j, prr

i,j , as,

prr
i,j = arg min

p⊂Pi,j
ri,j (p) . (3)

Where ri,j (p) is defined in Equation 1 and Pi,j is the set of
all possible paths through the network between PoPs i and j.
We discuss and give examples of how the tuning parameter
values affect RiskRoute routing paths in Section 7.

6.2 Interdomain RiskRoute
We also focus on the more challenging problem of assess-

ing bit-risk miles when a packet is routed through multiple
networks. In contrast to the single-domain case, when con-
sidering multiple networks we encounter the issue that we
do not have control over the routing of traffic in other net-
works. Because of this, we characterize multi-network bit-
risk miles with respect to two factors: shortest-path routing
throughout all peering networks between the two PoPs and
the RiskRoute path given all possible PoPs.

First, consider finding the minimum geographic distance
routing (or shortest path) between all considered networks.
While other routing schemes, such as hot potato routing [52],
may result in worse bit-risk miles routing paths, we consider
the shortest path approach to reveal an upper bound on the
bit-risk miles of a reasonable routing path between the two
PoPs.

Second, if we have the ability to control every routing
decision in every network, then we can consider using the
RiskRoute methodology to find the best routing path that
minimizes the bit-risk of packets sent between the two PoPs.
Given this idealized case, we consider this a lower bound on
the bit-risk miles between the two PoPs. The ratio between
these upper and lower bit-risk miles bounds is considered in
Section 7.

6.3 Robustness Analysis
In addition to the optimal risk-averse routing, the

RiskRoute framework can also reveal how to augment ex-
isting networks to best reduce the bit-risk miles of traffic.

For the intradomain case, consider the ability to add a
single additional link to a specified network. We consider
the subset EC , the collection of all links that currently do
not appear in the network and do not overlap greatly with



Figure 6: Final geo-spatial scope of historical disaster events considered where the lighter blue area represents
tropical storm force winds and the darker red area represents hurricane force winds. (Left) - Hurricane Irene,
(Center) - Hurricane Katrina, (Right) - Hurricane Sandy.

existing links3. Given our RiskRoute framework of bit-risk
analysis, this robustness analysis consists of finding the edge,
e ∈ EC , that results in the largest reduction of bit-risk miles
throughout all possible paths in the network,

ê = arg min
e∈EC

N∑

i=1

N∑

j=i+1

min
p⊂Pi,j

ri,j (p). (4)

Of course, instead of a single link, we may be more inter-
ested in finding the impact of adding some number of ad-
ditional links. When this occurs, we can consider a greedy
methodology, where to add the k-th best additional link we
examine the network with k − 1 added links and minimize
the total aggregated bit-risk miles in the current network.

While the single-domain case allows to consider adding
additional links to the infrastructure, in the multi-domain
case we will not have this ability. Therefore, we examine the
best possible new peering or additional multihoming egress
point to minimize the RiskRoute measure of the lower bit-
risk mile bound. For each specified network, we define “can-
didate peers” as the collection of PoPs in other networks
which are co-located with infrastructure from the specified
network, but for which there is no previously known peer-
ing relationship. Then, the best candidate peer is found such
that the RiskRoute paths have the smallest lower-bound bit-
risk miles.

6.4 Optimization and Computational Com-
plexity

For each route, solving for the best RiskRoute path in
Equation 3 requires constructing a graph structure where
the node are PoPs and the link weights consist of the bit-
risk miles between infrastructure locations. Using this con-
structed risk graph, to find the minimum bit-risk miles route
consists of solving a shortest-path problem between the two
specified PoPs.

The RiskRoute framework does not consider other objec-
tives in routing such as SLAs which are a central consider-
ation in ISP network configuration and management. How-
ever, the RiskRoute framework could easily be expanded to
include multiple objective functions that would balance risk
and SLA-related issues such as latency in route calculations.
The impact would be additional computational complexity
in route calculation.

3Here we consider only links that would results in >50% re-
duction in bit-miles between the two PoPs. This eliminates
impractical cross-country links from consideration.

7. EXPERIMENTS
We now present an evaluation of the RiskRoute frame-

work on real-world networks and historical disaster outage
risk. The first set of experiments examines the application of
RiskRoute to both tier-1 and regional networks in the con-
tinental United States. The second experiment evaluates
network robustness with respect to network link structure.
We conclude with case studies of RiskRoute performance
during real-world hurricane disaster events. Our goal is to
highlight networks that are particularly vulnerable to out-
ages and supply network operators with provisioning recom-
mendations.

The raw bit-risk mile numbers may be difficult to interpret
and highly dependent on tuning parameters. As a result, we
present the results as a series of “ratio values” with compar-
ison to the shortest path routing over the same network.
The risk reduction ratio is defined as the fractional decrease
of the average bit-risk miles for RiskRoute compared with
the average bit-risk miles of shortest path routing. Without
complete knowledge of each ISP’s routing table, we con-
sider shortest-path routing a reasonable approximation of
true network routes.

Evaluating with respect to intradomain routing, for a net-
work with N PoPs, the risk reduction ratio is defined as,

rr = 1− 1
N2

N∑

i=1

N∑

j=1

r
(
prr
i,j

)

r
(
pshortest
i,j

) . (5)

Where prri,j is the RiskRoute path evaluated using Equa-
tion 3, and pshortest

i,j is the shortest path between PoPs i
and j through the topology. For example, a risk reduction
ratio of 0.2 implies that using RiskRoute reduces the bit-risk
miles of a routing path by 20% compared with shortest path
routing.

The distance increase ratio, dr, is defined as fractional
increase in average bit-miles for RiskRoute paths compared
with the average bit-miles of shortest path routing paths.
Given d (p) is the bit-miles length of routing path p, we
define the distance increase ratio as,

dr =
1
N2

N∑

i=1

N∑

j=1

d
(
prr
i,j

)

d
(
pshortest
i,j

) − 1. (6)

For example, a distance increase ratio of 0.2 implies that
using RiskRoute increases the bit-miles of a routing path by
20% compared with shortest path routing.

In the interdomain regime, the distance and risk reduc-
tion ratios for a specific regional network is evaluated such
that each PoP in the regional network is considered a path
source, and path destinations is the set of all PoPs in the



collection of 16 regional networks. This allows us to analyze
the performance of routing between regional networks and
through tier-1 peers.

We believe that these aggregated ratio values demonstrate
the benefits of RiskRoute and clearly state the trade-offs of
its performance against shortest path routing.

7.1 Routing Analysis
We begin by analyzing the bit-risk miles of Tier-1 ISPs in

the continental United States. Using no defined forecasted
risk and the historical outage risk described in Section 5, we
plot two routes (RiskRoute and shortest path) between the
Houston, TX and Boston, MA PoPs in the Level3 tier-1 ISP
in Figure 7. The figure shows that as the tuning parameter
λh grows, the routing become more risk averse and therefore
deviates significantly from the shortest path routing.

Figure 7: RiskRoute applied to the Level3 Network
topology between Houston, TX and Boston, MA
PoPs. Routing with the solid line represents the
constant shortest path route and the dotted line
represents RiskRoute inferred routing. - (Left) -
λh = 104, (Right) - λh = 105

To assess the trade-offs in using RiskRoute we show in
Table 2 the average deviation in both bit-risk miles and
bit-miles for intradomain routing in the seven tier-1 net-
works using RiskRoute. As expected, increasing the tuning
parameter (i.e., requesting more risk-averse routes) results
in both smaller average bit-risk miles and larger bit-mile
routing necessary to avoid outage risk. We find that the
much larger Level3 network results in the smallest risk re-
duction ratio (i.e., smallest bit-risk miles improvement us-
ing RiskRoute over shortest path routing), while the smaller
Deutsche Telekom (i.e., DT) and Teliasonera networks have
the largest risk reduction ratios across the various tuning
parameter values.

Next, we focus on the avoidance of outage risk in inter-
domain routing for 16 smaller, regional networks. We ex-
pect outage risk to distribute itself differently when network
resources are confined to a smaller geographic area (com-
pared with nationwide tier-1 networks). We present the re-
sults using RiskRoute for a single historical outage tuning
parameter value (λh = 105) in Figure 8. This plot shows
that most of the regional networks considered have distance
increase ratios similar to the resulting risk reduction ratio
(i.e., the reduction in bit-risk miles over shortest path rout-
ing is equivalent to the inflation of bit-miles miles for the
RiskRoute defined paths), such as Iris, USA Network, and
Epoch. For a subset of networks, we find that the bit-risk
reduction ratio is significantly decreased with a relatively mi-
nor increase in the distance increase ratio. For example, the
Digex, Gridnet, Hibernia and Bandcon networks all find a
roughly 20% measured decrease in bit-risk using RiskRoute
(compared with shortest path), while the resulting routing
paths only increase the bit-miles by about 10% on average.

These results point to the specific regional networks which
would have the largest benefit for using RiskRoute.
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Figure 8: Interdomain RiskRoute experiments.
Comparison of distance increase ratio and risk re-
duction ratio for regional networks.

7.1.1 Network Characteristic Study
The characteristics of these regional networks, such as the

number of PoPs and geographic scope of the network, affect
the performance of RiskRoute. Six network characteristics
are presented in Table 3 and presented with respect to theR2

coefficient of determination [27], the quality of the data to a
linear trend (where R2 = 0 indicates that no trend exists and
R2 = 1 indicates that the data is completely described by a
linear trend). As the table shows, some characteristics, like
number of PoPs and geographic footprint size of the network
(taken as the largest geographic distance between two PoPs
in each network), are very well correlated with the observed
risk reduction ratio measurements. Meanwhile, other char-
acteristics, like number of peering relationships and average
outdegree of network PoPs, have relatively little correlation
with our results. The lack of correlation of risk reduction
ratios and the average PoP risk of network infrastructure
may seem at first counter-intuitive, but we note that we are
comparing performance of RiskRoute against shortest path
routing, meaning that any unavoidable outage risk at net-
work PoPs will be canceled out.

Table 3: Regional Network routing performance co-
efficient of determination (R2) with respect to net-
work characteristics.

Risk Distance
Reduction Increase

Network Ratio Ratio
Characteristic R2 R2

Geographic Footprint 0.618 0.243
Average PoP Risk 0.104 0.064
Average Outdegree 0.116 0.106
Number of PoPs 0.552 0.405
Number of Links 0.531 0.361
Number of Peers 0.155 0.002



Table 2: Tier-1 Networks Analysis of Bit-Risk to Bit-Miles using RiskRoute.
λh = 105 λh = 106

Network Name # PoPs Risk Reduct. Ratio Distance Incr. Ratio Risk Reduct. Ratio Distance Incr. Ratio
Level3 233 0.075 0.015 0.258 0.136
AT&T 25 0.207 0.045 0.340 0.168
DT 10 0.245 0.130 0.384 0.446
NTT 12 0.187 0.040 0.295 0.127
Sprint 24 0.222 0.079 0.352 0.191
Tinet 35 0.177 0.045 0.347 0.195
Teliasonera 15 0.223 0.068 0.336 0.226

7.2 Robustness Analysis
Using the methodology described in Section 6.3, we use

the RiskRoute methodology to resolve additional links for
a target network that best reduce the total aggregated in-
tradomain bit-risk miles. In Figure 9 we show the ten best
additional links for three of the tier-1 networks presented as
the fraction with respect to the original network’s RiskRoute
bit-risk miles. As expected, these suggested links best add
connectivity to avoid areas of high outage risk.

Not all networks are equal in terms of their ability to de-
crease risk via new link infrastructure. In Figure 10, we show
how the aggregated bit-risk miles decay given additional
links added to the tier-1 networks. We find that the Level3
network, with its high level of existing connectivity, has the
least improvement given additional links. Meanwhile, the
networks with less existing connectivity, such as Sprint and
TeliaSonera, show a marked improvement by adding only a
few additional links.
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Figure 10: Estimated risk reduction with added
links.

With respect to interdomain studies, we can analyze which
additional peering links will best improve connectivity. For
the entire corpus of networks considered, we find the best
additional peering relationships is presented graphically in
Figure 11. Our analysis suggests that a majority of the re-
gional networks shown choose to peer with either the AT&T
or the Tinet tier-1 networks in order to most effectively re-
duce the risk of outages. These results mirror the ratio per-
formance of these tier-1 ISPs in Table 2.

7.3 Disaster Case Studies
Finally, we examine historical disasters and evaluate the

performance of RiskRoute during three hurricane disasters
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Figure 11: Robust Experiments - The best addi-
tional peering relationship (indicated by dotted red
links) for each regional network.

(Irene, Katrina, and Sandy). The complete geographic scope
of these three disasters can be seen in Figure 6. For each
of these three events, we evaluate both shortest-path and
RiskRoute routing in our corpus of networks for the dura-
tion of National Weather Service advisory forecasts in our
dataset4.

First we examine the tier-1 physical infrastructure in the
path of these extreme weather events. With respect to hur-
ricane force winds, we find 86 PoPs for Irene, 8 PoPs for
Katrina, and 115 PoPs for Sandy. Analyzing the bit-risk
miles reduction ratio with respect to the individual weather
forecasts observed, the time-series results on intradomain
routing of tier-1 networks is shown in Figure 12. An ini-
tial high-level observation is that the risk reduction ratio
is relatively small for the Katrina event, compared with
much larger risk reduction ratios for the Hurricane Sandy
and Hurricane Katrina events. This can be explained by
the relatively little infrastructure affected by Hurricane Ka-
trina, with a larger percentage of PoPs encountering dam-
aging weather from Hurricane Sandy and Hurricane Irene,
therefore the risk reduction ratio (the reduction in bit-risk
miles using RiskRoute) is intuitively smaller.

We now examine each hurricane event individually, start-
ing with the tier-1 networks shown under the Hurricane Irene
event in Figure 12-(Left). We found that the Level3 network
has the largest number of PoPs in the scope of this event,
while the Sprint network has the largest percentage of their
network PoPs in the Irene’s scope. As the figure demon-
strates, the raw number of network PoPs in the path of the

4Specifically, we use all NOAA advisory reports [50] from
11:00 AM EDT Monday October 22th 2012 to 1100 PM
EDT Monday October 29th 2012 for Hurricane Sandy, 5
PM EDT Tuesday August 23rd 2005 to 10 AM CDT Tues-
day August 30th 2005 for Hurricane Katrina, and 700 PM
EDT Saturday August 20th 2011 to 1100 PM EDT Sunday
August 28th 2011 for Hurricane Irene.



(A) (B) (C)

Figure 9: Tier-1 Network RiskRoute Robustness Suggestions. The 10 best additional links found using the
RiskRoute methodology. Solid blue lines represent existing links, dotted red lines represent suggested robust
additional links. (A) Level3 Network, (B) AT&T Network, (C) Tinet Network.
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Figure 12: Tier-1 network case study (Left) - Hurricane Irene, (Center) - Hurricane Katrina, (Right) -
Hurricane Sandy.

storm has relatively little correlation with the risk reduc-
tion ratio performance, as Level3 actually has the smallest
decrease in bit-risk miles when considering the entire scope
of the hurricane event (i.e., the last observation on Satur-
day, August 27th). Meanwhile, the Sprint network, with the
highest percentage of PoPs affected, results in the largest
improvement using RiskRoute.

Different observations can be made for the Hurricane Ka-
trina event in Figure 12-(Center). Again, we find that the
network with the highest percentage of infrastructure in
the scope of the hurricane, NTT, shows the largest im-
provement using RiskRoute. Most other networks (e.g.,
AT&T, Tinet, Teliasonera) show relatively little effect or
need for RiskRoute during Hurricane Katrina. We believe
that this confirms real-world observations of network avail-
ability during Katrina in [7], which showed the affects of
this weather event were relatively localized to the storm’s
geospatial scope.

Finally, we consider the recent Hurricane Sandy event on
the United States east coast in Figure 12-(Right). We find
that all networks have a significant improvement in bit-risk
miles using the RiskRoute framework. These results are re-
inforced by the wide-spread outages encountered after Hur-
ricane Sandy [53].

7.3.1 Interdomain Regional Network Results
The interdomain routing performance of regional networks

is shown in Figure 13. Because many of the regional net-
works in our corpus contain no locations in the scope of the
three hurricane events, for each event we only consider the
regional networks that include more than 20% of their PoPs
in locations contained in the scope of each event. Similar to
the Tier-1 network experiments, we again find that Katrina
has a relatively minor affect on these networks in compari-

son to Sandy and Irene. We also notice a much larger devi-
ation in RiskRoute performance as the event persists, with
some networks showing very large improvements upwards of
40% (with respect to reduction in bit-risk miles), while other
show minor improvements of around 10%.

This is highly dependent on the fraction of the infrastruc-
ture in the path of each event. For the Hurricane Irene
event, we find that the network with the largest improve-
ment, Digex, has a relatively smaller percentage, 22.2% of
their PoPs in the path of the hurricane, while the network
with the smallest improvement, Globalcenter, has a vast ma-
jority, 87.5% of their PoPs in the path of the hurricane. This
suggests that RiskRoute returns the largest improvement
when a majority of the infrastructure is not under outage
risk and therefore can be reliably used to reroute network
traffic through areas of low outage risk.

8. CONCLUSIONS
High availability is a central focus in network design, pro-

visioning and operations. This paper introduces the concept
of bit-risk miles, the outage risk weighted distance of net-
work routes. We use bit-risk miles to develop RiskRoute,
a generalized framework that minimizes the bit-risk miles
of routes in a network infrastructure. RiskRoute can be
used to inform network operators with respect to backup
paths, route changes, provisioning recommendations, and
new peering connections which minimize the risk of out-
age threats. To assess and demonstrate the capabilities
of RiskRoute, we use maps of US ISPs, population and
weather related events. The results of our analyses high-
light current risks of network infrastructures and how those
risks can, in some cases, be significantly mitigated using
RiskRoute recommendations. Our future work includes ex-
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Figure 13: Regional network case study (Left) - Hurricane Irene, (Center) - Hurricane Katrina, (Right) -
Hurricane Sandy.

tending the RiskRoute framework to consider operational
objectives such as SLAs, assessing shared risk between mul-
tiple ISPs using RiskRoute, extending our case studies to
specific networks with known outage events, and making
this RiskRoute analysis framework openly available to the
community.
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