Compositional Semantics for Composable Continuations
From Abortive to Delimited Control

Paul Downen Zena M. Ariola

University of Oregon

ICFP’14 — September 1, 2014
The big picture

- Effects that manipulate control flow, compositionally
 - Programs can refer to their context, but ...
 - Still have local, equational reasoning inside open programs

- Logic is an inspiration, ...
 - Lessons from logic can fix problems in programming

- Even with an untyped mindset
 - Sometimes, being type-agnostic is liberating!
Classical control

- callcc is the classic control operator, going back to Scheme
- Classical control corresponds to classical logic (Griffin, 1990)
- Start with pure language, add primitive operations
 - Start with intuitionistic logic, add classical axioms
- Start with a language with continuation variables
 - Start with a logic with multiple conclusions
Delimited control

- Delimit the scope of effects
- Continuations compose like functions
- Vastly more expressive power than classical control
 - Every monadic effect is simulated by delimited control (Filinski, 1994)
 - Exposes “monadic plumbing” underlying CBV languages
Roadmap from classical to delimited control

Classical

\[\lambda + \text{callcc} \]

\[\lambda \mu \]
Roadmap from classical to delimited control

Classical

\[\lambda + \text{callcc} \]

\[\lambda \mu \quad \text{syntactic relaxation} \quad \Lambda \mu \]
Roadmap from classical to delimited control

Classical Delimited

\[\lambda + \text{callcc} \quad \lambda + \text{shift}_0 + \text{reset}_0 \]

\[\lambda\mu \quad \text{syntactic relaxation} \quad \Lambda\mu \]

Classical control
Operational semantics of callcc

- Extension of CBV λ-calculus

\[V ::= x \mid \lambda x. M \]

| callcc | built-in function |
| [E] | reified evaluation context |

\[M, N ::= V \mid M \, N \]

\[E ::= \Box \mid E \, M \mid V \, E \]

\[
E[(\lambda x. M) \, V] \mapsto E[M \{V/x\}]
\]

\[
E[\text{callcc} \, V] \mapsto E[V \, [E]]
\]

\[
E[[E'] \, V] \mapsto E'[V]
\]
Equational theory for callcc

- Reason more generally about open programs
- Extension of λ_c (Moggi, 1989)

\[
\begin{align*}
\beta_v & \quad (\lambda x. M) \ V = M \ {V/x} \\
\eta_v & \quad \lambda x. V \ x = V \\
\beta_\Omega & \quad (\lambda x. E[x]) \ M = E[M]
\end{align*}
\]

- Add axioms that explain behavior of built-in callcc function (Sabry and Felleisen, 1993; Sabry, 1996)
Problems of non-compositionality

- Equational theory weaker than operational semantics!

- Some programs can be evaluated to a value...

 \[
 \text{callcc}(\lambda k.\lambda x. k (\lambda_.x)) \mapsto (\lambda x.[] (\lambda_.x))
 \]

- But the equational theory for callcc cannot reach a value!

 \[
 \text{callcc}(\lambda k.\lambda x. k (\lambda_.x)) \neq V
 \]

- How can we know that we have the “whole” context?
Of jumps and the extent of a continuation

- Calling a continuation never returns — it “jumps”
 - $E[[E'] 1]$ “jumps” out of E to E'
 - Add variables α, β, \ldots that stand for continuations
 - Applying a continuation (variable) “jumps” (a.k.a. “aborts”)

- A jump $\alpha \ M$ is the same when inside a larger evaluation context

$$E[\alpha \ M] = \alpha \ M \quad E \text{ is garbage}$$

- A jump delimits the usable extent of a continuation
A running jump

- Let’s try that again

- We can evaluate a jump to an answer...

\[\alpha (\text{callcc}(\lambda k.\lambda x. k (\lambda_.x))) \mapsto \alpha (\lambda x. [\alpha \Box] (\lambda_.x)) \]

- And the equational theory for callcc reaches that answer!

\[\alpha (\text{callcc}(\lambda k.\lambda x. k (\lambda_.x))) = \alpha (\lambda x. \alpha (\lambda_.x)) \]
\(\lambda\mu\): taking jumps seriously

- Syntactically distinguish jumps as “commands”

 \[M, N ::= \ldots \parallel \mu\alpha.c \quad \text{control abstraction} \]
 \[c ::= [\alpha]M \quad \text{command, a.k.a “jump”} \]

- Commands “run”

 \[[\alpha](E[(\lambda x.M)V]) \mapsto [\alpha](E[M \{V/x\}])\]
 \[[\alpha](E[\mu\beta.c]) \mapsto c\{[\alpha](E[N])/[\beta]N\}\]
\[\lambda \mu \]: a language of classical logic

- Developed as calculus for classical logic (Parigot, 1992)
- Originally CBN, but also CBV (extension of \(\lambda_c \)):
 \[
 \begin{align*}
 \mu_E & \quad [\alpha](E[\mu \beta.c]) = c \{[\alpha](E[N])/[\beta]N\} \\
 \eta_\mu & \quad \mu \alpha. [\alpha]M = M \\
 \beta_\mu & \quad (\lambda x. \mu \alpha.[\beta]M) \ N = \mu \alpha.[\beta]((\lambda x. M) \ N)
 \end{align*}
 \]

- Equational theory contains operational semantics

- \(\lambda \mu \equiv \lambda + \text{callcc}! \)
Relaxing the syntax
\(\Lambda \mu\): a more relaxed language

- Collapse term/command distinction: \(M \equiv c\)

\[
M ::= \ldots | \mu \alpha. M | [\alpha] M
\]

- Same rules, just more expressive meta-variables:

\[
(\lambda x.[\alpha] x) \ 1 = [\alpha] 1 \quad \text{because } [\alpha] x \text{ is now a term}
\]

\[
[\alpha](\mu_.1) = 1 \quad \text{because } 1 \text{ is now a command}
\]
Nothing new, nothing gained?

- We haven’t added any new constructs
- We haven’t added any new rules
- As typed calculus, $\Lambda\mu$ considered equivalent to Parigot’s $\lambda\mu$
- So they’re the same?
Nothing new, nothing gained?

- We haven’t added any new constructs
- We haven’t added any new rules
- As typed calculus, $\Lambda\mu$ considered equivalent to Parigot’s $\lambda\mu$
- So they’re the same? No!
Delimited control
shift and reset

- shift and reset are a common basis for delimited control

\[
\text{reset}(E[\text{shift } V]) = \text{reset}(V (\lambda x.\text{reset}(E[x])))
\]

- Continuations return, they are composable like normal functions

\[
2 \times \text{reset}(10 + (\text{shift}(\lambda k.k (k 2)))) \\
= 2 \times \text{reset}(10 + \text{reset}(10 + \text{reset}(2))) \\
= 2 \times \text{reset}(22) = 44
\]
\[\lambda + \text{shift} + \text{reset} \leq \Lambda \mu\]

- Embedding of shift and reset into \(\Lambda \mu\)
 - Equational theory of shift and reset (Kameyama and Hasegawa, 2003) provable in \(\Lambda \mu\)
 - The two-pass CPS transformation for shift and reset (Danvy and Filinski, 1990) derived from embedding

- So \(\lambda + \text{shift} + \text{reset}\) is a subset of \(\Lambda \mu\)

\[\mu \alpha_1.\mu \alpha_2.\mu \alpha_3.4 \quad [\alpha_3][\alpha_2][\alpha_1](f\ 0)\]

- What covers the whole of \(\Lambda \mu\)?
shift_0 and reset_0

- Like shift, except that shift_0 removes its surrounding delimiter

\[
\text{reset}(E[\text{shift } V]) = \text{reset}(V (\lambda x. \text{reset}(E[x])))
\]
\[
\text{reset}_0(E[\text{shift}_0 V]) = V (\lambda x. \text{reset}_0(E[x]))
\]

- Many shift_0s can “dig” out of many reset_0s
\(\lambda + \text{shift}_0 + \text{reset}_0 \equiv \Lambda \mu \)

- \(\lambda \) with \(\text{shift}_0 \) and \(\text{reset}_0 \) is equivalent to \(\Lambda \mu \)
 - Equational theories correspond
 - CPS transforms correspond
 - \(\text{shift}_0 \) and \(\text{reset}_0 \) rely on mixing terms with commands

- Restricting then relaxing the syntax led us from classical to delimited control!
Roadmap from classical to delimited control

Classical Delimited

\(\lambda + \text{callcc} \) \(\lambda + \text{shift}_0 + \text{reset}_0 \)

\(\lambda \mu \) \xrightarrow{\text{sytntactic relaxation}} \Lambda \mu
Roadmap from classical to delimited control

Classical

\[\lambda + \text{callcc} \]

\[\lambda \mu \]

s syntactic relaxation

Delimited

\[\lambda + \text{shift}_0 + \text{reset}_0 \leftarrow \cdots \lambda + \text{shift} + \text{reset} \]

\[\land \mu \]
Encode both shift, reset and shift\(_0\), reset\(_0\) in \(\Lambda\mu\).

Provable observational guarantees about the operators:
- Example: idempotency of reset
 \[\text{reset}(\text{reset}(M)) = \text{reset}(M)\]

Observational guarantees still hold under composition:
- reset is still idempotent even if we use shift\(_0\)
- Safely put together programs using either operators
More in the paper

- Parameterize equational theory by different evaluation strategies
 - call-by-value, call-by-name, and call-by-need

- Improved reasoning for control operators in λ-calculus using continuation variables

- Equational correspondence with compositional transformations
 - Compositionality and hygiene makes life easier!
Final words

- Control-flow effects: have our cake and eat it too
 - Expressive capability
 - Preserve local, open, high-level reasoning
 - Generic (parametric) treatment of evaluation strategies

- Compositionality is powerful

- Logic can be a wonderful guide
References I

