
Integration and Synthess for Automated
Performance Tuning: the SYNAPT Project

Nicholas Chaimov, Boyana Norris, and Allen D. Malony

{nchaimov,norris,malony}@cs.uoregon.edu
Department of Computer and Information Science

University of Oregon
Eugene, OR 97403

Abstract. To address the growing needs of performance analysis and
optimization of complex applications, we present our vision for a new
unified architecture, SYNAPT, that can support not just data acquisi-
tion and simple analysis, but also performance knowledge preservation
of models and the metadata required to make performance data analy-
sis approaches reproducible, extensible, and composable. In addition to
standard representation of performance analysis results, the SYNAPT
architecture will include new functionality that enables users and tools
to use and grow the comprehensive performance knowledge base at the
heart of the SYNAPT performance expert system that can support both
manual analysis and modeling tasks and interface with external tools
such as autotuning compilers.

1 Introduction

High-performance applications and architectures are rapidly growing in scale and
complexity, presenting a similarly expanding set of challenges to tools that pro-
vide performance measurement, analysis, and optimization capabilities. While
many tools enable the collection of performance data at different granularities
and through both non-intrusive and intrusive approaches, their analysis capa-
bilities lag behind in functionality, scalability, usability, and interoperability.
Consider, for example, performance analysis that generates some results sum-
marizing properties of interest from the raw performance data. At present, most
tools simply present the results in a graphical interface or at best store them by
using a custom format, which no other tool can read. This hampers the ability to
share or even just reproduce analysis results. Furthermore, other independently
developed tools, such as autotuners, cannot easily use any of the derived perfor-
mance metrics to help better define the potentially huge space of optimization
options. To address these and other shortcomings of the existing state-of-the art
performance modeling, analysis, and optimization environments, we introduce
our vision for SYNAPT (Synthesized tools for Automated Performance Tun-
ing), a unified architecture for performance knowledge preservation, integration,
and evolution that enables users and tools to store and share the results of pro-
gram and code analysis, architecture and systems characterization, performance
experiments, modeling activities, and tuning parameters and transformations.



2 Related Work

The concept of integrated measurement and analysis can be found in several
parallel performance tools projects [9,16,21]. However, these environments gen-
erally are not extensible enough to accept input of more information from other
sources, or do not provide interfaces usable from autotuning frameworks. In
contrast, there have been several projects integrating data mining and machine
learning techniques with the selection of compiler optimizations based on static
properties of the code, hardware counters sampled during runtime, or both, using
a variety of classifiers [5, 8, 18,19,22].

A major project combining machine learning for selecting compiler opti-
mizations with a centralized database is the Collective Tuning project [7]. That
project uses a modified version of GCC in which functions of interest are cloned
at compile time, creating an optimized and unoptimized version. When the orig-
inal function is invoked at runtime, one of the clones is selected for execution
according to a probability distribution, which is initially uniform. Runtime sam-
pling determines whether the proportion of time spent in the variants differs
from the probability distribution. If the proportion of time spent in a function
is significantly lower than the expectation assuming equality, then it can be
inferred that that variant offers better performance than its competitor. The re-
sult of the competition is then communicated to a central server which updates
probability distributions: one probability distribution for the program, another
which aggregates data for programs with similar reactions to optimizations, and
a third which aggregates data across all programs.

Cavazos proposed an intelligent compiler [4] which features a centralized
knowledge base. Such a compiler would use machine learning techniques to gen-
erate performance models for predicting likely-good optimizations based upon
static analysis and empirical performance measurement of both the code now be-
ing compiled as well as similar programs previously compiled, and microbench-
marks of the target system.

3 Proposed Methodology: A Knowledge Database

The idea for our proposed system comes from our experience with the TAU Per-
formance SystemR© [21], and in particular the included performance data manage-
ment system, TAUdb [13], which stores profiles from performance experiments
along with metadata describing the execution environment and application-
specific metadata. Data stored in TAUdb is accessible from ParaProf [3], TAU’s
parallel profile analyzer, and PerfExplorer [12,14], TAU’s performance data min-
ing framework. PerfExplorer provides a library of internal analysis routines and a
means to incorporate statistics and data mining packages, such R and Weka. An
API to the analysis library and a Python scripting engine are available so that
analysis pipelines can be specified programattically. TAUdb has been previously
used to store annotated performance profiles of code variants generated during
autotuning runs and to provide information on past runs in order to select good
starting points for hill-climbing search algorithms in autotuning [6, 26].



����������� 	
	��� ���
��������

����
�����

	���������

���������

����	����

���������

�������

���������
������	�

����
������

���
���
��������

����
	�	��
��	������

����������	�
�����
���
�

�
������	�
��	�
����	��	�

�
�


�
�
��
�
	
��

��
�


��
�


�
�
�
	
�	

�
��



��

�
�
�

Fig. 1. The proposed system features a centralized knowledge store.

However, the existing TAUdb system is limited in that it only stores perfor-
mance profiles and associated metadata. The remainder of this section describes
our plans for a unified knowledge database capable of storing data from and
providing data to a much broader set of tools. Figure 1 shows the central role
this knowledge database plays in the SYNAPT system.

The goal of the knowledge database will be to store more comprehensive
data about the environment in which tuning is taking place: what code is be-
ing tuned, what data are inputs to the code, what runtime systems are being
used (e.g., threading libraries, network stack), and what architectures are being
used (e.g., CPUs, GPUs, other accelerator cards). This is already possible to
some extent with the existing TAUdb, but we envision significantly more de-
tailed knowledge about algorithms and libraries. This will require new ways to
represent this information.

3.1 Functional Descriptions

Our knowledge database should annotate code with a description of the algo-
rithm the code implements, which would allow the system to identify relevant
models and alternate implementations of the algorithm. While the user could
manually annotate their functions, it would be better to train classifiers to iden-
tify algorithms based on features from static or dynamic analysis, as has been
done recently with decision trees [24, 25]. The knowledge database would also
contain data on commonly-used libraries, tagging functions in those libraries ac-
cording to what algorithms they implement in the same way. The system could



then propose optimized library versions of code the user had previously devel-
oped manually. When input code already uses a library known to the system, it
could provide guidance about best practices for the use of that library.

We have promising preliminary results from constructing and using such
functional taxonomies for numerical libraries in the Lighthouse project [15]. For
example, we have successfully integrated all of LAPACK [1] and portions of
PETSc [2] and SLEPc [11] and will continue to expand with more numerical
packages. The taxonomy allows users to quickly find the best method available
for a given problem based on different types of search interfaces (from guided
question-answer based ones for beginners, to keyword domain-specific search
methods). In addition to functional descriptions, we are integrating performance
models (generated through various machine learning approaches), which can en-
able users to discover solution methods that fit both functional and performance
requirements. However, because of the lack of a common, portable, compact
representation of performance analysis results, we are unable to effectively use
some of the available model generation approaches (e.g., one cannot even store a
DynaTree model [23] generated in R – it is only available in a single R session).

3.2 Performance Analysis Results

The knowledge database will store performance models, whether generated
from empirical performance measurements, from simulation, or analytical models
developed by users. The system could make use of these models for performance
prediction in order to carry out guided search for autotuning, and could auto-
matically generate experiments to determine whether a given model’s predictions
are accurate for a given code, dataset and environment.

The knowledge database will interface with analysis tools, such as visualiza-
tion, data mining, and machine learning packages. For example, autotuning runs
produce large amounts of data, so such tools are very useful in understanding
the performance consequences of the various transformations which were tried.
A standardized model for storing the results of such analyses in the database
will be developed, so that the results can be persisted across trials and shared
with other users. While the languages and approaches used for the model gen-
eration can vary, e.g., Java or Jython in PerfExplorer can be used to analyze
performance data stored in TAUdb through interfaces to Weka and other data
mining packages, the resulting performance metrics or models must be stored
by using a common format, which does not yet exist and must be defined in
order to make analyses reproducible, reusable, extensible, and composable. Such
analysis results or models will be stored with provenance metadata describing
the data which was analyzed and the experiments which generated the data.

Search Capabilities The knowledge database will support advanced search ca-
pabilities beyond the low-level database queries available today in TAUdb and
other performance databases. Because it will also store performance models, it
will be possible to use the knowledge database to search for similar types of



computations without knowing a priori what they are. New tools for such an ex-
pert system will rely on the database to discover potentially similar performance
data across applications, something that is not possible to do automatically with
the state-of-the-art performance tools today. Any discovered similarities can in
turn be used to enrich the knowledge database with such associations, which
can be used to expand the set of known computational patterns and common
performance characteristics (or problems).

3.3 Integration with Autotuning Systems

Performance tuning tools today, including Orio, typically operate in a stand-
alone fashion, i.e., given a code instance and a set of input parameters, they apply
transformations and explore the space of possible transformations by using a
number of optimization strategies (e.g., genetic algorithms, simulated annealing,
Nelder-Mead-based optimization methods). Because purely empirical autotuning
relies on compiling and executing optimized code variants in order to evaluate
the objective function (e.g., time), the autotuning process can be costly in terms
of time and computational resources.

The knowledge database will provide input into, and collect metadata from
autotuning systems. It will be used to propose parameters to code trans-
formations in source-to-source autotuning systems such as Orio [10], and will
capture parameters and generated code variants as metadata alongside the orig-
inal code, runtime system and architectural data described above. If the system
carries out algorithm recognition as described above, it can carry out transfor-
mations which involve replacing the implementation of the algorithm, as guided
by models and data from past autotuning runs. The knowledge database could
also be accessed by runtime-adaptive systems, which could deposit performance
data while a program is running and retrieve data used to select an algorithm
or other relevant parameters.

We have previously used machine learning techniques for selecting good start-
ing points for search in autotuning problems and for runtime selection from a
library of specialized, autotuned code variants [6]. We used annotated perfor-
mance data from autotuning runs across different CUDA targets to learn deci-
sion trees. Using a decision tree learned from a set of such devices to predict
code transformation parameters for another device not previously tested sig-
nificantly reduced the number of evaluations and overall time spent in search
on that device, while still producing the same output code as a search from a
default configuration. By autotuning matrix kernels across matrices of different
sizes, we produced a library of size-specialized kernels. This system is shown in
Figure 2. A specialized kernel could be selected by evaluating the decision tree at
runtime when a wrapper kernel was invoked. We have recently added OpenCL
code generation support to Orio, allowing a much wider range of possible tar-
get architectures, making the problem of selecting good initial parameters more
difficult; a system combining profile data with architectural models and code
characteristics would help with this.



Orio Code Generator

Experiment

TAU Metadata Entries

Transformations

Execution Time
Writes

CUPTI callback
measurement library

TAU Profiles

TAUdb

Writes

Uploaded

Links at Runtime

CUDA 

OpenCL 

Measurement 
•  Metric profiling 
•  Metadata 
•  TAUdb storage 

Autotuning analysis 
•  Machine learning 
•  Optimization search 
•  Specialization 

OrCUDA 

Fig. 2. Architecture of the existing system integrating TAU and Orio. The system
stores annotated performance profiles in a database, which can be used to select starting
points for autotuning experiments.

In addition to enabling the better selection of tuning parameters, the knowl-
edge database and associated analysis infrastructure can support autotuning by
providing models that can be used to guide the transformations themselves.
We envision an approach that builds on the successful experience of autotuning
compilers such as MilepostGCC [17, 20], which considers a set of features cor-
responding to program entities (e.g., functions, instructions and operands, vari-
ables, types, constants, basic blocks, and loops) and the relations among them
(e.g., call graph, control-flow graph, loop hierarchy, control dependence graph,
and data dependence graph). Unlike general compiler approaches, however, Orio
can also capture some higher level, possibly domain-specific information (e.g.,
stencil-based computations, linear algebra operations), which can be used to
produce more accurate models of numerical kernels or algorithms. Given such
models, autotuners such as Orio would no longer require the user to explicitly
specify the set of transformations to perform but would instead select them
based on the models created by analyzing the results from previous autotuning
experiments in the knowledge database.

4 Conclusion

High-performance parallel computing is evolving towards systems of greater com-
plexity, increasingly challenging our abilities to create HPC software productively



and effectively. Current parallel performance tools are necessary for understand-
ing performance characteristics and inefficiencies, but they are insufficient by
themselves to address complex optimization. On the other hand, autotuning
frameworks are eager to obtain richer performance information wherever avail-
able and support within the tool environments for automated experimentation,
data and results management, and sophisticated analysis. Our SYNAPT con-
cept identifies the importance of knowledge integration as the key factor for
tool synthesis, both with respect to information sharing and tool interoperation.
The general idea is to shift the focus of attention to what tools are producing
as “knowledge” and in what forms so that other tools can use the collective
knowledge base for enabling greater functionality.

We have taken initial steps towards the SYNAPT architecture with the Orio
autotuning framework and TAU. Our early experiences of multi-target autotun-
ing for accelerators support the benefits of improved automation, data mining,
and association of tuning context with results, to aid in learning features and
correlations. However, it is apparent from this work that the real challenge for
SYNAPT research will be in formulation of techniques and methods for knowl-
edge representation, management, and sharing.

References

1. LAPACK - Linear Algebra PACKage, 2014.
2. Balay, S., Brown, J., Buschelman, K., Gropp, W. D., Kaushik, D., Knep-

ley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H. PETSc Web page,
2013. http://www.mcs.anl.gov/petsc.

3. Bell, R., Malony, A., and Shende, S. A portable, extensible, and scalable
tool for parallel performance profile analysis. In European Conference on Parallel
Processing (EuroPar 2003) (Sept. 2003), vol. LNCS 2790, pp. 17–26.

4. Cavazos, J. Intelligent compilers. In Cluster Computing, 2008 IEEE International
Conference on (Sept 2008), pp. 360–368.

5. Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M. F. P., and
Temam, O. Rapidly selecting good compiler optimizations using performance
counters. In Proceedings of the International Symposium on Code Generation and
Optimization (Washington, DC, USA, 2007), CGO ’07, IEEE Computer Society,
pp. 185–197.

6. Chaimov, N., Biersdorff, S., and Malony, A. D. Tools for machine-learning-
based empirical autotuning and specialization. International Journal of High Per-
formance Computing Applications 27, 4 (2013), 403–411.

7. Fursin, G., and Temam, O. Collective optimization: A practical collaborative
approach. ACM Trans. Archit. Code Optim. 7, 4 (Dec. 2010), 20:1–20:29.

8. Ganapathi, A., Datta, K., Fox, A., and Patterson, D. A case for machine
learning to optimize multicore performance. In Proceedings of the First USENIX
conference on Hot topics in parallelism (Berkeley, CA, USA, 2009), HotPar’09,
USENIX Association, pp. 1–1.

9. Geimer, M., Wolf, F., Wylie, B. J. N., and Mohr, B. Scalable parallel
trace-based performance analysis. In Proceedings of the 13th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface (2006) (Bonn, Germany, 2006), pp. 303–312.



10. Hartono, A., Norris, B., and Sadayappan, P. Annotation-based empirical
performance tuning using Orio. In Proceedings of the 23rd IEEE International
Parallel & Distributed Processing Symposium (Rome, Italy, 2009).

11. Hernandez, V., Roman, J. E., and Vidal, V. SLEPc: A scalable and flexible
toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software 31, 3
(2005), 351–362.

12. Huck, K., and Malony, A. PerfExplorer: A performance data mining framework
for large-scale parallel computing. In Supercomputing Conference (SC 2005) (Nov.
2005), ACM.

13. Huck, K., Malony, A., Bell, R., and Morris, A. Design and implementation
of a parallel performance data management framework. In International Confer-
ence on Parallel Processing (ICPP 2005) (Aug. 2005), IEEE Computer Society.

14. Huck, K., Malony, A., Shende, S., and Morris, A. Knowledge support and
automation for performance analysis with PerfExplorer 2.0. The Journal of Scien-
tific Programming 16, 2-3 (2008), 123–134. (special issue on Large-Scale Program-
ming Tools and Environments).

15. Lighthouse project. https://code.google.com/p/lighthouse-taxonomy/, 2013.
16. Mellor-Crummey, J. HPCToolkit: Multi-platform tools for profile-based perfor-

mance analysis. In 5th International Workshop on Automatic Performance Anal-
ysis (APART) (November 2003).

17. MILEPOST GCC: Collaborative development website.
http://cTuning.org/milepost-gcc, 2014.

18. Monsifrot, A., Bodin, F., and Quiniou, R. A machine learning approach to
automatic production of compiler heuristics. In Proceedings of the 10th Interna-
tional Conference on Artificial Intelligence: Methodology, Systems, and Applica-
tions (London, UK, UK, 2002), AIMSA ’02, Springer-Verlag, pp. 41–50.

19. Murthy, G., Ravishankar, M., Baskaran, M., and Sadayappan, P. Optimal
loop unrolling for GPGPU programs. In Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on (2010), pp. 1–11.

20. Namolaru, M., Cohen, A., Fursin, G., Zaks, A., and Freund, A. Practical
aggregation of semantical program properties for machine learning based optimiza-
tion. In Proceedings of the 2010 International Conference on Compilers, Architec-
tures and Synthesis for Embedded Systems (New York, NY, USA, 2010), CASES
’10, ACM, pp. 197–206.

21. Shende, S., and Malony, A. TAU: The TAU parallel performance system.
International Journal of High Performance Computing Applications 20, 2 (2006),
287–311.

22. Stephenson, M., and Amarasinghe, S. Predicting unroll factors using super-
vised classification. In Proceedings of the International Symposium on Code Gener-
ation and Optimization (Washington, DC, USA, 2005), CGO ’05, IEEE Computer
Society, pp. 123–134.

23. Taddy, M., Gramacy, R., and Polson, N. Dynamic trees for learning and
design. Journal of the American Statistical Association 106, 493 (2011), 109–123.

24. Taherkhani, A. Using decision tree classifiers in source code analysis to recognize
algorithms: An experiment with sorting algorithms. The Computer Journal (2011).

25. Taherkhani, A. Automatic Algorithm Recognition Based on Programming
Schemas and Beacons: A Supervised Machine Learning Classification Approach.
PhD thesis, Aalto University, Esbo, Finland, 2013.

26. Yifan, Z. Extensions of an empirical automated tuning framework. Master’s
thesis, University of Maryland, 2013.


