CS4460 Advanced Algorithms
Batch 08

Lecture 7: (26 October 2012)
Randomized Algorithms &
Probabilistic Analysis

N. H. N. D. de Silva
Dept. of Computer Science & Eng
University of Moratuwa
Announcement

• **Assignment 2** will be out this weekend.
• Due on 9th November
Today’s Outline

• Randomized Algorithms
 – Introduction: Hiring Problem
 • Probabilistic analysis
 • Randomized algorithms
 – Randomized Quick Sort
 – Randomized Selection
 – Random Number Generation
References

- Mainly
 - CLRS, Chapter 5 (pp. 114-128) and others

- Many online resources

- For detailed, in-depth coverage, read
 - “Randomized Algorithms” by Motwani and Raghavan
Intro: Hiring Problem

• Suppose you need to hire a new assistant
 – You get a candidate each day from an agency
 – You interview and decide to hire or not
 – Need to pay the agency a fee for an interview
 – Hiring is more costly
 • Fire the current assistant
 • Pay a large hiring fee to the agency
• You always want to have the best person
 – If the interviewed person is better than the current assistant, then hire the new person
 – You are willing to pay the resulting price

• You want to estimate the price of strategy

• Assume
 – Candidates numbered 1, …, n
 – After interviewing candidate i, determine if i is the best seen so far
 – Costs: for interviewing c_i and for hiring c_h
Intro: Hiring Problem ...contd

HIRE-ASSISTANT \((n) \)

\[
\text{best} \leftarrow 0 \quad // \text{least qualified, dummy}
\]

\[
\text{for } i \leftarrow 1 \text{ to } n
\]

interview candidate \(i \)

\[
\text{if candidate } i \text{ is better than } \text{best}
\]

\[
\text{best} \leftarrow i
\]

hire candidate \(i \)
Intro: Hiring Problem

• If \(m \) people hired, total cost \(O(n \ c_i + m \ c_h) \)
 – If \(c_i \) is small, can focus on \((m \ c_h) \)

• Worst-case?
 – \textit{Hire each person interviewed} (they come in increasing order of quality); total cost = \(n \ c_h \)
 – But reasonable to expect this will not happen
 • Yet we don’t know the order and we don’t have a control over that
 • What do we \textit{expect to happen in an average case}?
Probabilistic Analysis

• Probabilistic analysis means
 – *Analyzing problems using probability*

• In such analysis
 – Use knowledge of or make assumptions about distribution of inputs
 • Without this, cannot use probabilistic analysis
 – Compute an *expected* cost or running time
 • Expectation taken over all possible inputs
 • → averaging the cost/running time over that space
• Example: Hiring problem/algorithm
 – *Assume candidates come in random order*
 • Can compare any two and decide who is better
 • There is a total order on the candidates
 • Can rank each candidate with a unique number between 1 and n; $\text{rank}(i)$ denotes rank of i
 • Convention: higher rank means better qualified
 • The ordered list $<\text{rank}(1), \text{rank}(2), \ldots, \text{rank}(i)>, \ldots, n>$ is a permutation of the list $<1, 2, \ldots, n>$
 • List of ranks equally likely to be any one of $n!$ permutations of numbers 1 through n
Randomized Algorithms

• As we saw, probabilistic analysis requires we know about the distribution on inputs
 – But this may not be so in many cases
• In our current HIRE-ASSISTANT algorithm
 – Candidates may seem to come randomly
 • But cannot know if this is correct or not
 – To have a randomized algorithm for this
 • Need to have greater control on interviewing order
 • What can we do?
Randomized Algorithms ... contd

• Randomized algorithm for hiring problem
 – Agency has n candidates; list sent in advance
 – Each day we randomly choose whom to interview
 – A significant change!
 • Instead of assuming, we enforce random order

• Randomized algorithm
 – Behavior is determined by input and by values produced by a random-number generator
Randomized Hiring Algorithm

RANDOMIZED-HIRE-ASSISTANT \((n)\)

- randomly permute the candidate list
- \(\text{best} \leftarrow 0\) \hspace{1cm} // least qualified, dummy
- for \(i \leftarrow 1\) to \(n\)
 - interview candidate \(i\)
 - if candidate \(i\) is better than \(\text{best}\)
 - \(\text{best} \leftarrow i\)
 - hire candidate \(i\)
Randomized Algorithms

• A randomized algorithm

 – An algorithm that makes random choices during execution

 – Random numbers used for making decisions

 – Behavior determined by a random-number generator (in addition to the input)
Basics

• Random decision making is introduced to reduce the chance of a worst-case scenario

• Randomized algorithms have no worst-case behavior due to a particular input
 – i.e., no bad inputs
 – But only bad random numbers !!
Basics ...contd

• We compute \textit{expected running-time} (the average case), considering probabilities when necessary

• Randomized strategy useful when
 – There are many ways we can proceed
 – But, difficult to determine a way guaranteed to be good
If many alternatives are good, we can simply choose one randomly.

If we have to make many choices, a random selection of good and bad choices can be a good strategy if, ...

– Benefits of good choices outweigh the costs of bad choices.
Another Example

• Suppose a teacher wants to give a quiz in the class on the day a homework is due to make sure students did their own work

• But giving a quiz for every homework will consume time from limited class-time

• Practical solution might be to do this for 50% of homework

• How to decide when to give quizzes?
Another Example ...contd

• Announcing in advance is not effective

• Giving un-announced quizzes on alternate homeworks → students will figure out

• Giving quizzes on “important” topics?
Another Example ...contd

• Easiest is to *flip a coin to decide*
 – 50% probability for a quiz on a homework
 – Expected number of quizzes = 1/2 of the number of homeworks
 – It is possible, but unlikely, that there is no quiz for the whole semester (or the opposite) – unless the coin is biased
 – → *a randomized algorithm*
Randomized strategy particularly useful when faced with a malicious “adversary”
– Will deliberately try to feed a bad input to the algorithm
– Randomness commonly used/applied in cryptography
– Issue: pseudo-random number generator
Two types of randomized algorithms

1. Always gives the correct answer; may require some time/resources to execute → \textit{Las Vegas algorithms}

2. Can complete quickly (bounded resource usage) but the answer may not be 100% accurate → \textit{Monte Carlo algorithms}

Special complexity classes, analysis
Randomized Quick Sort

• Recall Quick Sort from Lecture 2
• (See also pp. 170-185, Ch. 7 of CLRS)
• Randomized Quick Sort Version 1
 – Before sorting the array, randomly permute the elements
 • Enforces the property that every permutation is equally likely
 • Makes the running time independent of the original input ordering
Randomized Quick Sort

• Randomized Quick Sort Version 2
 – Modifying the original PARTITION procedure, perform a randomized-PARTITION
 – Slight changes to original procedures
 – At each step, before partitioning, exchange $A[p]$ with another element chosen randomly from $A[p...r]$
Random Numbers?

• Assume: we have a random-number generator of the form $\text{RANDOM}(a,b)$
 – Returns a random integer between a and b, inclusive, with each being equally likely

• In practice, true randomness cannot be achieved with a computer

• Most programming environments provide pseudo-random number generators
Randomized-QuickSort, V2

Input: Unsorted sub-array $A[p..r]$
Output: Sorted sub-array $A[p..r]$

RAND-QUICKSORT (A, p, r)

if $p < r$
then $q \leftarrow$ RAND-PARTITION(A, p, r)
RAND-QUICKSORT ($A, p, q-1$)
RAND-QUICKSORT ($A, q+1, r$)
Randomized-Partition Algorithm

Input: same as for PARTITION()
Output: same as for PARTITION()

RAND-PARTITION \((A, p, r)\)

\[i \leftarrow \text{RANDOM}(p, r) \]
Exchange \(A[p] \leftrightarrow A[i]\)

return PARTITION\((A, p, r)\)
Complexity Analysis

• Worst-case: discussed earlier
 – Running time $\Theta(n^2)$

• Average-case (expected) running time of randomized Quick Sort is $\Theta(n \lg n)$
 – Details: pp. 180-184 in CLRS
Average-case Analysis

• Intuitively, average-case running time of randomized Quick Sort is $\Theta(n \ lg \ n)$
 – partitioning splits the array such that a fraction of elements are on one side
 – recursion tree has depth $\Theta(lg \ n)$
 – $\Theta(n)$ work is performed at these $\Theta(lg \ n)$ levels
• Observations for precise analysis
 – Value q returned by PARTITION depends only on the rank of $x = A[p]$ among $A[p…r]$
 • The rank of x, $\text{rank}(x)$, in a set is the number of elements less than or equal to x in the set
 – Due to swapping with a random element first, $\text{rank}(x) = i$ for $i=1,2,…,n$ with probability $1/n$
 • Assumptions: $n = r-p+1$ (# elements in $A[p…r]$), elements are distinct
Average-case Analysis ...

• Observations for precise analysis ...
 – If \(\text{rank}(x) = 1 \): \(q = j = p \) is returned, low side of partition contains 1 element \(A[p] \)
 • This event occurs with probability \(1/n \)
 – If \(\text{rank}(x) = 2 \): the smallest element will go to \(A[p] \); \(q \), low side, probability same as above
 – If \(\text{rank}(x) > 2 \): low side of partition has \(i \) elements; probability = \(1/n \) for each \(i = 2, \ldots, n - 1 \)
Average-case Analysis ...contd

• Size of low side of partition \((q-p+1)\) is
 – 1 with probability \(2/n\)
 – \(i\) with probability \(1/n\) for \(i=2,3,\ldots,n-1\)

• Recurrence for the average (expected) running time of randomized Quick Sort

\[
T(n) = \frac{1}{n} \left(T(1) + T(n-1) + \sum_{q=1}^{n-1} (T(q) + T(n-q)) \right) + \Theta(n)
\]
Average-case Analysis ...contd

- Can simplify and re-write this as

\[T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n) \]

- Solve the recurrence (substitution method)

\[T(n) \leq a \ n \ \log n + b \]

- Average running time is \(O(n \ \log n) \)
Randomized Selection

• Discussion based on CLRS pp. 213-222
 – In Chapter 9, Medians and Order Statistics

• Selection problem
 – **Input**: a set \(A \) of \(n \) distinct numbers and a number \(i \) such that \(1 \leq i \leq n \)
 – **Output**: the element \(x \) of \(A \) that is larger than exactly \(i-1 \) other elements of \(A \)
Randomized Selection

• Selection problem can be solved in $O(n \log n)$ time
 – Sort the numbers first and then index the i-th element in the array

• But can be done faster, in $O(n)$ average-time, using a randomized algorithm
Randomized-Select Algorithm

RAND-SELECT \((A, p, r, i)\)

\[
\text{if } p = r \\
\quad \text{then return } A[p] \\
\]

\[
q \leftarrow \text{RAND-PARTITION}(A, p, r) \\
k \leftarrow q - p + 1 \\
\text{if } i = k \quad \text{then return } A[q] \quad \text{// pivot is the answer} \\
\text{elseif } i < k \\
\quad \text{then return RAND-SELECT}(A, p, q-1, i) \\
\text{else return RAND-SELECT}(A, q+1, r, i - k) \\
\]
Random Number Generation

• We consider the generation of pseudorandom numbers
 – Satisfy most statistical properties of random numbers and appear to be random

• In many cases, we need a sequence of random numbers
 – So use of the system clock may not work
 – Numbers should look independent
Random Number Generation

• Standard method
 – *Linear congruential generator*
 – First described by Lehmer in 1951

 – Numbers x_1, x_2, \ldots are generated satisfying
 $$x_{i+1} = a \cdot x_i \mod m$$
 – x_0 is called the *seed* (must be given, $\neq 0$)
 – a and m to be selected suitably
Random Number Generation

• Standard method
 – E.g., if $m=11$, $a=7$ and $x_0=1$, then we get
 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, ...

 – Here, after $m-1=10$, the sequence repeats

 – If m is a prime, then there are always choices
 for a that give a full period of $m-1$
Random Number Generation

• Standard method
 – For some a, this will not happen
 – e.g., if $m=11$, $a=5$ and $x_0=1$, then we get a sequence with a shorter period
 $5, 3, 4, 9, 1, 5, 3, 4, \ldots$
 – Generally, the 31-bit prime
 $m=2^{31}-1 = 2,147,483,647$ and $a = 7^5 = 16,807$ are commonly used
 (this $a=7^5$ gives a full period generator)
Random Number Generation

• When \(m \) is a prime, \(x_i \) is never 0

• Sometimes we need a random real number in the between 0 and 1
 – This is obtained easily by dividing the above formula by \(m \)
 – Normalize to get 0 and 1
Conclusion

• Randomized algorithms
 – Introduction, Hiring problem
 – Randomized Quick Sort, Selection, Random Number Generation

• Next time: Graph algorithms
References

• Randomized Algorithms & Probabilistic Analysis [CLRS Chapter 5]
• The lecture slides are based on the slides prepared by Prof. Sanath Jayasena for this class in previous years.