Machine Learning-based Autotuning with TAU and Active Harmony

Nicholas Chaimov
University of Oregon

Paradyn Week 2013
April 29, 2013
Outline

- Brief introduction to TAU
- Motivation
- Relevant TAU Tools:
 - TAUdb
 - PerfExplorer
- Using TAU in an autotuning workflow
- Machine Learning with PerfExplorer
- Future Work
Motivation

☐ Goals:
 ☐ Generate code that adapts to changes in the execution environment and input datasets.
 ☐ Avoid spending large amounts of time performing search to autotune code.

☐ Method: learn from past performance data in order to
 ☐ Automatically generate code to select a variant at runtime based upon execution environment and input dataset properties.
 ☐ Learn classifiers to select search parameters (such as initial configuration) to speed the search process.
TAU Performance System® (http://tau.uoregon.edu)

- Tuning and Analysis Utilities (20+ year project)
- Performance problem solving framework for HPC
 - Integrated, scalable, flexible, portable
 - Target all parallel programming / execution paradigms
- Integrated performance toolkit
 - Multi-level performance instrumentation
 - Flexible and configurable performance measurement
 - Widely-ported performance profiling / tracing system
 - Performance data management and data mining
 - Open source (BSD-style license)
- Broad use in complex software, systems, applications
TAU Organization

- Parallel performance framework and toolkit
 - Supports all HPC platforms, compilers, runtime system
 - Provides portable instrumentation, measurement, analysis

![TAU Architecture Diagram]

- **Instrumentation**
 - **Source**
 - C, C++, Fortran
 - Python, UPC, Java
 - Robust parsers (PDT)
 - **Wrapping**
 - Interposition (PMPI)
 - Wrapper generation
 - **Linking**
 - Static, dynamic
 - Preloading
 - **Executable**
 - Dynamic (Dyninst)
 - Binary (Dyninst, MAQAO)

- **Measurement**
 - **Events**
 - Static/dynamic
 - Routine, basic block, loop
 - Threading, communication
 - Heterogeneous
 - **Profiling**
 - Flat, callpath, phase, parameter, snapshot
 - Probe, sampling, hybrid
 - **Tracing**
 - TAU / Scalasca tracing
 - Open Trace Format (OTF)

- **Analysis**
 - **Profiles**
 - ParaProf parallel profile analyzer / visualizer
 - PerfDMF parallel profile database
 - PerfExplorer parallel profile data mining
 - **Tracing**
 - TAU trace translation
 - OTF, SLOG-2
 - Trace analysis / visualizer
 - Vampir, Jumpshot
 - **Online**
 - Event unification
 - Statistics calculation
TAU Components

- Instrumentation
 - Fortran, C, C++, UPC, Chapel, Python, Java
 - Source, compiler, library wrapping, binary rewriting
 - Automatic instrumentation

- Measurement
 - MPI, OpenSHMEM, ARMCI, PGAS
 - Pthreads, OpenMP, other thread models
 - GPU, CUDA, OpenCL, OpenACC
 - Performance data (timing, counters) and metadata
 - Parallel profiling and tracing

- Analysis
 - Performance database technology (TAUdb, formerly PerfDMF)
 - Parallel profile analysis (ParaProf)
 - Performance data mining / machine learning (PerfExplorer)
TAU Instrumentation Mechanisms

- **Source code**
 - Manual (TAU API, TAU component API)
 - Automatic (robust)
 - C, C++, F77/90/95 (Program Database Toolkit (PDT))
 - OpenMP (directive rewriting (Opari), POMP2 spec)

- **Object code**
 - Compiler-based instrumentation (-optCompInst)
 - Pre-instrumented libraries (e.g., MPI using PMPI)
 - Statically-linked and dynamically-linked (tau_wrap)

- **Executable code**
 - Binary re-writing and dynamic instrumentation (DyninstAPI, U. Wisconsin, U. Maryland)
 - Virtual machine instrumentation (e.g., Java using JVMPI)
 - Interpreter based instrumentation (Python)
 - Kernel based instrumentation (KTAU)
Instrumentation: Re-writing Binaries

- Support for both static and dynamic executables
- Specify the list of routines to instrument/exclude from instrumentation
- Specify the TAU measurement library to be injected
- Simplify the usage of TAU:
 - To instrument:
 - `tau_run` *a.out* → *a.inst*
 - To perform measurements, execute the application:
 - `mpirun` `–np 8` ./a.inst
 - To analyze the data:
 - `paraprof`
DyninstAPI 8.1 support in TAU

- TAU v2.22.2 supports DyninstAPI v8.1
- Improved support for static rewriting
- Integration for static binaries in progress
- Support for loop level instrumentation
- Selective instrumentation at the routine and loop level
TAUdb: Framework for Managing Performance Data

TAU Performance System

Performance Analysis Programs

profile metadata

scalability analysis
ParaProf
cluster analysis

Query and Analysis Toolkit

Data Mining (Weka)
Statistics (R / Omega)

Java PerfDMF API

SQL (PostgreSQL, MySQL, DB2, Oracle)

XML document

formatted profile data

* gprof
* mpiP
* psrun
* HPMtoolkit
* ...

ParaDyn Week 2013 Machine Learning-based Autotuning with TAU and Active Harmony April 29, 2013
TAU Performance Database – TAUdb

- Started in 2004 (Huck et al., ICPP 2005)
 - Performance Data Management Framework (PerfDMF)
- Database schema and Java API
 - Profile parsing
 - Database queries
 - Conversion utilities (parallel profiles from other tools)
- Provides DB support for TAU profile analysis tools
 - ParaProf, PerfExplorer, EclipsePTP
- Used as regression testing database for TAU
- Used as performance regression database
- Ported to several DBMS
 - PostgreSQL, MySQL, H2, Derby, Oracle, DB2
TAUdb Database Schema

- Parallel performance profiles
- Timer and counter measurements with 5 dimensions
 - Physical location: process / thread
 - Static code location: function / loop / block / line
 - Dynamic location: current callpath and context (parameters)
 - Time context: iteration / snapshot / phase
 - Metric: time, HW counters, derived values
- Measurement metadata
 - Properties of the experiment
 - Anything from name:value pairs to nested, structured data
 - Single value for whole experiment or full context (tuple of thread, timer, iteration, timestamp)
TAUdb Programming APIs

- **Java**
 - Original API
 - Basis for in-house analysis tool support
 - Command line tools for batch loading into the database
 - Parses 15+ profile formats
 - TAU, gprof, Cube, HPCT, mpiP, DynaProf, PerfSuite, …
 - Supports Java embedded databases (H2, Derby)

- **C programming interface under development**
 - PostgreSQL support first, others as requested
 - Query Prototype developed
 - Plan full-featured API: Query, Insert, & Update
 - Evaluating SQLite support
TAUdb Tool Support

- **ParaProf**
 - Parallel profile viewer / analyzer
 - 2, 3+D visualizations
 - Single experiment analysis

- **PerfExplorer**
 - Data mining framework
 - Clustering, correlation
 - Multi-experiment analysis
 - Scripting engine
 - Expert system
PerfExplorer

Data Components
- Performance Data
- Metadata
- Analysis Results
- Expert Knowledge

Analysis Components
- Statistical Analysis
- Data Mining
- Inference Engine
- Provenance

DBMS (TAUdb)

Data Persistence
PerfExplorer – Relative Comparisons

- Total execution time
- Timesteps per second
- Relative efficiency
- Relative efficiency per event
- Relative speedup
- Relative speedup per event
- Group fraction of total runtime
- Runtime breakdown
- Correlate events with total runtime
- Relative efficiency per phase
- Relative speedup per phase
- Distribution visualizations
Strong negative linear correlation between CALC_CUT_BLOCK_CONTRIBUTIONS and MPI_Barrier
-0.995 indicates strong, negative relationship. As CALC_CUT_BLOCK_CONTRIBUTIONS() increases in execution time, MPI_Barrier() decreases.
PerfExplorer – Cluster Analysis

ParaDyn Week 2013
PerfExplorer – Cluster Analysis

- Four significant events automatically selected
- Clusters and correlations are visible
PerfExplorer – Performance Regression

![Graph showing performance data analysis with PerfExplorer](image)

Machine Learning-based Autotuning with TAU and Active Harmony

ParaDyn Week 2013
Usage Scenarios: Evaluate Scalability

![Graph showing total LINUX_TIMERS bar chart for S3D Jaguar CNL Scaling]
PerfExplorer Scripting Interface

- Control PerfExplorer analyses with Python scripts.
 - Perform built-in PerfExplorer analyses.
 - Call machine learning routines in Weka.
 - Export data to R for analysis.

```python
Utilities.setSession("peri_s3d")
trial = Utilities.getTrial("S3D", "hybrid-study", "hybrid")
result = TrialResult(trial)

reducer = TopXEvents(result1, 10)
reduced = reducer.processData().get(0)

for metric in reduced.getMetrics():
    k = 2
    while k<= 10:
        kmeans = KMeansOperation(reduced, metric,
                                  AbstractResult.EXCLUSIVE, k)
        kmeans.processData()
```
Using TAU in an Autotuning Workflow

- Active Harmony proposes variant.
- Instrument code variant with TAU
 - Captures time measurements and hardware performance counters
 - Interfaces for PAPI, CUPTI, etc.
 - Captures metadata describing execution environment
 - OS name, version, release, native architecture, CPU vendor, ID, clock speed, cache sizes, # cores, memory size, etc. plus user-defined metadata
- Save performance profiles into TAUdb
 - Profiles tagged with provenance metadata describing which parameters produced this data.
- Repeat autotuning across machines/architectures and/or datasets.
- Analyze stored profiles with PerfExplorer.
Multi-Parameter Profiling

- Added multi-parameter-based profiling in TAU to support specialization
 - User can select which parameters are of interest using a selective instrumentation file

- Consider a matrix multiply function
 - We can generate profiles based on the dimensions of the matrices encountered during execution:

```c
void matmult(float **c, float **a, float **b, int L, int M, int N)
```

- e.g., for `void matmult(float **c, float **a, float **b, int L, int M, int N)`, parameterize using L, M, N
Using Parameterized Profiling in TAU

BEGIN_INCLUDE_LIST matmult
BEGIN_INSTRUMENT_SECTION
loops file="foo.c" routine="matrix#"
param file="foo.c" routine="matmult" param="L" param="M" param="N"
END_INSTRUMENT_SECTION

int matmult(float **, float **, float **, int, int, int)
<L=100, M=8, N=8> C

int matmult(float **, float **, float **, int, int, int)
<L=10, M=100, N=8> C

int matmult(float **, float **, float **, int, int, int)
<L=10, M=8, N=8> C
Specialization using Decision-Tree Learning

- For a matrix multiply kernel:
 - Given a dataset containing matrices of different sizes
 - And for which some matrix sizes are more common than others
 - Automatically generate function to select specialized variants at runtime based on matrix dimensions
Specialization using Decision-Tree Learning

- For a matrix multiply kernel:
 - Given a dataset containing matrices of different sizes
 - and for which some matrices are small enough to fit in the cache, while others do not
 - automatically generate function to select specialized variants at runtime based on matrix dimensions
Initial Configuration Selection

- Speed autotuning search process by learning classifier to select an initial configuration.

- When starting out autotuning a new code:
 - Use default initial configuration
 - Capture performance data into TAUdb

- Once sufficient data is collected:
 - Generate classifier

- On subsequent autotuning runs:
 - Use classifier to propose an initial configuration for search
Initial Configuration Selection Example

- Matrix multiplication kernel in C
- CUDA code generated using CUDA-CHiLL
- Tuned on several different NVIDIA GPUs.
 - S1070, C2050, C2070, GTX480
- Learn on data from three GPUs, test on remaining one.
- Results in reduction in evaluations required to converge.
Ongoing Work

☐ Guided Search

- We choose an initial configuration largely because this was easy to implement — Active Harmony already provided the functionality to specify this.

- With the Active Harmony plugin interface, we could provide input beyond the first step of the search.

 - e.g., at each step, incorporate newly acquired data into the classifier and select a new proposal.
Ongoing Work

- Real applications!
 - So far we have only used kernels in isolation.
 - Currently working on tuning OpenCL derived field generation routines in VisIt visualization tool.
 - Cross-architecture: x86, NVIDIA GPU, AMD GPU, Intel Xeon Phi
Acknowledgments – U. Oregon

- Prof. Allen D. Malony, Professor CIS, and Director NeuroInformatics Center
- Dr. Sameer Shende, Director, Performance Research Lab
- Dr. Kevin Huck
- Wyatt Spear
- Scott Biersdorff
- David Ozog
- David Poliakoff
- Dr. Robert Yelle
- Dr. John Linford, ParaTools, Inc.
Support Acknowledgements

- Department of Energy (DOE)
 - Office of Science
 - ASC/NNSA
- Department of Defense (DoD)
 - HPC Modernization Office (HPCMO)
- NSF Software Development for Cyberinfrastructure (SDCI)
- Research Centre Juelich
- Argonne National Laboratory
- Technical University Dresden
- ParaTools, Inc.
- NVIDIA