
Int J Softw Tools Technol Transfer (2009) 11:339–353
DOI 10.1007/s10009-009-0118-1

REGULAR PAPER

A survey of new trends in symbolic execution
for software testing and analysis

Corina S. Păsăreanu · Willem Visser

Published online: 30 August 2009
© Springer-Verlag 2009

Abstract Symbolic execution is a well-known program
analysis technique which represents program inputs with
symbolic values instead of concrete, initialized, data and
executes the program by manipulating program expressions
involving the symbolic values. Symbolic execution has been
proposed over three decades ago but recently it has found
renewed interest in the research community, due in part to
the progress in decision procedures, availability of powerful
computers and new algorithmic developments. We provide
here a survey of some of the new research trends in sym-
bolic execution, with particular emphasis on applications to
test generation and program analysis. We first describe an
approach that handles complex programming constructs such
as input recursive data structures, arrays, as well as multith-
reading. Furthermore, we describe recent hybrid techniques
that combine concrete and symbolic execution to overcome
some of the inherent limitations of symbolic execution, such
as handling native code or availability of decision proce-
dures for the application domain. We follow with a dis-
cussion of techniques that can be used to limit the (possi-
bly infinite) number of symbolic configurations that need
to be analyzed for the symbolic execution of looping pro-
grams. Finally, we give a short survey of interesting new
applications, such as predictive testing, invariant inference,

C. S. Păsăreanu (B)
NASA Ames Research Center, Carnegie Mellon University,
Moffett Field, CA 94035, USA
e-mail: Corina.S.Pasareanu@nasa.gov

W. Visser
Department of Computer Science,
University of Stellenbosch, Stellenbosch, South Africa
e-mail: willem@gmail.com

program repair, analysis of parallel numerical programs and
differential symbolic execution.

1 Introduction

Modern software systems must be extremely reliable and
correct. Automatic methods for ensuring software correct-
ness range from static techniques, such as (software) model
checking or static analysis, to dynamic techniques, such as
testing. All these techniques have strengths and weaknesses:
model checking (with abstraction) is automatic, exhaustive,
but may suffer from scalability issues. Static analysis, on
the other hand, scales to very large programs but may give
too many spurious warnings, while testing alone may miss
important errors, since it is inherently incomplete.

We survey here several recent research trends that combine
the strengths of these different techniques while overcoming
their weakness. In particular, we focus here on approaches
to software testing and analysis that are based on (forward)
symbolic execution. Symbolic execution [15,42] is a well
known program analysis technique that allows execution of
programs using symbolic input values, instead of actual data,
and represents the values of program variables as symbolic
expressions. As a result, the outputs computed by a program
are expressed as a function of the symbolic inputs. Its applica-
tions range from automated test input generation to proving
program partial correctness. Symbolic execution has been
proposed over three decades ago but recently it has found
renewed interest in the research community, due in part to
the progress in decision procedures, availability of powerful
computers and new algorithmic developments.

We begin with a description of our approach [41,47] to
symbolic execution that uses a model checker to explore
different symbolic execution paths (Sect. 2). This enables us

123

340 C. S. Păsăreanu, W. Visser

Fig. 1 Code that swaps two
integers and the corresponding
symbolic execution tree
(transitions are labeled with
program control points)

to take advantage of the model checker’s built-in
capabilities, such as systematic analysis of thread interleav-
ings, partial order reduction, different search strategies, etc.
The approach applies to Java programs and it handles recur-
sive input data structures, arrays, preconditions, as well as
multithreading.

Furthermore, we discuss a popular recent technique, called
“directed testing” [33] or “concolic execution” [53]. The
technique combines symbolic with concrete execution
[33,53] to overcome some of the inherent limitations of sym-
bolic execution, such as availability of decision procedures
and handling calls to native libraries (Sect. 3). Other related
hybrid approaches are discussed in the same section.

Performing symbolic execution on looping programs may
result in a large (possibly unbounded) number of symbolic
program configurations that need to be analyzed. Therefore
symbolic execution might not terminate and in practice, one
needs to put a limit on the number of such symbolic con-
figurations. We also describe alternative techniques to bet-
ter manage the symbolic space explored during symbolic
execution (Sect. 4).

We follow with a description of various “classical” appli-
cations of symbolic execution, such as test input and sequence
generation, proving program correctness, and static detec-
tion of runtime errors. We also describe some novel, “not
so classical” applications, that use symbolic execution or its
variants for predictive testing, dynamic invariant generation,
data structure repair, analysis of parallel numerical programs,
and differential symbolic execution (Sect. 5). Section 6 gives
a short conclusion.

We give most of our presentation in terms of Java (because
this was the context of our own work) but we believe that
most of the presentation could also be generalized to other
languages. The work related to the subject here is vast and it
is simply impossible to cover it all in one article. However,

we hope that this survey (albeit very limited) will serve as a
starting point for more new, exciting applications in this area.

2 Symbolic execution

2.1 Background

The main idea behind symbolic execution [15,42] is to use
symbolic values, instead of actual data, as input values, and to
represent the values of program variables as symbolic expres-
sions. As a result, the output values computed by a program
are expressed as a function of the input symbolic values.

The state of a symbolically executed program includes the
symbolic values of program variables, a path condition (PC)
and a program counter. The path condition is a quantifier-
free boolean formula over the symbolic inputs; it accumu-
lates constraints which the inputs must satisfy in order for an
execution to follow the particular associated path.

A symbolic execution tree characterizes the execution
paths followed during the symbolic execution of a program.
Thetreenodesrepresentprogramstatesandtheyareconnected
by program transitions.

Consider the code fragment in Fig. 1 (left), which swaps
the values of integer variablesx and y, when x is greater than
y [41]. Figure 1 (right) shows the corresponding symbolic
execution tree. Initially, PC is true and x and y have sym-
bolic valuesX and Y, respectively. At each branch point,PC is
updated with assumptions about the inputs, in order to choose
between alternative paths. For example, after the execution of
the first statement, both then and else alternatives of the
if statement are possible, and PC is updated accordingly.
If the path condition becomes false, i.e., there is no set of
inputs that satisfy it, this means that the symbolic state is not

123

A survey of new trends in symbolic execution 341

reachable, and symbolic execution does not continue for that
path. For example, statement (6) is unreachable.

2.2 Exploring the symbolic execution tree using a model
checking tool

Symbolic execution traditionally arose in the context of
checking sequential programs with a fixed number of integer
variables. Several recent approaches [12,16,25] implement
dedicated tools to perform various program analyses based
on some form of symbolic execution.

In our past work [41] we have defined a generalization of
traditional symbolic execution that does not require a ded-
icated tool but instead enables a standard model checking
tool (for the underlying language) to perform symbolic exe-
cution. Our approach targets Java programs and it handles
complex input data structures and arrays (via “lazy initiali-
zation” as explained below) as well as concurrency. The Java
PathFinder (JPF) model checking tool [38] is used to explore
the symbolic execution tree of the analyzed program, as well
as other forms of nondeterminism that might be present in
the code. Thus, we take advantage of the model checker’s
built-in state space exploration capabilities, such as differ-
ent search strategies (e.g., heuristic search) as well as par-
tial order and symmetry reductions. A similar tool [24] uses
the Bogor model checking framework, instead of JPF, and a
“lazier” treatment of initialization for input data structures.

In our approach, we defined a source-to-source translation
that instruments a Java program by adding nondeterminism
and support for manipulating formulae that represent path
conditions in such a way that it enables JPF to perform sym-
bolic execution of the program. The model checker checks
the symbolic state space of the program using its usual state
space exploration techniques. A symbolic state includes a
heap configuration, a path condition on primitive fields, and
thread scheduling. Whenever a path condition is updated, it
is checked for satisfiability using off-the-shelf decision pro-
cedures, such as the Omega library [51] for linear integer
constraints. If the path condition is unsatisfiable, the model
checker backtracks. Preconditions are used to restrict the
symbolic search space, to only enable exploration of inputs
that satisfy the preconditions.

A specialized type-dependence analysis [2] can be used to
minimize the instrumentation effort, by determining which
parts of the code depend on the inputs and therefore needs to
be instrumented, the rest of the code remaining unchanged.
We describe some details of the instrumentation in Sect. 2.7
(in the context of handling input arrays).

Recently, we have implemented a new framework, Sym-
bolic JPF [50], that does not require the code transformation,
but instead it implements a non-standard interpreter of Java
bytecodes on top of JPF, to enable symbolic execution of Java
bytecodes.

2.3 Checking safety properties and generating test inputs

Our symbolic execution framework can be used for
finding errors to safety properties and for test input genera-
tion. Safety properties can be written in the logical formal-
ism recognized by the model checker or they can be specified
with code instrumentation [9]. While checking correctness,
the model checker reports counterexample(s) that violate a
correctness criterion. While generating test inputs, the model
checker generates paths that are witnesses to a testing crite-
rion encoded as a safety property (see, e.g., [30,36]). For a
reported counterexample, the model checker also reports the
input heap configuration, the path condition for the primitive
input fields, and the thread scheduling, which can be used to
reproduce the error.

2.4 Handling multithreaded and nondeterministic systems

As mentioned, our approach allows a standard model checker
to perform symbolic execution. We use the model checker
also to systematically analyze thread interleavings and other
forms of nondeterminism that might be present in the code.
Furthermore, we take advantage of the model checker built-in
optimization techniques, such as partial order reduction for
reducing the number of analyzed interleavings and different
search heuristics, such as depth-first, breadth-first, heuristic,
or random search.

2.5 Loops, recursion, method invocations

We exploit the model checker’s search abilities to handle
arbitrary program control flow. We do not require the model
checker to perform state matching, since state matching is,
in general, undecidable when states represent conditions on
unbounded data. Note also that performing (forward) sym-
bolic execution on programs with loops can explore infinite
execution trees. Therefore, for systematic state space explo-
ration we put a limit on the search depth of the model checker
or we limit the size of the constraints in the path condition.
We discuss alternative techniques in Sect. 4.

The symbolic approach that we have just described can
be used for finding counterexamples to safety properties; it
can prove correctness for programs that have finite execution
trees and have decidable data constraints. For proving prop-
erties of programs with unbounded loops, one would need to
annotate the program with loop invariants (see discussion in
Sect. 5.3).

2.6 Handling recursive input data structures

One of the challenges to symbolic execution is the handling of
complex inputs, such as recursive data structures or arrays of

123

342 C. S. Păsăreanu, W. Visser

unspecified length. We use a lazy initialization algorithm for
symbolically executing a method that takes as inputs complex
data structures with unbounded data. The algorithm starts
execution of the method on inputs with uninitialized fields
and it assign values to these fields “lazily”, i.e., when they are
first accessed during the method’s symbolic execution. This
allows symbolic execution of methods without requiring an
a priori bound on the number of input objects.

We explain how the algorithm symbolically executes a
method with one input object, i.e., the implicit input this.
Methods with multiple parameters are treated similarly.

To execute a method m in class C, the algorithm first cre-
ates a new object o of class C with uninitialized fields. Next,
the algorithm invokeso.m() and the execution proceeds fol-
lowing Java semantics for operations on reference fields and
following traditional symbolic execution for operations on
primitive fields, with the exception of the special treatment
of accesses to uninitialized fields:

– When the execution accesses an uninitialized reference
field, the algorithm nondeterministically initializes the
field to null, to a reference to a new object with unini-
tialized fields, or to a reference of an object created dur-
ing a prior field initialization; this systematically treats
aliasing. When the execution accesses an uninitialized
primitive field, the algorithm first initializes the field to a
new symbolic value of the appropriate type and then the
execution proceeds according to the standard execution
semantics.

– When the execution evaluates a branching condition on
primitive fields, the algorithm nondeterministically adds
the condition or its negation to the corresponding path
condition and checks the path condition’s satisfiability
using a decision procedure. If the path condition becomes
infeasible, the current execution terminates (i.e., the algo-
rithm backtracks).

Example

We illustrate how lazy initialization works using the exam-
ple from Fig. 2 (left). The example gives the Java declara-
tion of a class Node that implements singly-linked lists. The
fields elem and next represent, respectively, the node’s
integer value and a reference to the next node. The method
swapNode destructively updates its input list (referenced
by the implicit parameter this) to sort its first two nodes
and returns the resulting list.

We used symbolic execution to check that there are no
unhandled runtime exceptions during any execution of
swapNode. The result of the check is that the property holds;
the analyzed executions are summarized in Fig. 2 (right).
These executions together represent all possible actual exe-
cutions of swapNode. For each execution, we show the

corresponding input structure, the constraint on the integer
values in the input and the output structure. Thus for each
row, any actual input list that has the given structure and has
integer values that satisfy the given constraint, would result
in the given output list. The value “?” for an elem field indi-
cates that the field is not accessed and the “cloud” indicates
that thenextfield is not accessed. Note that we do not depict
the null values.

If we comment out the check for null on line (1) in
swapNode, our framework reports that for the top most
input in Fig. 2, the method raises an unhandledNullPoint-
erException. All other input/output pairs stay the same.

The symbolic execution tree in Fig. 3 illustrates the (sim-
plified) symbolic execution tree that results from the sym-
bolic execution of swapNode. Each node of the execution
tree denotes a state, which consists of the state of the heap
(including the symbolic values of the elem fields) and the
path condition accumulated along the branch (path) in the
tree. A transition of the execution tree connects two tree
nodes and corresponds to either execution of a statement of
swapNode or to a lazy initialization step. Branching in the
tree corresponds to a nondeterministic choice that is intro-
duced to handle aliasing or build a path condition.

Symbolic execution starts by first creating a new node
object and invoking swapNode on the object. The first
access to the uninitialized next field happens at line (1)
and causes it to be initialized. Lazy initialization explores
three possibilities: either the field is null or the field points
to a new symbolic object or the field points to a previously
created object of the same type (with the only option being
itself). Intuitively, this means that, at this point in the
execution, we make three different assumptions about the
configuration of the input list, according to different alias-
ing possibilities. Another field initialization happens during
execution of statement (4), which results in four possibil-
ities, as there are two Node objects at that point in the
execution.

When a condition involving primitive fields is symboli-
cally executed, e.g., statement (2), the execution tree has a
branch corresponding to each possible outcome of the con-
dition’s evaluation. Evaluation of a condition involving ref-
erence fields does not cause branching unless uninitialized
fields are accessed.

Assume now that swapNode has the precondition that
its input should be acyclic; this can be written as a Java bool-
ean method. Then symbolic execution does not explore the
transitions marked with an “X”.

In order to keep track of the input data structures for pro-
grams with destructive updating, we build mappings between
objects with uninitialized fields and objects that are created
when those fields are initialized with our algorithm; these
maps are used to re-construct the input structures, e.g., for
test input generation.

123

A survey of new trends in symbolic execution 343

Fig. 2 Code to sort the first two nodes of a list (left) and an analysis of this code using our symbolic execution based approach (right)

Fig. 3 Symbolic execution tree
(excerpts)

2.7 Handling input arrays

Symbolic execution for programs with input arrays of
unspecified size one can also use lazy initialization [47].

Consider the code shown in Fig. 4 (left). This method
takes as a parameter an array of integers a and it sets all
the elements of a to zero. This method has a precondition
that its input is not null. The assert clause declares a partial

correctness property that states that after the execution of
the loop, the value of the first element in a is zero (we will
describe in Sect. 5.3 how we can use symbolic execution and
loop invariants to prove this property).

In order to symbolically execute the code we first instru-
ment it to enable JPF to perform symbolic execution. The
instrumented code and part of the library classes that we pro-
vide are illustrated in Fig. 4 (right) and Fig. 5, respectively.

123

344 C. S. Păsăreanu, W. Visser

Fig. 4 Array example (left) and
corresponding instrumented
code (right)

Fig. 5 Library classes

The interested reader is referred to [41,47] for a detailed
description of code instrumentation, here we just highlight
some key features.

The main idea is to replace concrete types with correspond-
ing “symbolic types” (i.e., library classes that we
provide) and concrete operations with method calls that
implement “equivalent” operations on symbolic types. Clas-
ses Expression and IntArrayStructure support
manipulation of symbolic integers and symbolic integer
arrays, respectively. The static field Expression._pc
stores the (numeric) path condition. Method _update_LT
makes a nondeterministic choice (i.e., a call to
choose_boolean) to add to the path condition the con-
straintor thenegationof theconstraint its invocationexpresses
and returns the corresponding boolean. Method is_sat
uses a decision procedure to check if the path condition is
infeasible(inwhichcase,JPFwillbacktrack).Method_plus
constructs a new Expression that represents the sum of
its input parameters. IntegerConstant is a subclass of
Expression and wraps concrete integer values.

To store the input array elements that are created as a result
of a lazy initialization, we use a variable of class Vector,
for each input array. The _get and _set methods use the
elements in this vector to systematically initialize input array
elements. When the execution accesses a symbolic array cell,

the algorithm nondeterministically initializes it to a new cell
or to a cell that was created during a prior cell initialization.
The assertion checks in the _get/_set methods establish
that there are no array out of bounds errors.

2.8 Integrating multiple decision procedures

Perhaps the main challenge to symbolic execution is the
availability of the decision procedures for the application
domain and the number of constraints that can be handled
by the decision procedure/constraint solvers. This challenge
can be addressed by first performing various simplifications
of the path conditions (see, e.g., [53,56]), before sending
them to the decision procedures.

Furthermore, a variety of powerful, fast decision proce-
dures and constraint solvers are being developed and can
be used. Of particular interest are the SMT (Satisfiability
Modulo Theory) decision procedures for combinations of
theories, such as the theory of real numbers, the theory of inte-
gers, and the theories of various data structures, such as lists,
arrays, bit vectors and so on. The annual SMT competitions
[57] and the associated SMT-lib public benchmarks (inspired
by similar SAT competitions [52]) are a strong driver for
new algorithmic developments and improvements in solver
implementations for various theory combinations.

123

A survey of new trends in symbolic execution 345

In order to take advantage of various available decision
procedures, we equipped our symbolic execution framework
with a generic interface to multiple decision procedures [4]
(e.g., SMT solvers CVC3 [22], Yices [69], and STP [58]).
More recently, we have also integrated two constraint solv-
ers (Choco [14] and IASolver [37]) for handling constraints
involving complex math functions, such as trigonometric
functions (since none of the SMT solvers mentioned above
can handle such constraints).

The user can choose between multiple decision proce-
dures that interact in different modes with the symbolic exe-
cution framework (file, pipe, or native call interactions). If
the decision procedure supports incremental solving (e.g.,
CVC3, Yices) then the path condition is not sent all at once
to the decision procedure, but rather just the new constraint
that needs to be added before checking satisfiability. The
incremental solving of path conditions can be done only dur-
ing a (bounded) depth-first search traversal of the symbolic
execution tree.

We note that in our approach to symbolic execution we do
not need a decision procedure for the theory of data struc-
tures or arrays, since we solve the constraints involving such
structures explicitly, using lazy initialization. One advantage
of this approach is that we can handle input data structures
and complex math constraints at the same time. However,
there are related symbolic execution tools (such as PEX [49])
that take a different approach: they treat the input structures
completely symbolically and therefore require a decision
procedure that is powerful enough to solve the resulting
constraints.

2.9 Handling native code; strings

Other typical challenges to symbolic execution include han-
dling common library classes and/or native code, i.e., code
that can not be analyzed directly by symbolic execution. Such
code needs to be modeled explicitly to be considered by the
symbolic execution [50]. Section 3 describes an orthogonal
technique that combines concrete and symbolic execution to
address this problem.

A promising approach that targets Java String library
classes is presented in [54]. In that work, the implementation
details of strings are abstracted away using finite state auto-
mata, resulting in scaling of symbolic execution to
complex string manipulating applications.

3 Combining concrete and symbolic execution

Several recent tools implement a hybrid analysis that per-
forms a concrete execution along with symbolic execution
for dynamic test generation, e.g., DART [33], CUTE [44,53],
EXE [13], PEX [49]. This popular approach has been applied

to finding errors in many challenging areas such as Web and
database applications [7,26,64].

The idea [33] is to perform a concrete execution on random
inputs and at the same time to collect the path constraints
along the executed path; this is also called “concolic exe-
cution”. These path constraints are then used to compute
new inputs that drive the program along alternative paths.
More specifically, one can negate one constraint at a branch
point to guide the test generation process towards executing
the other branch. An off-the-shelf constraint solver is called
to solve the path constraints and to obtain the test inputs.
The program is executed on these new inputs, constraints
are collected along the new program path and the process is
repeated until all the execution paths are covered (therefore
it may never terminate) or until the desired test coverage is
achieved. The approach works by code instrumentation and
does not use model checking; therefore it can not analyze
multithreading easily. However, the main advantage of this
hybrid approach is that the concrete execution can be used
“to help” the symbolic execution in certain situations, e.g.,
when there are no available decision procedures or in the
presence of native calls.

CUTE further extends this approach to handling input
recursive data structures. The tool separates pointer con-
straints from numeric (integer) constraints. The pointer con-
straints are simplified to replace complex symbolic pointer
expressions with simple symbolic pointer variables, resulting
in some approximation.

Example

As an example for dynamic test generation, consider the
code in Fig. 6 [31]. Assume we have decision procedures/
constraint solvers that can only reason about linear con-
straints. Initially the inputs that were randomly generated are
x = 3 and y = 7. The concrete value of z is 27, but the
symbolic value is z = X*X*X, and the path condition (cor-
responding to the else branch) is Y != X*X*X; therefore
the decision procedures cannot handle it. However, instead
of taking the symbolic value z = X*X*X in the path con-
dition, one can take the concrete value (i.e., z = 27). The
path condition then becomes Y != 27 and the execution
continues until the end of the procedure. In order to obtain
inputs that guide the execution towards thethen branch, one

Fig. 6 Code for illustrating concolic execution

123

346 C. S. Păsăreanu, W. Visser

needs to solve Y == 27 which can be done easily with the
available constraint solver. The program is then re-executed
with the new inputs: x = 3 and y = 27 and the error at
line 4 is discovered.

Assume now that instead of int z = x*x*x;, state-
ment 2 is int z = h(x);, where h is some library func-
tion. Alternatively assume its code is simply unavailable to
symbolic execution, e.g., could not be instrumented. Then
the same reasoning as above can be applied, therefore elim-
inating the need for explicit modeling of h. Of course, there
may be some situations when such an approach would not be
recommended, due to certain side-effects of method h, e.g.,
writing data to a file that is later read and affects the execu-
tion. In that case, some modeling would still be required.

3.1 Other combined analyses

In concolic execution the idea is to perform a concrete execu-
tion together with a symbolic analysis that is used to produce
inputs to cover “new” behavior with the aim to uncover errors.
One can also take the opposite approach by first doing a sym-
bolic, imprecise analysis to find a possible error and then per-
form a concrete execution (i.e., run the program) to determine
if it is real or not. The reason for this second step is that the
symbolic execution can be imprecise (it might follow paths in
the code that are not possible in reality); this may happen if
the analysis is only intra-procedural (do not follow procedure
calls) and just returns new unconstrained symbolic values for
the returned values of the procedures that are not analyzed.

The Check&Crash system [20] uses ESC/Java [28] to do
the symbolic analysis and then JCrasher to execute the test
to see if it is a real test. In [61] a custom symbolic execu-
tion is used that allows inter-procedural analysis in which
the degree of procedure nesting can be varied (see Sect. 5.4
for more details).

Other related hybrid techniques include the use of con-
crete execution to effectively “set-up” the environment for
symbolic execution [50] and a combination of test case gen-
eration based on symbolic execution and runtime monitoring
[6]; both these techniques have been applied in the context
of NASA software systems. Furthermore, related approaches
[34,70] seek to combine abstraction techniques, with auto-
matic abstraction refinement, and theorem proving for
program analysis and testing.

4 Scaling symbolic execution

As mentioned, performing symbolic execution on programs
that have loops or recursion may result in an infinite exe-
cution tree. Even in the absence of such infinite behavior,
performing symbolic (or concolic) execution on large pro-
grams becomes quickly expensive, due to the large number

and also the size of paths that need to be explored. In this
section we discuss several techniques that aim to alleviate
these scalability problems.

4.1 Abstraction

Abstraction [18] is a well-known technique that reduces the
large data domains of a program to smaller domains, that
are more amenable for verification. Typically, abstraction in
verification has been used to compute over-approximations
of program behaviors. Such over-approximations are useful
for proving program properties, e.g., if a safety property is
found to be true in the abstracted program, then the property
is also true in the original, unabstracted program.

We discuss here a complementary approach [3,62], which
uses under-approximation based abstraction for the purpose
of property falsification. A related approach [67] combines
symbolic execution with a particular under-approximation
based abstraction that only keeps information about the length
of the analyzed lists/buffers in the context of testing for buffer
over-flows.

In particular here, we consider state matching techniques
to limit the state space explored during symbolic execution.
The work has been done in the context of using a model
checker to explore the symbolic execution tree, as described
in Sect. 2. The approach involves checking when a symbolic
state (si) is subsumed by another symbolic state (s j), i.e., the
set of concrete states represented by si is included in the set
of concrete states represented by s j .

Subsumption is used to determine when a symbolic state
is revisited, in which case the model checker backtracks,
thus pruning the state space search. Even with subsump-
tion, the number of symbolic states may still be unbounded.
We therefore define abstraction mappings to be used during
state matching. More precisely, for each explored state, the
model checker computes and stores an abstract version of the
state, as specified by the abstraction mappings. Subsumption
checking then determines if an abstract state is being revis-
ited. This effectively explores an under-approximation of the
(feasible) paths through the program. Therefore the tech-
nique is still useful for finding safety errors or for test input
generation (see also Sect. 5.2 for a discussion of applica-
tions of abstract subsumption in the context of test sequence
generation).

Example

In previous work [3] we defined abstract subsumption check-
ing for singly linked lists and arrays, by reducing their repre-
sentation to lists. The abstraction that we have implemented
are inspired by the work in shape analysis [45,68] and are
based on the idea of summarizing all the nodes in a maximally
uninterrupted list segment with a summary node. The main

123

A survey of new trends in symbolic execution 347

Fig. 7 Abstract subsumption between s8 and s12

difference between [45,68] and our abstractions is that we
also summarize the numeric data stored in the summarized
nodes and we give special treatment to uninitialized nodes.
The numeric data stored in the abstracted list is summarized
by setting the valuation for the summary node to be a disjunc-
tion of the valuations of the summarized nodes. Intuitively,
the numeric data stored in a summary node can be equal to
that of any of the summarized nodes.

We illustrate abstract subsumption for singly-linked lists
using the example in Fig. 7. For more details, please see the
related paper [3].

Figure 7 depicts two symbolic states, s8 and s12 that
resulted during the analysis of a list manipulating program
[3]. These states can not be matched, since their “heap shape”
is different. However, let us consider the abstract heap shape
and the corresponding valuations for state s12. The abstracted
state is subsumed by state s8 since the corresponding heap
shapes match (as illustrated by the common node labels
l1, l2, l3). Furthermore, there is a valid logical implication
between the normalized numeric constraints of the two states.

4.2 Compositional symbolic execution

Recent work [1,32] proposes compositional reasoning as a
means of scaling up symbolic execution. The work has been
done in the context of “dynamic testing”, the hybrid con-
crete-symbolic execution described in Sect. 3, but we believe
that it can also be extended to “classical” symbolic execution
(as introduced in Sect. 2).

The idea [32] is to use logic “summaries” of individual
functions (similar to inter-procedural static analysis). A sum-
mary consists of preconditions on the function’s inputs and
post-conditions on the function’s output; they are computed
“top down”, to take into account the proper calling context
of the function under analysis. If f() calls g(), one can
summarize g() and use g()’s summaries when analyzing
(or testing) f(); thus, each method is analyzed separately
and the over-all number of analyzed paths is smaller than in
the case the two procedures are analyzed as a whole.

The work in [1] extends the compositional analysis with
a demand-driven approach, which allows as few intra-proce-
dural paths as possible to be symbolically executed in order
to form a inter-procedural composed path leading to a specific

target branch or statement of interest (like an assertion). The
approach uses first-order logic formulas with uninterpreted
functions in order to represent function summaries and allow
compositional symbolic execution using a SMT solver.

4.3 Path merging

Another scaling technique is path merging [5,8,43] – it comes
from the hardware domain and it is closely related to
abstraction. Path merging involves the definition of “merge
points”—program points where the merging of symbolic
paths should occur. Merge points are typically placed at the
beginning of what is, semantically, a new algorithm or sig-
nificant procedure in the program under analysis, or before
loops and other computationally expensive code, to ensure
that code is symbolically executed only once. The merging
itself involves performing a logical disjunction on the sym-
bolic states that reach the merging point. It has been shown
that path merging may result in significant speed-up of sym-
bolic execution, an order of magnitude for example for low
level software [5].

5 Applications/analyses

Symbolic execution has many applications, most notably in
testing and proving program correctness. We discuss them
below, together with some exciting new applications.

5.1 Test case generation

The goal of testing is typically to achieve a high degree of
code coverage, such as statement, branch, condition, MC/DC
coverage. One traditional application of symbolic execution
is the automated generation of test-cases that achieve a high
degree of coverage. Symbolic execution lends itself partic-
ularly well to this task, since the path condition to reach a
branch or statement in the code when solved, gives exactly
the inputs to reach the statement or branch (i.e., the test inputs
for the test case). We refer to this approach as test-case gen-
eration for white-box testing.

Alternatively, one can perform test generation in a black-
box fashion by essentially using the same general technique,

123

348 C. S. Păsăreanu, W. Visser

but instead of symbolically executing the program under test,
one executes a specification of the inputs, such as a Java pred-
icate characterizing all valid input structures for the code
under analysis. An example of a Java predicate is “the class
invariant”, or, repOk() boolean method [11,63] for data
structures in object-oriented code. The objective here is to
generate structures that satisfy the class invariant to form
valid input for the program under test. This general approach,
was initially proposed by the Korat tool [11] and it did not
use symbolic execution. See [63] for a detailed description
of using symbolic execution to generate test inputs in this
fashion.

5.2 Test sequence generation

Both the white- and black-box techniques described above
suffer from the issue that the generated inputs may not be
actually possible during normal execution of the program.
With the white-box technique this can happen since the anal-
ysis of one method in isolation does not take into account
the implicit preconditions imposed by the method’s calling
context. Similarly with the black-box technique it may be the
case that although a certain input satisfies the class invariant,
it can not be constructed using the public methods and fields
allowed by the respective Java class.

To alleviate these concerns one can generate sequences of
tests, rather than single tests [62,66]. As a simple example,
consider a class BinTree that provides a Java implementa-
tion of binary search trees.

public class BinTree {
private Node root;
...
public void add (int x) { ...}
public boolean remove (int x) { ... }

}

A test sequence for this class is as follows:

BinTree t = new BinTree();
t.add(1); t.add(2); t.remove(1);

It contains a sequence of method calls in the class interface
(e.g., add and remove), together with method arguments,
that builds relevant object states and exercise the code in
some desired fashion, e.g., to achieve statement or predicate
coverage [62].

Test sequences are generated by enumerating all the pos-
sible method Sequences, up to some user specified sequence
size. This can be done with the help of a model checker, for
example [62], or with a dedicated tool [66].

Analyzing all combinations of method calls quickly
becomes expensive (in terms of time and memory). One solu-
tion is to provide a mechanism for state-matching between
method calls in this symbolic case. In particular, after each
method call, the object state is examined to see if it can

be “matched” with a previously stored state, in which case
that sequence is discarded; otherwise the search for new
sequences continues with the next method call. Since sym-
bolic states represent sets of concrete states, state “matching’
involves checking subsumption between sets of states.

Although this problem is undecidable in general, if one
only considers container classes storing integer data, the
problem may become tractable. One can also match states
using an abstraction of the state (as explained in Sect. 4),
i.e., match abstract versions of symbolic states where the
unabstracted states will not match. The trade-offs are obvi-
ous, match too liberally (i.e., using abstraction) and the cov-
erage will not be obtained, and match too finely (i.e., check
full subsumption on symbolic states), and run the risk of
never terminating the search.

Using the shape of the container as the abstraction func-
tion was found to be particularly powerful [62]: for example,
we could show that the shortest sequence of API calls on a
Fibonacci Heap implementation to obtain statement cover-
age was 12. This is an interesting result in itself, since the
code is only a few hundred lines long and the simplest form
of coverage requires 12 calls.

For a detailed study of the various techniques for
generating test sequences for container classes see [62] (all
examples are made available though the JPF SourceForge
website). We analyzed Java implementations for Binary Tree,
Fibonacci Heap, Binomial Heap, Tree Map). We compared
explicit state model checking, symbolic and concrete execu-
tion (with and without abstract matching) and random testing.
We found that symbolic execution worked better than explicit
model checking and that, not surprisingly, shape abstraction
provides an accurate representation of containers. We found
that random testing worked pretty well but it requires longer
sequences to achieve good coverage.

5.3 Proving program properties

If there is an upper bound on the number of times each loop
in the program may be executed, symbolic execution can be
used for proving correctness, since the corresponding sym-
bolic execution tree is finite.

However, for most programs, no fixed bound on the
number of times each loop is executed exists and the cor-
responding execution trees are infinite. In order to prove
the correctness of such programs, one needs to traverse the
symbolic execution tree inductively rather than explicitly
[35], using annotations in the form of loop invariants. Such
annotations are provided by the user or may be discovered
automatically, see e.g., [17,19,29,46,47,59,65]. Recent tools
that implement such reasoning include ESC/Java [28] (it
does not use traditional symbolic execution, but rather sim-
ilar symbolic reasoning) and Bogor/Kiasan [24] for reason-
ing about properties of Java programs. Furthermore, Small-

123

A survey of new trends in symbolic execution 349

Fig. 8 Single loop program (left) and instrumented program for proof
(right)

foot [10] uses symbolic execution and separation logic for
proving Hoare-style triples on heap-manipulating programs.

For simplicity of presentation, we illustrate the technique
on a single-loop program such as the one in Fig. 8 (left); mul-
tiple loops can be treated similarly, see e.g., [65]. The pro-
gram consists of some (loop-free) initialization code, a loop
with condition C and (loop-free) body B, and post
condition P.

To verify that P holds, it suffices to find a loop invariant I ,
i.e., a formula that is true when entering the loop, re-entering
the loop during its iteration and exiting the loop [35]. More-
over, I must be strong enough to produce verifiable results
(hence a loop invariant true is, in general, not sufficient).
In a symbolic execution framework, this amounts to check-
ing the three assertions in the modified program in Fig. 8
(right). Here, we replaced the while statement with an if
statement; this is equivalent to placing a “cut” in the loop
[35]. At this cut point, we consider all the variables that are
modified in the loop body initialized to new symbolic val-
ues, and the path condition initialized to true. Note that a
symbolic execution from this point on is representative of an
arbitrary number of loop unrollings; the “input variables” at
the cut point are the variables that are modified by the loop
body and their new symbolic values represent all cases. Since
the program loop has been cut, this symbolic execution will
terminate and have a finite symbolic execution tree.

We then use symbolic execution to check three assertions:

– the assertion at line (4) is the base case of the inductive
argument and checks that I holds when entering the loop

– the assertion at line (7) is the induction step and checks
that, assuming I holds at the beginning of the loop,
I also holds after the execution of the loop body (i.e.,
I is inductive)

– the assertion at line (9) checks that I is strong enough
for the property to hold (i.e., I ∧ ¬C → P)

If there are no assertion violations in the loop-free pro-
gram of Fig. 8 (right), then the program of Fig. 8 (left) does
not violate the property P .

Example

As an example, consider again the code presented in Fig. 4.
Using the loop invariant i ≥ 0, symbolic execution can be
used to automatically check that there are no array bounds
violations. This is a simple invariant that can be stated
without much effort. In order to prove that there are no asser-
tion violations, a more complex loop invariant is needed,
namely ¬(a[0] �= 0 ∧ i > 0). In [47] we present a tech-
nique that generates such invariants automatically, by itera-
tive approximation. The technique handles different types of
constraints (e.g., boolean or numeric, constraints on dynam-
ically allocated data and arrays) and it allows for checking
universally quantified formulas. Such formulas are neces-
sary for expressing properties of programs that manipulate
unbounded data (such as the input array in Fig. 4)

5.4 Static detection of runtime errors

Using symbolic execution to find potential runtime errors is
a well-known technique. The most famous example of this is
the success of Intrinsa’s PREfix tool [12] that ultimately led
to a buy-out by Microsoft. More recent examples include the
work of Engler et al. in [13] for detecting runtime errors in C
code and Tomb et al. in [60] that detects errors in Java code.

The idea behind all these tools is to symbolically execute
a program until a state is reached where a runtime violation
is “possible”, for example a null-pointer dereference, divi-
sion by zero, etc., and a potential error is reported. Unfor-
tunately, due to mostly scalability issues, one can often not
execute programs from their inputs, thus it is common to only
analyze public or API methods and often times only intra-
procedurally. This means the analysis can report errors that
are not possible, so-called spurious errors.

One approach to reduce the false positives is to use the
“variably inter-procedural” analysis described in [60]. As the
name suggests the idea here is to allow one to vary the level
of the inter-procedural analysis to follow calls n levels deep.
Furthermore the approach proposes to solve the input con-
straints that are associated with a possible error and to form
a test case; the analysis reports the error only if the test case
actually produces the expected error (similar to Check-n-
Crash [20]).

Examples

As an illustration of some of the advantages of variably
inter-procedural analysis, consider the program in Fig. 9 and
the problem of detecting null pointer dereferences. Lets first
assume we use an intra-procedural analysis where we don’t
follow the calls to the Integer.toHexString method
(as is done in [20]); a possible null pointer dereference will
be flagged at line 8, with no constraints on the value of x .

123

350 C. S. Păsăreanu, W. Visser

Fig. 9 A simple Java program that illustrates some benefits of
symbolic execution

Fig. 10 An example where intra-procedural analysis is sufficient

Using variably inter-procedural symbolic execution, we
can do better. If we set the analysis to evaluate all method
calls up to a depth of 1, it can follow the calls to Inte-
ger.toHexString, and determine that they never return
null values. Then, because it is a path-sensitive analysis, it
can determine that a null pointer dereference can only hap-
pen (and must happen) if x = 0. Thus, the analysis has ruled
out the false positives (the assignments on lines 5 and 7), and
has given more information about the true error (the miss-
ing case for x = 0). Given the constraint on x , it is then
straightforward to construct a test case that will trigger the
bug.

Varying the level of inter-procedural analysis can have
some interesting consequences, for example in [60] it was
found that going from an intra-procedural to an inter-pro-
cedural analysis might not find more errors but will reduce
the number of possible errors (also referred to as warnings
below) the symbolic analysis discovers (and thus will lead to
test cases to run to see if it is a real error). The code in Fig. 10
illustrates the intuition for this behavior. Note that depending
on the value of target and delta there could be a division by
zero in this code. Let’s assume we pick target = 100 and
delta = 10, in which case there is no division by zero. The
result of an intra-procedural analysis is one warning, but no

Fig. 11 An example where inter-procedural analysis is required

error (since the warning corresponds to the case when i = 0
and that would make the division unreachable). The reason
for this behavior is that during the intra-procedural analysis
the call to similar is ignored and a fresh symbolic variable is
created to hold the result of the call.

However, an inter-procedural analysis results in no warn-
ings (and therefore no errors) since the constraints on similar
combined with the fact that i is 0 makes the division unreach-
able.

The interesting case here is if we pick the values to expose
the problem (e.g. change target to 1). Now both an intra- and
an inter-procedural analysis expose the error. Note that an
intra-procedural analysis also finds the error, since it still
only returns the constraint that i should be 0, but now similar
returns true so the division is reachable.

One can also create an example to show the opposite effect
where obtaining additional constraints actually exposes
errors that would otherwise not have been found—this hap-
pens when analyzing the code in Fig. 11. Here an intra-proce-
dural analysis has no additional constraints on the input value
m and thus the chances of the test generation to randomly pick
42 is almost zero. However during an inter-procedural anal-
ysis the constraint that m should be 42 is recorded and that
would make picking m trivial to expose the division by zero
error.

In general a statement that is potentially buggy can be
reached in many more ways that do not expose the error than
in ways that will expose the error—if this is not true then the
error will be found and fixed quickly anyways. Therefore the
additional constraints one obtains by doing an inter-proce-
dural analysis will mostly reduce the number of infeasible
paths (of an intra-procedural analysis) that reach a poten-
tially buggy statement but it will not necessarily increase the
likelihood of generating a test to reach the error.

An enhancement to the general approach of symbolic exe-
cution for finding runtime errors is suggested in [27] where
it is pointed out that the analysis can be optimized by taking
the unconstrained inputs to a program and then constraining
them by the negation of the path conditions corresponding to
paths that lead to errors. The intuition here is to reduce the
importance of errors due to unconstrained inputs and rather
to report deeper, and possibly more hard to find errors. For
example, consider the following code:

123

A survey of new trends in symbolic execution 351

public void foo(Object o) {
o.x = 5;
...
}

Assume o is unconstrained; a possible null-pointer
exception will be flagged on the dereference in the first line.
However since o is unconstrained this error is not reported
and one adds the constraint that from now on o is non-null.
This technique eliminates false positives and in addition con-
strains executions which allows better scaling. Note that this
technique is best used as a heuristic to rank errors when shown
to the user, since errors due to unconstrained inputs can also
be real errors and should be reported (if only at a lower impor-
tance).

5.5 Other applications

Symbolic execution has many applications and it is impos-
sible to enumerate them all. We can only list here a few
new “non-standard” applications of symbolic execution (and
related hybrid approaches):

– Predictive testing [39] attempts to predict errors from
correct traces. The idea is to perform a “concolic
execution” along concrete traces generated by running
an existing test suite and to check for assertion viola-
tions and other types of errors along these executions:
the assertions that hold along a concrete execution do not
necessarily hold along the corresponding symbolic exe-
cution (since the latter characterizes multiple concrete
executions).

– Invariant inference [21] generates “likely” program
invariants in the form of method pre- and post-condi-
tions and class invariants that hold for a given set of tests;
the technique is similar in spirit to Daikon [23] but uses
the constraints collected during a symbolic execution to
come up with the invariants, instead of the invariant pat-
terns used by Daikon.

– Program and Data Structure Repair can be done using
symbolic execution; e.g., given an assertion that repre-
sents desired structural integrity constraints and a struc-
ture that violates them, the algorithm from [40] can
“mutate” the given structure to satisfy the constraints.

– Parallel numerical program analysis [55] involves
combining model checking and symbolic execution to
establish the equivalence of a sequential and a parallel
program. The sequential program acts as the “specifi-
cation” for the parallel one. The symbolic execution is
particularly tailored to handling floating point arithmetic.

– Differential symbolic execution [48] computes the
“logical” differences between two versions of a pro-
gram; such differences can be used to automate software

evolution tasks such as regression test maintenance,
reducing re-certification activities or checking behav-
ioral equivalence of two programs after software
re-factoring.

6 Conclusions and future directions

In this paper, we surveyed new techniques based on symbolic
execution and we discussed some of their “traditional” appli-
cations, such as test generation and program analysis, as well
as some new, interesting applications. The work related to the
subject here is vast and it is simply impossible to cover it all
in one article. However, we hope that this survey (albeit very
limited) will serve as a starting point for more new, exciting
applications in this area.

Scalability is still the main obstacle against the wide-
spread application of symbolic execution techniques.
We believe that parallelizing the analyses discussed in this
article, as well as extending the abstraction and composi-
tional presented here, should lead to future fruitful research.
The investigation of new heuristic searches that guide the
symbolic execution towards “interesting” program states will
also be promising. Furthermore, despite the emergence of
powerful decision procedures there is still a lack of (semi-
)decision procedures for combinations of theories that are
useful for symbolic execution applications, such as handling
both strings and numeric constraints – useful for Web appli-
cations. We’ve only sketched here a few future directions.
We are sure that there are many others waiting to be explored.

References

1. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven composi-
tional symbolic execution. In: Proceedings of TACAS (2008)

2. Anand, S., Orso, A., Harrold, M.J.: Type-dependence analysis and
program transformation for symbolic execution. In: Proceedings
of TACAS (2007)

3. Anand, S., Păsăreanu, C.S., Visser, W.: Symbolic execution with
abstract subsumption checking. In: Proceedings of SPIN (2006)

4. Anand, S., Păsăreanu, C.S., Visser, W.: JPF-SE: A symbolic exe-
cution extension to Java PathFinder. In: Proceedings of TACAS
(2007)

5. Arons, T., Elster E., Ozer S., Shalev J., Singerman, E.: Efficient
symbolic simulation of low level software. In: Proceedings of
DATE (2008)

6. Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid,
S., Lowry, M.R., Păsăreanu, C.S., Rosu, G., Sen, K., Visser, W.,
Washington, R.: Combining test case generation and runtime ver-
ification. Theor. Comput. Sci. 336(2–3), 209–234 (2005)

7. Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A., Ernst,
M.D.: Finding bugs in dynamic web applications. In: Proceedings
of ISSTA (2008)

8. Babic, D.: Exploiting Structure for Scalable Software Verification.
Ph.D. thesis, University of British Columbia, Vancouver, Canada,
Aug (2008)

123

352 C. S. Păsăreanu, W. Visser

9. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic pred-
icate abstraction of C programs. In: Proceedings of PLDI (2001)

10. Berdine, J., Calcagno, C., O’Hearn, P.: Symbolic execution with
separation logic. In: Proceedings of Third Asian Symposium
(2005)

11. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing
based on Java predicates. In: Proceedings of ISSTA (2002)

12. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for find-
ing dynamic programming errors. Softw. Pract. Experience 30(7),
775–802 (2000)

13. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.:
EXE: automatically generating inputs of death. In: Proceedings
of ACM Conference on Computer and Communications Security
(2006)

14. The Choco Constraint Solver: http://choco.sourceforge.net/
15. Clarke, L.A.: A system to generate test data and symbolically exe-

cute programs. IEEE Trans. Softw. Eng. 2(3), 215–222 (1976)
16. Coen-Porisini, A., Denaro, G., Ghezzi, C., Pezze, M.: Using sym-

bolic execution for verifying safety-critical systems. In: Proceed-
ings of ESEC/FSE (2001)

17. Colon, M., Sankaranarayanan, S., Sipma, S.: Linear invariant gen-
eration using non-linear constraint solving. In: Proceedings of CAV
(2003)

18. Cousot, P.: The role of abstract interpretation in formal methods.
In: Proceedings of SEFM (2007)

19. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints
among variables of a program. In: Proceedings of POPL (1978)

20. Csallner, C., Smaragdakis, Y.: Check ‘n’ crash: Combining static
checking and testing. In: Proceedings of ICSE (2005)

21. Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy: Dynamic sym-
bolic execution for invariant inference. In: Proceedings of ICSE
(2008)

22. CVC3: http://www.cs.nyu.edu/acsys/cvc3/
23. The Daikon invariant detector: http://groups.csail.mit.edu/pag/

daikon//
24. Deng, X., Lee, J., Robby: Bogor/kiasan: A k-bounded symbolic

execution for checking strong heap properties of open systems. In:
Proceedings of ASE (2006)

25. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended
static checking. Research Report 159, Compaq Systems Research
Center (1998)

26. Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation
for database applications. In: Proceedings of ISSTA (2007)

27. Engler, D., Dunbar, D.: Under-constrained execution: making auto-
matic code destruction easy and scalable. In: Proceedings of ISSTA
(2007)

28. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe,
J.B., Stata, R.: Extended static checking for Java. In: Proceedings
of PLDI (2002)

29. Flanagan, C., Qadeer, S.: Predicate abstraction for software verifi-
cation. In: Proceedings of POPL (2002)

30. Gargantini, A., Heitmeyer, C.: Using model checking to gen-
erate tests from requirements specifications. In: Proceedings of
ESEC/FSE (1999)

31. Godefroid, P.: Software model checking via static and dynamic
program analysis. In: MOVEP (2006)

32. Godefroid, P.: Compositional dynamic test generation. In: Proceed-
ings of POPL (2007)

33. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated
random testing. In: Proceedings of PLDI (2005)

34. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V.,
Rajamani, S.K.: SYNERGY: a new algorithm for property check-
ing. In: Proceedings of SIGSOFT FSE (2006)

35. Hantler S.L., King, J.C.: An introduction to proving the correctness
of programs. ACM Comput. Surv. 8(3), 331–353 (1976)

36. Hong, H., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based
theory of test coverage and generation. In: Proceedings of TACAS,
April (2002)

37. IASolver (The Brandeis Interval Arithmetic Constraint Solver):
http://www.cs.brandeis.edu/~tim/Applets/IAsolver.html/

38. Java PathFinder: http://javapathfinder.sourceforge.net
39. Joshi, P., Sen, K., Shlimovich, M.: Predictive testing: Amplifying

the effectiveness of software testing (short paper). In: Proceedings
of ESEC/FSE (2007)

40. Khurshid, S., Garcia, I., Suen, Y.: Repairing structurally complex
data. In: Proceedings of SPIN (2005)

41. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic
execution for model checking and testing. In: Proceedings of
TACAS (2003)

42. King, J.C.: Symbolic execution and program testing. Commun.
ACM 19(7), 385–394 (1976)

43. Koelbl, A., Pixley, C.: Constructing efficient formal models from
high-level descriptions using symbolic simulation. Int. J. Parallel
Programm. 33(6), 645–666 (2005)

44. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proceedings of
ICSE (2007)

45. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate
abstraction and canonical abstraction for singly-linked lists. In:
Proceedings of VMCAI, LNCS, vol. 3385, Paris (2005)

46. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Con-
current Systems:Specification (1992)

47. Păsăreanu, C.S., Visser, W.: Verification of java programs using
symbolic execution and invariant generation. In: Proceedings of
SPIN (2004)

48. Person, S., Dwyer, M.B., Elbaum, S., Păsăreanu, C.S.: Differential
symbolic execution. In: Proceedings of FSE (2008)

49. PEX: Automated Exploratory Testing for .NET: http://research.
microsoft.com/Pex/

50. Păsăreanu, C.S., Mehlitz, P., Bushnell, D., Gundy-Burlet, K.,
Lowry, M., Person, S., Pape, M.: Combining unit-level symbolic
execution and system-level concrete execution for testing nasa soft-
ware. In: Proceedings of ISSTA (2008)

51. Pugh, W.: The Omega test: A fast and practical integer program-
ming algorithm for dependence analysis. In: Conference on High
Performance Networking and Computing archive. Proceedings of
the 1991 ACM/IEEE Conference on Supercomputing table of con-
tents Albuquerque, New Mexico, pp. 4–13 (1991)

52. SAT Competitions: http://www.satcompetition.org/
53. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing

engine for C. In: Proceedings of ESEC/FSE (2005)
54. Shannon, D., Hajra, S., Lee, A., Zhan, D., Khurshid, S.: Abstract-

ing symbolic execution with string analysis. In: Proceedings of
TAIC-PART (2007)

55. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Using
model checking with symbolic execution to verify parallel numer-
ical programs. In: Proceedings of ISSTA (2006)

56. Sinha, N.: Symbolic program analysis using term rewriting and
generalization. In: Proceedings of FMCAD, Nov. (2008)

57. SMT Competitions: http://www.smtcomp.org/
58. STP (Simple Theorem Prover): http://sourceforge.net/projects/

stp-fast-prover
59. Tiwari, A., Rues, H., Saidi, H., Shankar, N.: A technique for invari-

ant generation. In: Proceedings of TACAS (2001)
60. Tomb, A., Brat, G., Visser, W.: Variably interprocedural program

analysis for runtime error detection. In: Proceedings of ISSTA
(2007)

61. Tomb, A., Brat, G.P., Visser, W.: Variably interprocedural program
analysis for runtime error detection. In: Proceedings of ISSTA
(2007)

123

http://choco.sourceforge.net/
http://www.cs.nyu.edu/acsys/cvc3/
http://groups.csail.mit.edu/pag/daikon//
http://groups.csail.mit.edu/pag/daikon//
http://www.cs.brandeis.edu/~tim/Applets/IAsolver.html/
http://javapathfinder.sourceforge.net
http://research.microsoft.com/Pex/
http://research.microsoft.com/Pex/
http://www.satcompetition.org/
http://www.smtcomp.org/
http://sourceforge.net/projects/stp-fast-prover
http://sourceforge.net/projects/stp-fast-prover

A survey of new trends in symbolic execution 353

62. Visser, W., Păsăreanu, C.S., Pelanek, R.: Test input generation for
java containers using state matching. In: Proceedings of ISSTA
(2006)

63. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test input generation in
Java Pathfinder. In: Proceedings of ISSTA (2004)

64. Wassermann, G., Yu, D., Chander, A., Dhurjati, D., Inamura, H.,
Su, Z.: Dynamic test input generation for web applications. In:
Proceedings of ISSTA (2008)

65. Wegbreit, B.: The synthesis of loop predicates. Commun.
ACM 17(2), 102–112 (1974)

66. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A frame-
work for generating object-oriented unit tests using symbolic exe-
cution. In: Proceedings of TACAS (2005)

67. Xu, R.-G., Godefroid, P., Majumdar, R.: Testing for buffer
overflows with length abstraction. In: Proceedings of ISSTA (2008)

68. Yavuz-Kahveci, T., Bultan, T.: Automated verification of concur-
rent linked lists with counters. In: Hermenegildo, G.P.M. (ed.)
Proceedings of SAS (2002)

69. Yices: An SMT Solver http://yices.csl.sri.com/
70. Yorsh, G., Ball, T., Sagiv, M.: Testing, abstraction, theorem

proving: better together!. In: Proceedings of ISSTA (2006)

123

http://yices.csl.sri.com/

	A survey of new trends in symbolic executionfor software testing and analysis
	Abstract
	1 Introduction
	2 Symbolic execution
	2.1 Background
	2.2 Exploring the symbolic execution tree using a model checking tool
	2.3 Checking safety properties and generating test inputs
	2.4 Handling multithreaded and nondeterministic systems
	2.5 Loops, recursion, method invocations
	2.6 Handling recursive input data structures
	2.7 Handling input arrays
	2.8 Integrating multiple decision procedures
	2.9 Handling native code; strings

	3 Combining concrete and symbolic execution
	3.1 Other combined analyses

	4 Scaling symbolic execution
	4.1 Abstraction
	4.2 Compositional symbolic execution
	4.3 Path merging

	5 Applications/analyses
	5.1 Test case generation
	5.2 Test sequence generation
	5.3 Proving program properties
	5.4 Static detection of runtime errors
	5.5 Other applications

	6 Conclusions and future directions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

