
(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 1

Planning and Monitoring the Process

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 2

Learning objectives

• Understand the purposes of planning and

monitoring

• Distinguish strategies from plans, and

understand their relation

• Understand the role of risks in planning

• Understand the potential role of tools in

monitoring a quality process

• Understand team organization as an integral

part of planning

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 3

What are Planning and Monitoring?

• Planning:
– Scheduling activities (what steps? in what order?)

– Allocating resources (who will do it?)

– Devising unambiguous milestones for monitoring

• Monitoring: Judging progress against the plan
– How are we doing?

• A good plan must have visibility :
– Ability to monitor each step, and to make objective

judgments of progress

– Counter wishful thinking and denial

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 4

Quality and Process

• Quality process: Set of activities and responsibilities

– focused primarily on ensuring adequate dependability

– concerned with project schedule or with product usability

• A framework for

– selecting and arranging activities

– considering interactions and trade-offs

• Follows the overall software process in which it is

embedded

– Example: waterfall software process ––> “V model”: unit testing

starts with implementation and finishes before integration

– Example: XP and agile methods ––> emphasis on unit testing

and rapid iteration for acceptance testing by customers

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 5

Customer Requirements

Example Process: Cleanroom

Specification

Function Usage

Incremental

Development

Planning
Statistical test case

generation

Usage specifications

Formal Design

Correctness Verification

Functional specifications

Statistical testing

Source code Test cases

Quality Certification Model

MTTF statistics

Interfail times

Improvement Feedback

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 6

Customer Requirements

Example Process: Cleanroom

Specification

Function Usage

Incremental

Development

Planning
Statistical test case

generation

Usage specifications

Formal Design

Correctness Verification

Functional specifications

Statistical testing

Source

code
Test cases

Quality Certification Model

MTTF statistics

Interfail times

Improvement Feedback

Activities and
responsibilities

focused on quality

Integrated into an
overall development

process

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 7

Define “Necessary”

Reliability

Requirements and

Architecture

Design and

Implementation

System Test and

Acceptance Test

Example Process: Software Reliability
Engineering Testing (SRET)

Development

Operational Profiles

Prepare

for Testing

Prepare

for Testing

Execute

tests

Interpret Failure

Data

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 8

Define “Necessary”

Reliability

Requirements and

Architecture

Design and

Implementation

System Test and

Acceptance Test

Software Reliability Engineering Testing
(SRET)

Development

Operational Profiles

Prepare

for Testing

Prepare

for Testing

Execute

tests

Interpret Failure

Data

Activities and
responsibilities

focused on quality

Integrated into an
overall development

process

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 9

Example Process: Extreme Programming
(XP)

Generate User

Stories

Create Unit

Tests

Pair

Programming

+ unit testing

Create

Acceptance

Tests

Incremental

Release

pass

Next version

Review,

Refine,

prioritize

Acceptance

Testing

Passed all

unit tests

Passed all unit tests

Failed acceptance test

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 10

Extreme Programming (XP)

Generate User

Stories

Create Unit

Tests

Pair

Programming

+ unit testing

Create

Acceptance

Tests

Incremental

Release

pass

Next version

Review,

Refine,

prioritize

Acceptance

Testing

Passed all

unit tests

Passed all unit tests

Failed acceptance test

Activities and
responsibilities

focused on quality

Integrated into an
overall development

process

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 11

Overall Organization
of a Quality Process

• Key principle of quality planning
– the cost of detecting and repairing a fault increases

as a function of time between committing an error
and detecting the resultant faults

• therefore ...
– an efficient quality plan includes matched sets of

intermediate validation and verification activities
that detect most faults within a short time of their
introduction

• and ...
– V&V steps depend on the intermediate work

products and on their anticipated defects

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 12

Verification Steps
for Intermediate Artifacts

• Internal consistency checks

– compliance with structuring rules that define “well-formed”

artifacts of that type

– a point of leverage: define syntactic and semantic rules

thoroughly and precisely enough that many common errors

result in detectable violations

• External consistency checks

– consistency with related artifacts

– Often: conformance to a “prior” or “higher-level” specification

• Generation of correctness conjectures

– Correctness conjectures: lay the groundwork for external

consistency checks of other work products

– Often: motivate refinement of the current product

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 13

Strategies vs Plans

Standard structure

prescribed in

strategy

Organization structure,

experience and policy

over several projects

Structure

and content

based on

PlanStrategy

Quickly, adapting to

project needs

Slowly, with

organization and policy

changes

Evolves

ProjectOrganizationScope

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 14

Test and Analysis Strategy

• Lessons of past experience
– an organizational asset built and refined over time

• Body of explicit knowledge
– more valuable than islands of individual competence

– amenable to improvement

– reduces vulnerability to organizational change (e.g.,
loss of key individuals)

• Essential for
– avoiding recurring errors

– maintaining consistency of the process

– increasing development efficiency

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 15

Considerations in Fitting a Strategy to
an Organization

• Structure and size
– example

• Distinct quality groups in large organizations, overlapping of roles
in smaller organizations

• greater reliance on documents in large than small organizations

• Overall process
– example

• Cleanroom requires statistical testing and forbids unit testing

– fits with tight, formal specs and emphasis on reliability

• XP prescribes “test first” and pair programming

– fits with fluid specifications and rapid evolution

• Application domain
– example

• Safety critical domains may impose particular quality objectives
and require documentation for certification (e.g,RTCA/DO-178B
standard requires MC/DC coverage)

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 16

Elements of a Strategy

• Common quality requirements that apply to all

or most products

– unambiguous definition and measures

• Set of documents normally produced during the

quality process

– contents and relationships

• Activities prescribed by the overall process

– standard tools and practices

• Guidelines for project staffing and assignment

of roles and responsibilities

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 17

Test and Analysis Plan

Answer the following questions:

• What quality activities will be carried out?

• What are the dependencies among the quality

activities and between quality and other

development activities?

• What resources are needed and how will they

be allocated?

• How will both the process and the product be

monitored?

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 18

Main Elements of a Plan

• Items and features to be verified

– Scope and target of the plan

• Activities and resources

– Constraints imposed by resources on activities

• Approaches to be followed

– Methods and tools

• Criteria for evaluating results

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 19

Quality Goals

• Expressed as properties satisfied by the product

– must include metrics to be monitored during the

project

– example: before entering acceptance testing, the

product must pass comprehensive system testing

with no critical or severe failures

– not all details are available in the early stages of

development

• Initial plan

– based on incomplete information

– incrementally refined

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 20

Task Schedule

• Initially based on
– quality strategy

– past experience

• Breaks large tasks into subtasks
– refine as process advances

• Includes dependencies
– among quality activities

– between quality and development activities

• Guidelines and objectives:
– schedule activities for steady effort and continuous progress

and evaluation without delaying development activities

– schedule activities as early as possible

– increase process visibility (how do we know we’re on track?)

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 21

Sample Schedule
ID Task Name

1st quarter 2nd quarter 3rd quarter

1/7 2/4

1 Development framework

2 Requirements specifications

3 Architectural design

4
Detailed design of shopping

facility subsys .

5
Detailed design of

administrative biz logic

7
Sync and stabilize shopping

fac .

8
Admin biz logic code and

integration (including unit test)

9
Sync and stabilize

administrative biz logic

10 Design inspection

11
Inspection of requirements

specs .

12
Inspection of architectural

design

13
Inspection of det . Design of

shop . facilities

14
Inspection of detailed design

of admin logic

15 Code inspection

16
Inspection of shop . Fun . Core

code and unit tests

17
Inspection of admin . Biz . Log .

Code code and unit tests

18 Design tests

19 Design acceptance tests

20 Design system tests

21
Design shop fun subsystem

integration test

22
Design admin bix log

subsystem integration tests

23 Test execution

24 Exec integration tests

25 Exec system tests

26 Exec acceptance tests

6
Shopping fac code and

integration (incl unit test)

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 22

Schedule Risk

• critical path = chain of activities that must be

completed in sequence and that have maximum overall

duration

– Schedule critical tasks and tasks that depend on critical tasks

as early as possible to

• provide schedule slack

• prevent delay in starting critical tasks

• critical dependence = task on a critical path scheduled

immediately after some other task on the critical path

– May occur with tasks outside the quality plan

(part of the project plan)

– Reduce critical dependences by decomposing tasks on critical

path, factoring out subtasks that can be performed earlier

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 23

Product delivery

Produce user

documentation

Design and execute

system tests

Design and execute

subsystem tests

Code and integration

Analysis and design

Project start

CRITICAL SCHEDULE

MayAprilMarchFebraryJanuaryTask name

Reducing the Impact of Critical Paths

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 24

Product delivery

Execute system tests

Execute subsystem

tests

Produce user
documentation

Design system tests

Design subsystem tests

Code and integration

Analysis and design

Project start

UNLIMITED RESOURCES

MayAprilMarchFebraryJanuaryTask name

Reducing the Impact of Critical Paths

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 25

Product delivery

Execute system tests

Execute subsystem

tests

Produce user
documentation

Design system tests

Design subsystem tests

Code and integration

Analysis and design

Project start

LIMITED RESOURCES

MayAprilMarchFebraryJanuaryTask name

Reducing the Impact of Critical Paths

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 26

Reducing the Impact of Critical Paths

ID Task Name
Dec 2006 Jan 2007 Feb 2007 Mar 2007 Apr 2007

3 Analysis and design

4 Code and integration

5
Design and execute

subsystem tests

6
Design and execute

system tests

7
Produce user

documentation

9 UNLIMITED RESOURCES

11 Analysis and design

12 Code and integration

13 Design subsystem tests

14 Design system tests

15
Produce user

documentation

16 Execute subsystem tests

17 Execute system tests

19 LIMITED RESOURCES

21 Analysis and design

22 Code and integration

23 Design subsystem tests

24 Design system tests

25
Produce user

documentation

26 Execute subystem tests

27 Execute system tests

2 Project start

8 Product delivery

Project start10

18 Product delivery

20 Project start

1 CRITICAL SCHEDULE

28 Product delivery

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 27

Risk Planning

• Risks cannot be eliminated, but they can be

assessed, controlled, and monitored

• Generic management risk

– personnel

– technology

– schedule

• Quality risk

– development

– execution

– requirements

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 28

Personnel

Example Risks

• Loss of a staff

member

• Staff member

under-qualified for

task

Control Strategies

• cross training to avoid over-

dependence on individuals

• continuous education

• identification of skills gaps

early in project

• competitive compensation

and promotion policies and

rewarding work

• including training time in

project schedule

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 29

Technology

Example Risks

• High fault rate due

to unfamiliar COTS

component

interface

• Test and analysis

automation tools do

not meet

expectations

Control Strategies
• Anticipate and schedule extra

time for testing unfamiliar
interfaces.

• Invest training time for COTS
components and for training
with new tools

• Monitor, document, and
publicize common errors and
correct idioms.

• Introduce new tools in lower-
risk pilot projects or
prototyping exercises

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 30

Schedule

Example Risks
• Inadequate unit

testing leads to
unanticipated
expense and delays
in integration
testing

• Difficulty of
scheduling meetings
makes inspection a
bottleneck in
development

Control Strategies
• Track and reward quality unit

testing as evidenced by low
fault densities in integration

• Set aside times in a weekly
schedule in which inspections
take precedence over other
meetings and work

• Try distributed and
asynchronous inspection
techniques, with a lower
frequency of face-to-face
inspection meetings

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 31

Development

Example Risks
• Poor quality

software delivered
to testing group

• Inadequate unit
test and analysis
before committing
to the code base

Control Strategies
• Provide early warning and

feedback

• Schedule inspection of design,
code and test suites

• Connect development and
inspection to the reward
system

• Increase training through
inspection

• Require coverage or other
criteria at unit test level

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 32

Test Execution

Example Risks

• Execution costs higher

than planned

• Scarce resources

available for testing

Control Strategies

• Minimize parts that

require full system to be

executed

• Inspect architecture to

assess and improve

testability

• Increase intermediate

feedback

• Invest in scaffolding

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 33

Requirements

Example Risk

• High assurance
critical requirements
increase expense
and uncertainty

Control Strategies

• Compare planned testing
effort with former projects
with similar criticality level
to avoid underestimating
testing effort

• Balance test and analysis

• Isolate critical parts,
concerns and properties

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 34

Contingency Plan

• Part of the initial plan

– What could go wrong? How will we know, and how

will we recover?

• Evolves with the plan

• Derives from risk analysis

– Essential to consider risks explicitly and in detail

• Defines actions in response to bad news

– Plan B at the ready (the sooner, the better)

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 35

Preliminary

plan

Preliminary

plan
First

release

First

release
Second

release

Second

release

Emergency

plan

Emergency

plan

Final

plan

Final

plan…

Evolution of the Plan

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 36

Process Monitoring

• Identify deviations from the quality plan as

early as possible and take corrective action

• Depends on a plan that is

– realistic

– well organized

– sufficiently detailed with clear, unambiguous

milestones and criteria

• A process is visible to the extent that it can be

effectively monitored

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 37

0

20

40

60

80

100

120

140

160

1 3 5 7 9

Total

Critical

Severe

Moderate

fa
u
lt
s

Builds

Evaluate Aggregated Data by Analogy

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 38

Process Improvement

Monitoring and improvement within a

project or across multiple projects:

Orthogonal Defect Classification (ODC)

 &Root Cause Analysis (RCA)

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 39

Orthogonal Defect Classification (ODC)

• Accurate classification schema

– for very large projects

– to distill an unmanageable amount of detailed

information

• Two main steps

– Fault classification

• when faults are detected

• when faults are fixed

– Fault analysis

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 40

ODC Fault Classification

When faults are detected

• activity executed when the fault is revealed

• trigger that exposed the fault

• impact of the fault on the customer

When faults are fixed

• Target: entity fixed to remove the fault

• Type: type of the fault

• Source: origin of the faulty modules (in-house, library,

imported, outsourced)

• Age of the faulty element (new, old, rewritten, re-

fixed code)

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 41

ODC activities and triggers

• Review and Code Inspection

– Design Conformance:

– Logic/Flow

– Backward Compatibility

– Internal Document

– Lateral Compatibility

– Concurrency

– Language Dependency

– Side Effects

– Rare Situation

• Structural (White Box) Test

– Simple Path

– Complex Path

• Functional (Black box) Test

– Coverage

– Variation

– Sequencing

– Interaction

• System Test

– Workload/Stress

– Recovery/Exception

– Startup/Restart

– Hardware Configuration

– Software Configuration

– Blocked Test

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 42

ODC impact

• Installability

• Integrity/Security

• Performance

• Maintenance

• Serviceability

• Migration

• Documentation

• Usability

• Standards

• Reliability

• Accessibility

• Capability

• Requirements

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 43

ODC Fault Analysis (example 1/4)

• Distribution of fault types versus activities

– Different quality activities target different classes of faults

– example:

• algorithmic faults are targeted primarily by unit testing.

– a high proportion of faults detected by unit testing should belong to

this class

• proportion of algorithmic faults found during unit testing

– unusually small

– larger than normal

! unit tests may not have been well designed

• proportion of algorithmic faults found during unit testing unusually

large

! integration testing may not focused strongly enough on interface

faults

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 44

ODC Fault Analysis (example 2/4)

• Distribution of triggers over time during field test

– Faults corresponding to simple usage should arise early during

field test, while faults corresponding to complex usage should

arise late.

– The rate of disclosure of new faults should asymptotically

decrease

– Unexpected distributions of triggers over time may indicate

poor system or acceptance test

• Triggers that correspond to simple usage reveal many faults late in

acceptance testing

! The sample may not be representative of the user population

• Continuously growing faults during acceptance test

! System testing may have failed

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 45

ODC Fault Analysis (example 3/4)

• Age distribution over target code

– Most faults should be located in new and rewritten code

– The proportion of faults in new and rewritten code with

respect to base and re-fixed code should gradually increase

– Different patterns

!may indicate holes in the fault tracking and removal process

!may indicate inadequate test and analysis that failed in

revealing faults early

– Example

• increase of faults located in base code after porting

! may indicate inadequate tests for portability

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 46

ODC Fault Analysis (example 4/4)

• Distribution of fault classes over time

– The proportion of missing code faults should

gradually decrease

– The percentage of extraneous faults may slowly

increase, because missing functionality should be

revealed with use

• increasing number of missing faults

! may be a symptom of instability of the product

• sudden sharp increase in extraneous faults

! may indicate maintenance problems

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 47

Improving the Process

• Many classes of faults that occur frequently are rooted
in process and development flaws
– examples

• Shallow architectural design that does not take into account
resource allocation can lead to resource allocation faults

• Lack of experience with the development environment, which
leads to misunderstandings between analysts and programmers on
rare and exceptional cases, can result in faults in exception
handling.

• The occurrence of many such faults can be reduced by
modifying the process and environment
– examples

• Resource allocation faults resulting from shallow architectural
design can be reduced by introducing specific inspection tasks

• Faults attributable to inexperience with the development
environment can be reduced with focused training

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 48

Improving Current and Next Processes

• Identifying weak aspects of a process can be

difficult

• Analysis of the fault history can help software

engineers build a feedback mechanism to track

relevant faults to their root causes

– Sometimes information can be fed back directly into

the current product development

– More often it helps software engineers improve the

development of future products

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 49

Root cause analysis (RCA)

• Technique for identifying and eliminating

process faults

– First developed in the nuclear power industry; used

in many fields.

• Four main steps

– What are the faults?

– When did faults occur? When, and when were they

found?

– Why did faults occur?

– How could faults be prevented?

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 50

What are the faults?

• Identify a class of important faults

• Faults are categorized by

– severity = impact of the fault on the product

– Kind

• No fixed set of categories; Categories evolve and adapt

• Goal:

– Identify the few most important classes of faults and remove

their causes

– Differs from ODC: Not trying to compare trends for different

classes of faults, but rather focusing on a few important

classes

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 51

Fault Severity

The fault limits the choice of colors

for customizing the graphical

interface, violating the specification

but causing only minor inconvenience

Minor inconvenienceCosmetic

The fault inhibits exporting in

Postscript format.

Postscript can be produced using the

printing facility, but with loss of

usability and efficiency

Some product features

require workarounds to

use, and reduce

efficiency, reliability, or

convenience and usability

Moderate

The fault inhibits importing files

saved with a previous version of the

program, and there is no workaround

Some product features

cannot be used, and there

is no workaround

Severe

The fault causes the program to crashThe product is unusableCritical

ExampleDescriptionLevel

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 52

Pareto Distribution (80/20)

• Pareto rule (80/20)

– in many populations, a few (20%) are vital and many

(80%) are trivial

• Fault analysis

– 20% of the code is responsible for 80% of the faults

• Faults tend to accumulate in a few modules

– identifying potentially faulty modules can improve the cost

effectiveness of fault detection

• Some classes of faults predominate

– removing the causes of a predominant class of faults can have

a major impact on the quality of the process and of the

resulting product

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 53

Why did faults occur?

• Core RCA step

– trace representative faults back to causes

– objective of identifying a “root” cause

• Iterative analysis

– explain the error that led to the fault

– explain the cause of that error

– explain the cause of that cause

– ...

• Rule of thumb

– “ask why six times”

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 54

Example of fault tracing

• Tracing the causes of faults requires experience,

judgment, and knowledge of the development process

• example

– most significant class of faults = memory leaks

– cause = forgetting to release memory in exception handlers

– cause = lack of information: “Programmers can't easily

determine what needs to be cleaned up in exception handlers”

– cause = design error: “The resource management scheme

assumes normal flow of control”

– root problem = early design problem: “Exceptional conditions

were an afterthought dealt with late in design”

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 55

How could faults be prevented?

• Many approaches depending on fault and process:

• From lightweight process changes
– example

• adding consideration of exceptional conditions to a design
inspection checklist

• To heavyweight changes:
– example

• making explicit consideration of exceptional conditions a part of
all requirements analysis and design steps

Goal is not perfection, but cost-effective
improvement

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 56

The Quality Team

• The quality plan must assign roles and

responsibilities to people

• assignment of responsibility occurs at

– strategic level

• test and analysis strategy

• structure of the organization

• external requirements (e.g., certification agency)

– tactical level

• test and analysis plan

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 57

Roles and Responsibilities
at Tactical Level

• balance level of effort across time

• manage personal interactions

• ensure sufficient accountability that quality tasks are

not easily overlooked

• encourage objective judgment of quality

• prevent it from being subverted by schedule pressure

• foster shared commitment to quality among all team

members

• develop and communicate shared knowledge and values

regarding quality

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 58

Alternatives in Team Structure

• Conflicting pressures on choice of structure

– example

• autonomy to ensure objective assessment

• cooperation to meet overall project objectives

• Different structures of roles and responsibilities

– same individuals play roles of developer and tester

– most testing responsibility assigned to a distinct group

– some responsibility assigned to a distinct organization

• Distinguish

– oversight and accountability for approving a task

– responsibility for actually performing a task

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 59

Roles and responsibilities
pros and cons

• Same individuals play roles of developer and tester

– potential conflict between roles

• example

– a developer responsible for delivering a unit on schedule

– responsible for integration testing that could reveal faults that delay

delivery

– requires countermeasures to control risks from conflict

• Roles assigned to different individuals

– Potential conflict between individuals

• example

– developer and a tester who do not share motivation to deliver a

quality product on schedule

– requires countermeasures to control risks from conflict

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 60

Independent Testing Team

• Minimize risks of conflict between roles played by the
same individual
– Example

• project manager with schedule pressures cannot

– bypass quality activities or standards

– reallocate people from testing to development

– postpone quality activities until too late in the project

• Increases risk of conflict between goals of the
independent quality team and the developers

• Plan
– should include checks to ensure completion of quality activities

– Example

• developers perform module testing

• independent quality team performs integration and system testing

• quality team should check completeness of module tests

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 61

Managing Communication

• Testing and development teams must share the goal of
shipping a high-quality product on schedule
– testing team

• must not be perceived as relieving developers from responsibility
for quality

• should not be completely oblivious to schedule pressure

• Independent quality teams require a mature
development process
– Test designers must

• work on sufficiently precise specifications

• execute tests in a controllable test environment

• Versions and configurations must be well defined

• Failures and faults must be suitably tracked and
monitored across versions

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 62

Testing within XP

• Full integration of quality activities with development

– Minimize communication and coordination overhead

– Developers take full responsibility for the quality of their work

– Technology and application expertise for quality tasks match

expertise available for development tasks

• Plan

– check that quality activities and objective assessment are not

easily tossed aside as deadlines loom

– example

• XP “test first” together with pair programming guard against some

of the inherent risks of mixing roles

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 63

Outsourcing Test and Analysis

• (Wrong) motivation

– testing is less technically demanding than development and can

be carried out by lower-paid and lower-skilled individuals

• Why wrong

– confuses test execution (straightforward) with analysis and test

design (as demanding as design and programming)

• A better motivation

– to maximize independence

• and possibly reduce cost as (only) a secondary effect

• The plan must define

– milestones and delivery for outsourced activities

– checks on the quality of delivery in both directions

(c) 2007 Mauro Pezzè & Michal Young Ch 20, slide 64

Summary

• Planning is necessary to
– order, provision, and coordinate quality activities

• coordinate quality process with overall development

• includes allocation of roles and responsibilities

– provide unambiguous milestones for judging progress

• Process visibility is key
– ability to monitor quality and schedule at each step

• intermediate verification steps: because cost grows with
time between error and repair

– monitor risks explicitly, with contingency plan ready

• Monitoring feeds process improvement
– of a single project, and across projects

