
(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 1

Fault-Based Testing

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 2

Learning objectives

• Understand the basic ideas of fault-based

testing

– How knowledge of a fault model can be used to

create useful tests and judge the quality of test

cases

– Understand the rationale of fault-based testing well

enough to distinguish between valid and invalid uses

• Understand mutation testing as one application

of fault-based testing principles

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 3

Let’s count marbles ... a lot of marbles

• Suppose we have a big

bowl of marbles. How

can we estimate how

many?

– I don’t want to count

every marble individually

– I have a bag of 100 other

marbles of the same size,

but a different color

– What if I mix them?Photo credit: (c) KaCey97007
on Flickr, Creative Commons
license

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 4

Estimating marbles

• I mix 100 black marbles

into the bowl

– Stir well ...

• I draw out 100 marbles

at random

• 20 of them are black

• How many marbles were

in the bowl to begin

with?

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 5

Estimating Test Suite Quality

• Now, instead of a bowl of marbles, I have a

program with bugs

• I add 100 new bugs
• Assume they are exactly like real bugs in every way

• I make 100 copies of my program, each with one of my 100

new bugs

• I run my test suite on the programs with seeded

bugs ...

– ... and the tests reveal 20 of the bugs

– (the other 80 program copies do not fail)

• What can I infer about my test suite?

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 6

Basic Assumptions

• We’d like to judge effectiveness of a test suite

in finding real faults, by measuring how well it

finds seeded fake faults.

• Valid to the extent that the seeded bugs are

representative of real bugs

– Not necessarily identical (e.g., black marbles are

not identical to clear marbles); but the differences

should not affect the selection

• E.g., if I mix metal ball bearings into the marbles, and pull

them out with a magnet, I don’t learn anything about how

many marbles were in the bowl

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 7

Mutation testing

• A mutant is a copy of a program with a
mutation

• A mutation is a syntactic change (a seeded bug)
– Example: change (i < 0) to (i <= 0)

• Run test suite on all the mutant programs

• A mutant is killed if it fails on at least one test
case

• If many mutants are killed, infer that the test
suite is also effective at finding real bugs

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 8

What do I need to believe?

• Mutation testing uses seeded faults (syntactic

mutations) as black marbles

• Does it make sense? What must I assume?
• What must be true of black marbles, if they are to be useful

in counting a bowl of pink and red marbles?

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 9

Mutation testing assumptions

• Competent programmer hypothesis:

– Programs are nearly correct

• Real faults are small variations from the correct program

• => Mutants are reasonable models of real buggy programs

• Coupling effect hypothesis:

– Tests that find simple faults also find more complex

faults

• Even if mutants are not perfect representatives of real

faults, a test suite that kills mutants is good at finding real

faults too

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 10

Mutation Operators

• Syntactic change from legal program to legal
program

• So: Specific to each programming language. C++ mutations
don’t work for Java, Java mutations don’t work for Python

• Examples:
– crp: constant for constant replacement

• for instance: from (x < 5) to (x < 12)

• select from constants found somewhere in program text

– ror: relational operator replacement
• for instance: from (x <= 5) to (x < 5)

– vie: variable initialization elimination
• change int x =5; to int x;

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 11

Live Mutants

• Scenario:

– We create 100 mutants from our program

– We run our test suite on all 100 mutants, plus the

original program

– The original program passes all tests

– 94 mutant programs are killed (fail at least one test)

– 6 mutants remain alive

• What can we learn from the living mutants?

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 12

How mutants survive

• A mutant may be equivalent to the original
program
– Maybe changing (x < 0) to (x <= 0) didn’t change the

output at all! The seeded “fault” is not really a
“fault”.

• Determining whether a mutant is equivalent may be easy or
hard; in the worst case it is undecideable

• Or the test suite could be inadequate
– If the mutant could have been killed, but was not, it

indicates a weakness in the test suite

– But adding a test case for just this mutant is a bad
idea. We care about the real bugs, not the fakes!

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 13

Variations on Mutation

• Weak mutation

• Statistical mutation

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 14

Weak mutation

• Problem: There are lots of mutants. Running

each test case to completion on every mutant is

expensive
• Number of mutants grows with the square of program size

• Approach:

– Execute meta-mutant (with many seeded faults)

together with original program

– Mark a seeded fault as “killed” as soon as a

difference in intermediate state is found

• Without waiting for program completion

• Restart with new mutant selection after each “kill”

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 15

Statistical Mutation

• Problem: There are lots of mutants. Running

each test case on every mutant is expensive
• It’s just too expensive to create N2 mutants for a program of

N lines (even if we don’t run each test case separately to

completion)

• Approach: Just create a random sample of

mutants

– May be just as good for assessing a test suite

• Provided we don’t design test cases to kill particular

mutants (which would be like selectively picking out black

marbles anyway)

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 16

In real life ...

• Fault-based testing is a widely used in

semiconductor manufacturing

– With good fault models of typical manufacturing

faults, e.g., “stuck-at-one” for a transistor

– But fault-based testing for design errors is more

challenging (as in software)

• Mutation testing is not widely used in industry

– But plays a role in software testing research, to

compare effectiveness of testing techniques

• Some use of fault models to design test cases is

important and widely practiced

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 17

Summary

• If bugs were marbles ...

– We could get some nice black marbles to judge the

quality of test suites

• Since bugs aren’t marbles ...

– Mutation testing rests on some troubling assumptions

about seeded faults, which may not be statistically

representative of real faults

• Nonetheless ...

– A model of typical or important faults is invaluable

information for designing and assessing test suites

