Fault-Based Testing

A
g (c) 2007 Mauro Pezzé & Michal Young Ch 16, slide 1

Learning objectives

e Understand the basic ideas of fault-based
testing

- How knowledge of a fault model can be used to
create useful tests and judge the quality of test
cases

- Understand the rationale of fault-based testing well

enough to distinguish between valid and invalid uses

« Understand mutation testing as one application
of fault-based testing principles

(c) 2007 Mauro Pezzé & Michal Young Ch 16, slide 2

Let’s count marbles ... a lot of marbles

» Suppose we have a big
bowl of marbles. How
can we estimate how
many?

- ldon’t want to count
every marble individually

- | have a bag of 100 other
marbles of the same size,
but a different color

- What if | mix them?

Photo credit: (c) KaCey97007
on Flickr, Creative Commons

license

sss

ﬁ (c) 2007 Mauro Pezze & Michal Young Ch 16, slide 3

Estimating marbles

I mix 100 black marbles
into the bowl

- Stir well ...

e | draw out 100 marbles
at random

e 20 of them are black

« How many marbles were
in the bowl to begin
with?

(c) 2007 Mauro Pezzé & Michal Young Ch 16, slide 4




Estimating Test Suite Quality

* Now, instead of a bowl of marbles, | have a
program with bugs
» | add 100 new bugs

« Assume they are exactly like real bugs in every way

» | make 100 copies of my program, each with one of my 100
new bugs

e | run my test suite on the programs with seeded
bugs ...

- ... and the tests reveal 20 of the bugs
- (the other 80 program copies do not fail)

s What can | infer about my test suite?

soFTA
it
E (c) 2007 Mauro Pezze & Michal Young Ch 16, slide 5

Basic Assumptions

» We’d like to judge effectiveness of a test suite
in finding real faults, by measuring how well it
finds seeded fake faults.

« Valid to the extent that the seeded bugs are
representative of real bugs

- Not necessarily identical (e.g., black marbles are
not identical to clear marbles); but the differences
should not affect the selection

 E.g., if | mix metal ball bearings into the marbles, and pull

them out with a magnet, | don’t learn anything about how
many marbles were in the bowl

SOFTWARE TESTING
i
E (c) 2007 Mauro Pezze & Michal Young Ch 16, slide 6

Mutation testing

A mutant is a copy of a program with a
mutation

A mutation is a syntactic change (a seeded bug)
- Example: change (i <0) to (i<=0)

Run test suite on all the mutant programs

e A mutant is killed if it fails on at least one test
case

 If many mutants are killed, infer that the test
wsuite is also effective at finding real bugs

(c) 2007 Mauro Pezzé & Michal Young Ch 16, slide 7

What do I need to believe?

« Mutation testing uses seeded faults (syntactic
mutations) as black marbles

e Does it make sense? What must | assume?

» What must be true of black marbles, if they are to be useful
in counting a bowl of pink and red marbles?

SOFTWARE TESTING
ANA

g (c) 2007 Mauro Pezze & Michal Young Ch 16, slide 8




Mutation testing assumptions

o Competent programmer hypothesis:
- Programs are nearly correct

 Real faults are small variations from the correct program
« => Mutants are reasonable models of real buggy programs

» Coupling effect hypothesis:
- Tests that find simple faults also find more complex
faults

« Even if mutants are not perfect representatives of real
faults, a test suite that kills mutants is good at finding real
faults too

T
E (c) 2007 Mauro Pezze & Michal Young Ch 16, slide 9

Mutation Operators

» Syntactic change from legal program to legal
program

« So: Specific to each programming language. C++ mutations
don’t work for Java, Java mutations don’t work for Python

« Examples:
- crp: constant for constant replacement
« for instance: from (x < 5) to (x < 12)
« select from constants found somewhere in program text
- ror: relational operator replacement
« for instance: from (x <= 5) to (x < 5)
- vie: variable initialization elimination
« change int x =5; to int x;

g (c) 2007 Mauro Pezze & Michal Young Ch 16, slide 10

Live Mutants

 Scenario:

- We create 100 mutants from our program
We run our test suite on all 100 mutants, plus the
original program
The original program passes all tests
94 mutant programs are killed (fail at least one test)
6 mutants remain alive

» What can we learn from the living mutants?

SOFTVARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezzé & Michal Young Ch 16, slide 11

How mutants survive

« A mutant may be equivalent to the original
program
- Maybe changing (x < 0) to (x <= 0) didn’t change the
output at all! The seeded “fault” is not really a
“fault”.
» Determining whether a mutant is equivalent may be easy or
hard; in the worst case it is undecideable

« Or the test suite could be inadequate

- If the mutant could have been killed, but was not, it
indicates a weakness in the test suite

- But adding a test case for just this mutant is a bad
idea. We care about the real bugs, not the fakes!

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezzé & Michal Young Ch 16, slide 12




Variations on Mutation

e« Weak mutation
e Statistical mutation

T
E (c) 2007 Mauro Pezze & Michal Young Ch 16, slide 13

Weak mutation

e Problem: There are lots of mutants. Running
each test case to completion on every mutant is
expensive

« Number of mutants grows with the square of program size
e Approach:
- Execute meta-mutant (with many seeded faults)
together with original program
- Mark a seeded fault as “killed” as soon as a
difference in intermediate state is found
« Without waiting for program completion
 Restart with new mutant selection after each “kill”

NG
g (c) 2007 Mauro Pezze & Michal Young Ch 16, slide 14

Statistical Mutation

e Problem: There are lots of mutants. Running

each test case on every mutant is expensive

« It’s just too expensive to create N2 mutants for a program of
N lines (even if we don’t run each test case separately to
completion)

» Approach: Just create a random sample of
mutants

- May be just as good for assessing a test suite

« Provided we don’t design test cases to kill particular
mutants (which would be like selectively picking out black
marbles anyway)

SOFTVARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezzé & Michal Young Ch 16, slide 15

In real life ...

« Fault-based testing is a widely used in
semiconductor manufacturing

- With good fault models of typical manufacturing
faults, e.g., “stuck-at-one” for a transistor

- But fault-based testing for design errors is more
challenging (as in software)
« Mutation testing is not widely used in industry
- But plays a role in software testing research, to
compare effectiveness of testing techniques
« Some use of fault models to design test cases is
=i jmportant and widely practiced

y

(c) 2007 Mauro Pezzé & Michal Young Ch 16, slide 16




Summary

o If bugs were marbles ...

- We could get some nice black marbles to judge the
quality of test suites

 Since bugs aren’t marbles ...

- Mutation testing rests on some troubling assumptions
about seeded faults, which may not be statistically
representative of real faults

e Nonetheless ...

- A model of typical or important faults is invaluable
information for designing and assessing test suites

s
E (c) 2007 Mauro Pezze & Michal Young Ch 16, slide 17




