
(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 1

Functional testing

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 2

Learning objectives

• Understand the rationale for systematic (non-

random) selection of test cases

– Understand the basic concept of partition testing

and its underlying assumptions

• Understand why functional test selection is a

primary, base-line technique

– Why we expect a specification-based partition to

help select valuable test cases

• Distinguish functional testing from other

systematic testing techniques

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 3

Functional testing

• Functional testing: Deriving test cases from

program specifications
• Functional refers to the source of information used in test

case design, not to what is tested

• Also known as:

– specification-based testing (from specifications)

– black-box testing (no view of the code)

• Functional specification = description of

intended program behavior

– either formal or informal

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 4

Systematic vs Random Testing

• Random (uniform):
– Pick possible inputs uniformly

– Avoids designer bias
• A real problem: The test designer can make the same

logical mistakes and bad assumptions as the program
designer (especially if they are the same person)

– But treats all inputs as equally valuable

• Systematic (non-uniform):
– Try to select inputs that are especially valuable

– Usually by choosing representatives of classes that
are apt to fail often or not at all

• Functional testing is systematic testing

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 5

Why Not Random?

• Non-uniform distribution of faults

• Example: Java class “roots” applies quadratic

equation

Incomplete implementation logic: Program does not

properly handle the case in which b2 - 4ac =0 and

a=0

Failing values are sparse in the input space — needles

in a very big haystack. Random sampling is unlikely

to choose a=0.0 and b=0.0

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 6

Consider the purpose of testing ...

• To estimate the proportion of needles to hay,

sample randomly

– Reliability estimation requires unbiased samples for

valid statistics. But that’s not our goal!

• To find needles and remove them from hay,

look systematically (non-uniformly) for needles

– Unless there are a lot of needles in the haystack, a

random sample will not be effective at finding them

– We need to use everything we know about needles,

e.g., are they heavier than hay? Do they sift to the

bottom?

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 7

Systematic Partition Testing

Failure (valuable test case)

No failure

Failures are sparse

in the space of

possible inputs ...

... but dense in some

parts of the space

If we systematically test some

cases from each part, we will

include the dense parts

Functional testing is one way of

drawing pink lines to isolate

regions with likely failures

T
h

e
 s

p
a

c
e
 o

f
p

o
s
s
ib

le
 i
n

p
u
t
v
a

lu
e
s

(t
h

e
 h

a
y
s
ta

c
k
)

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 8

The partition principle

• Exploit some knowledge to choose samples that are

more likely to include “special” or trouble-prone

regions of the input space

– Failures are sparse in the whole input space ...

– ... but we may find regions in which they are dense

• (Quasi*-)Partition testing: separates the input space

into classes whose union is the entire space
» *Quasi because: The classes may overlap

• Desirable case: Each fault leads to failures that are

dense (easy to find) in some class of inputs

– sampling each class in the quasi-partition selects at least one

input that leads to a failure, revealing the fault

– seldom guaranteed; we depend on experience-based heuristics

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 9

Functional testing: exploiting the
specification

• Functional testing uses the specification

(formal or informal) to partition the input

space

– E.g., specification of “roots” program suggests

division between cases with zero, one, and two real

roots

• Test each category, and boundaries between

categories

– No guarantees, but experience suggests failures

often lie at the boundaries (as in the “roots”

program)

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 10

Why functional testing?

• The base-line technique for designing test cases
– Timely

• Often useful in refining specifications and assessing
testability before code is written

– Effective
• finds some classes of fault (e.g., missing logic) that can

elude other approaches

– Widely applicable
• to any description of program behavior serving as spec

• at any level of granularity from module to system testing.

– Economical
• typically less expensive to design and execute than

structural (code-based) test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 11

Early functional test design

• Program code is not necessary
– Only a description of intended behavior is needed

– Even incomplete and informal specifications can be
used

• Although precise, complete specifications lead to better
test suites

• Early functional test design has side benefits
– Often reveals ambiguities and inconsistency in spec

– Useful for assessing testability
• And improving test schedule and budget by improving spec

– Useful explanation of specification
• or in the extreme case (as in XP), test cases are the spec

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 12

Functional versus Structural:
 Classes of faults

• Different testing strategies (functional,

structural, fault-based, model-based) are most

effective for different classes of faults

• Functional testing is best for missing logic

faults

– A common problem: Some program logic was simply

forgotten

– Structural (code-based) testing will never focus on

code that isn’t there!

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 13

Functional vs structural test: granularity
levels

• Functional test applies at all granularity levels:

– Unit (from module interface spec)

– Integration (from API or subsystem spec)

– System (from system requirements spec)

– Regression (from system requirements + bug history)

• Structural (code-based) test design applies to

relatively small parts of a system:

– Unit

– Integration

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 14

Steps: From specification to test cases

• 1. Decompose the specification
– If the specification is large, break it into independently

testable features to be considered in testing

• 2. Select representatives

– Representative values of each input, or

– Representative behaviors of a model
– Often simple input/output transformations don’t describe a

system. We use models in program specification, in program

design, and in test design

• 3. Form test specifications
– Typically: combinations of input values, or model behaviors

• 4. Produce and execute actual tests

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 15

From specification to test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 16

Simple example: Postal code lookup

• Input: ZIP code (5-digit

US Postal code)

• Output: List of cities

• What are some

representative values (or

classes of value) to test?

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 17

Example: Representative values

• Correct zip code

– With 0, 1, or many cities

• Malformed zip code

– Empty; 1-4 characters; 6 characters; very long

– Non-digit characters

– Non-character data

Simple example with

one input, one output

Note prevalence of boundary

values (0 cities, 6 characters)

and error cases

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 18

Summary

• Functional testing, i.e., generation of test
cases from specifications is a valuable and
flexible approach to software testing
– Applicable from very early system specs right

through module specifications

• (quasi-)Partition testing suggests dividing the
input space into (quasi-)equivalent classes
– Systematic testing is intentionally non-uniform to

address special cases, error conditions, and other
small places

– Dividing a big haystack into small, hopefully uniform
piles where the needles might be concentrated

