Functional testing

i
E (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 1

Learning objectives

» Understand the rationale for systematic (non-
random) selection of test cases
- Understand the basic concept of partition testing
and its underlying assumptions
« Understand why functional test selection is a
primary, base-line technique
- Why we expect a specification-based partition to
help select valuable test cases
« Distinguish functional testing from other
systematic testing techniques

SOFTWARE TES
AD AALSIS
E (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 2

Functional testing

» Functional testing: Deriving test cases from

program specifications

« Functional refers to the source of information used in test
case design, not to what is tested

e Also known as:
- specification-based testing (from specifications)
- black-box testing (no view of the code)

» Functional specification = description of
intended program behavior
- either formal or informal

SOFTWARE TESTING
AD &
E (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 3

Systematic vs Random Testing

« Random (uniform):
- Pick possible inputs uniformly

- Avoids designer bias

» A real problem: The test designer can make the same
logical mistakes and bad assumptions as the program
designer (especially if they are the same person)

- But treats all inputs as equally valuable
» Systematic (non-uniform):
- Try to select inputs that are especially valuable

- Usually by choosing representatives of classes that
are apt to fail often or not at all

». Functional testing is systematic testing

50
D ANALYS
E (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 4

SOFTWARE T
AND ANALYS

Why Not Random?

e Non-uniform distribution of faults

» Example: Java class “roots” applies quadratic
equation _ —b+ Vb —dac
2a

Incomplete implementation logic: Program does not
properly handle the case in which b? - 4ac =0 and
a=0

Failing values are sparse in the input space — needles
in a very big haystack. Random sampling is unlikely

<« to choose a=0.0 and b=0.0

(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 5

Consider the purpose of testing ...

» To estimate the proportion of needles to hay,
sample randomly
- Reliability estimation requires unbiased samples for
valid statistics. But that’s not our goal!
« To find needles and remove them from hay,
look systematically (non-uniformly) for needles

- Unless there are a lot of needles in the haystack, a
random sample will not be effective at finding them

- We need to use everything we know about needles,
e.g., are they heavier than hay? Do they sift to the
bottom?

SOFTWARE TESTIN
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 6

Systematic Partition Testing

... but dense in some
parts of the space

M Failure (valuable test case) in the space of

Failures are sparse

O No failure possible inputs ...
0
() T
2 DDDDDDDDDDI’fﬁDDDDDDEﬂ//ﬂﬁDDDDDD
> 00 OO0 O00:00:00 00 00,00 D=d0 00 O00;00 00
é—ﬁ 00 O00;00 00,00 OO0 OO:Em:O00:00 00 O00;00 04
oS 00 O0:00 00,00 OO0 OO:E0:00:00 00 O0:i00 ad
%% 00 O0/00 0000 00 dO0:00 O00!00 00 O00:00 04
8_§‘ 00 O0;00 0000 00 dO:00 O00:00 00 O00:;:00 ad
ug'_dc) 00 O00:00 00:00 00 d0:00 O00:00 00 O00:00 a4
o & 00O O0O:{O0 O0:00 OO0 O00;:00 0000 00 OO:00 0O
(&)
s 00 O00:00 O00:00 OO0 OO0:00 OO:mam:00 OO0 00 04
g OO0 O0:00 O0:00 OO0 O00:00 OO mm:00 00 00 00O
= If we systematically test some /Functional testing is one way of
swesne | cases from each part, we will drawing pink lines to isolate
E include the dense parts regions with likely failures
(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 7

The partition principle

« Exploit some knowledge to choose samples that are
more likely to include “special” or trouble-prone
regions of the input space

- Failures are sparse in the whole input space ...
- ... but we may find regions in which they are dense

» (Quasi*-)Partition testing: separates the input space
into classes whose union is the entire space
» *Quasi because: The classes may overlap
» Desirable case: Each fault leads to failures that are
dense (easy to find) in some class of inputs

- sampling each class in the quasi-partition selects at least one
input that leads to a failure, revealing the fault

g - seldom guaranteed; we depend on experience-based heuristics

(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 8

Functional testing: exploiting the
specification
» Functional testing uses the specification
(formal or informal) to partition the input
space
- E.g., specification of “roots” program suggests
division between cases with zero, one, and two real
roots
» Test each category, and boundaries between
categories

- No guarantees, but experience suggests failures
often lie at the boundaries (as in the “roots”
program)

ESTiNG
E (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 9

Why functional testing?

» The base-line technique for designing test cases
- Timely
» Often useful in refining specifications and assessing
testability before code is written
- Effective
« finds some classes of fault (e.g., missing logic) that can
elude other approaches
- Widely applicable
« to any description of program behavior serving as spec
« at any level of granularity from module to system testing.
- Economical

« typically less expensive to design and execute than
structural (code-based) test cases

5 NG
E (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 10

Early functional test design

» Program code is not necessary
- Only a description of intended behavior is needed
- Even incomplete and informal specifications can be

used

« Although precise, complete specifications lead to better
test suites

 Early functional test design has side benefits
- Often reveals ambiguities and inconsistency in spec
- Useful for assessing testability
» And improving test schedule and budget by improving spec
- Useful explanation of specification
« or in the extreme case (as in XP), test cases are the spec

SoF
i
E (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 11

Functional versus Structural:
Classes of faults

« Different testing strategies (functional,
structural, fault-based, model-based) are most
effective for different classes of faults

» Functional testing is best for missing logic
faults

- A common problem: Some program logic was simply
forgotten

- Structural (code-based) testing will never focus on
code that isn’t there!

5 NG
E (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 12

Functional vs structural test: granularity

levels
» Functional test applies at all granularity levels:
- Unit (from module interface spec)
- Integration (from API or subsystem spec)
- System (from system requirements spec)

- Regression (from system requirements + bug history)
 Structural (code-based) test design applies to

relatively small parts of a system:

- Unit

- Integration

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 13

Steps: From specification to test cases

» 1. Decompose the specification

- If the specification is large, break it into independently
testable features to be considered in testing

o 2. Select representatives
- Representative values of each input, or

- Representative behaviors of a model

- Often simple input/output transformations don’t describe a
system. We use models in program specification, in program
design, and in test design

» 3. Form test specifications

- Typically: combinations of input values, or model behaviors

= 4, Produce and execute actual tests

(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 14

From specification to test cases

Functional
Specification
Decompose @

Independently ™
Testable

Features
Optional: Derive
a model

(Representative) < Model)
Values

(Test Case > (. r
\ ‘ est Cases |
Specifications E>\ /

TESTING
g (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 15

Simple example: Postal code lookup

~ UNITED STATES
B PosTAL SERVICE.

L

Search By Address Search By City Search By Company Fir

ZIP Code Lookup

Find a list of cities that are in a ZIP Code.
* Required Fields A Input: ZIP COde (5'digit
* ZIP Code US Postal code)

o OQutput: List of cities

» What are some
representative values (or
vvvvvvv classes of value) to test?

Submit >

g (c) 2007 Mauro Pezze & Michal Young Ch 10, slide 16

Example: Representative values

=y UNITED STATES.
B posTAL sERVICE.

,@? ZIP Code Lookup
Simple example with T [Py [—
one input, one output Finda list o itios thatare Ina ZIP Codo.

* Required Fields
" ZP Code

Note prevalence of boundary
values (0 cities, 6 characters)
and error cases

« Correct zip code
- With 0, 1, or many cities
« Malformed zip code
- Empty; 1-4 characters; 6 characters; very long
- Non-digit characters
- Non-character data

SOFTVARE TESTI
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 17

Summary

» Functional testing, i.e., generation of test
cases from specifications is a valuable and
flexible approach to software testing

- Applicable from very early system specs right
through module specifications
 (quasi-)Partition testing suggests dividing the
input space into (quasi-)equivalent classes

- Systematic testing is intentionally non-uniform to
address special cases, error conditions, and other
small places

- Dividing a big haystack into small, hopefully uniform
piles where the needles might be concentrated

(c) 2007 Mauro Pezze & Michal Young Ch 10, slide 18

