
(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 1

Test and Analysis Activities
within a Software Process

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 2

Learning objectives

• Understand the role of quality is the
development process

• Build an overall picture of the quality process

• Identify the main characteristics of a quality
process

– visibility

– anticipation of activities

– feedback

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 3

Software Qualities and Process

• Qualities cannot be added after development
– Quality results from a set of inter-dependent activities

– Analysis and testing are crucial but far from sufficient.

• Testing is not a phase, but a lifestyle
– Testing and analysis activities occur from early in requirements

engineering through delivery and subsequent evolution.

– Quality depends on every part of the software process

• An essential feature of software processes is that
software test and analysis is thoroughly integrated and
not an afterthought

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 4

The Quality Process

• Quality process: set of activities and
responsibilities

– focused primarily on ensuring adequate
dependability

– concerned with project schedule or with product
usability

• The quality process provides a framework for

– selecting and arranging activities

– considering interactions and trade-offs with other
important goals.

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 5

Interactions and tradeoffs

example

high dependability vs. time to market

• Mass market products:
– better to achieve a reasonably high degree of dependability on

a tight schedule than to achieve ultra-high dependability on a
much longer schedule

• Critical medical devices:
– better to achieve ultra-high dependability on a much longer

schedule than a reasonably high degree of dependability on a
tight schedule

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 6

Properties of the Quality Process

• Completeness: Appropriate activities are
planned to detect each important class of
faults.

• Timeliness: Faults are detected at a point of
high leverage (as early as possible)

• Cost-effectiveness: Activities are chosen
depending on cost and effectiveness

– cost must be considered over the whole
development cycle and product life

– the dominant factor is usually the cost of repeating
an activity through many change cycles.

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 7

Planning and Monitoring

• The quality process

– Balances several activities across the whole
development process

– Selects and arranges them to be as cost-effective as
possible

– Improves early visibility

• Quality goals can be achieved only through
careful planning

• Planning is integral to the quality process

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 8

Process Visibility

• A process is visible to the extent that one can answer
the question
– How does our progress compare to our plan?

– Example: Are we on schedule? How far ahead or behind?

• The quality process has not achieved adequate visibility
if one cannot gain strong confidence in the quality of
the software system before it reaches final testing
– quality activities are usually placed as early as possible

• design test cases at the earliest opportunity (not ``just in time'')

• uses analysis techniques on software artifacts produced before
actual code.

– motivates the use of “proxy” measures
• Ex: the number of faults in design or code is not a true measure of

reliability, but we may count faults discovered in design
inspections as an early indicator of potential quality problems

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 9

A&T Strategy

• Identifies company- or project-wide standards
that must be satisfied

– procedures required, e.g., for obtaining quality
certificates

– techniques and tools that must be used

– documents that must be produced

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 10

A&T Plan

• A comprehensive description of the quality process that
includes:
– objectives and scope of A&T activities
– documents and other items that must be available
– items to be tested
– features to be tested and not to be tested
– analysis and test activities
– staff involved in A&T
– constraints
– pass and fail criteria
– schedule
– deliverables
– hardware and software requirements
– risks and contingencies

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 11

Quality Goals

• Process qualities (visibility,....)

• Product qualities

– internal qualities (maintainability,....)

– external qualities

• usefulness qualities:
– usability, performance, security, portability,

interoperability

• dependability
– correctness, reliability, safety, robustness

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 12

Dependability Qualities

• Correctness:
– A program is correct if it is consistent with its specification

• seldom practical for non-trivial systems

• Reliability:
– likelihood of correct function for some ``unit'' of behavior

• relative to a specification and usage profile

• statistical approximation to correctness (100% reliable = correct)

• Safety:
– preventing hazards

• Robustness
– acceptable (degraded) behavior under extreme conditions

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 13

Example of Dependability Qualities

7 56

1211
10

8 4

2
1

9 3 • Correctness, reliability:

let traffic pass according
to correct pattern and
central scheduling

• Robustness, safety:

Provide degraded
function when possible;
never signal conflicting
greens.

• Blinking red / blinking
yellow is better than no
lights; no lights is better
than conflicting greens

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 14

Relation among Dependability Qualites

Correct

Reliable

Safe

Robust

robust but not

safe: catastrophic

failures can occur

safe but not

correct:

annoying

failures can

occur

reliable but

not correct:

failures

occur rarely

correct but

not safe or

robust: the

specification

is inadequate

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 15

Analysis

• analysis includes

– manual inspection techniques

– automated analyses

• can be applied at any development stage

• particularly well suited at the early stages of
specifications an design

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 16

Inspection

• can be applied to essentially any document
– requirements statements
– architectural and detailed design documents
– test plans and test cases
– program source code

• may also have secondary benefits
– spreading good practices
– instilling shared standards of quality.

• takes a considerable amount of time
• re-inspecting a changed component can be expensive
• used primarily

– where other techniques are inapplicable
– where other techniques do not provide sufficient coverage

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 17

Automatic Static Analysis

• More limited in applicability

– can be applied to some formal representations of
requirements models

– not to natural language documents

• are selected when available

– substituting machine cycles for human effort makes
them particularly cost-effective.

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 18

Testing

• Executed late in development

• Start as early as possible

• Early test generation has several advantages

– Tests generated independently from code, when the
specifications are fresh in the mind of analysts

– The generation of test cases may highlight
inconsistencies and incompleteness of the
corresponding specifications

– tests may be used as compendium of the
specifications by the programmers

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 19

Improving the Process

• Long lasting errors are common

• It is important to structure the process for

– Identifying the most critical persistent faults

– tracking them to frequent errors

– adjusting the development and quality processes to
eliminate errors

• Feedback mechanisms are the main ingredient
of the quality process for identifying and
removing errors

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 20

Organizational factors

• Different teams for development and quality?

– separate development and quality teams is common
in large organizations

– indistinguishable roles is postulated by some
methodologies (extreme programming)

• Different roles for development and quality?

– test designer is a specific role in many organizations

– mobility of people and roles by rotating engineers
over development and testing tasks among different
projects is a possible option

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 21

Example of Allocation of
Responsibilities

• Allocating tasks and responsibilites is a complex job:
 we can allocate
– Unit testing

• to the development team (requires detailed knowledge of the
code)

• but the quality team may control the results (structural coverage)

– Integration, system and acceptance testing
• to the quality team

• but the development team may produce scaffolding and oracles

– Inspection and walk-through
• to mixed teams

– Regression testing
• to quality and maintenance teams

– Process improvement related activities
• to external specialists interacting with all teams

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 22

Allocation of Responsibilities and rewarding
mechanisms: case A

• allocation of responsibilities
– Development team responsible development m

easured with LOC per person month

– Quality team responsible for quality

• possible effect
– Development team tries to maximize productivity,

without considering quality

– Quality team will not have enough resources for bad
quality products

• result
– product of bad quality and overall project failure

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 23

Allocation of Responsibilities and rewarding
mechanisms: case B

• allocation of responsibilities

– Development team responsible for both
development and quality control

• possible effect

– the problem of case A is solved

– but the team may delay testing for development
without leaving enough resources for testing

• result

– delivery of a not fully tested product and overall
project failure

(c) 2007 Mauro Pezzè & Michal Young Ch 4, slide 24

Summary

• Test and Analysis are complex activties that
must be sutiably planned and monitored

• A good quality process obeys some basic
principles:
– visibility

– early activities

– feedback

• aims at
– reducing occurrences of faults

– assessing the product dependability before delivery

– improving the process

