
(c) 2007 Mauro Pezzè & Michal Young Ch 3, slide 1

Basic Principles

(c) 2007 Mauro Pezzè & Michal Young Ch 3, slide 2

Learning objectives

• Understand the basic principles undelying A&T

techniques

• Grasp the motivations and applicability of the

main principles

(c) 2007 Mauro Pezzè & Michal Young Ch 3, slide 3

Main A&T Principles

• General engineering principles:

– Partition: divide and conquer

– Visibility: making information accessible

– Feedback: tuning the development process

• Specific A&T principles:

– Sensitivity: better to fail every time than sometimes

– Redundancy: making intentions explicit

– Restriction: making the problem easier

(c) 2007 Mauro Pezzè & Michal Young Ch 3, slide 4

Sensitivity: better to fail every time
than sometimes

• Consistency helps:

– a test selection criterion works better if every

selected test provides the same result, i.e., if the

program fails with one of the selected tests, it fails

with all of them (reliable criteria)

– run time deadlock analysis works better if it is

machine independent, i.e., if the program deadlocks

when analyzed on one machine, it deadlocks on

every machine

(c) 2007 Mauro Pezzè & Michal Young Ch 3, slide 5

Redundancy: making intentions explicit

• Redundant checks can increase the capabilities
of catching specific faults early or more
efficiently.
– Static type checking is redundant with respect to

dynamic type checking, but it can reveal many type
mismatches earlier and more efficiently.

– Validation of requirement specifications is
redundant with respect to validation of the final
software, but can reveal errors earlier and more
efficiently.

– Testing and proof of properties are redundant, but
are often used together to increase confidence

(c) 2007 Mauro Pezzè & Michal Young Ch 3, slide 6

Partition: divide and conquer

• Hard testing and verification problems can be

handled by suitably partitioning the input

space:

– both structural and functional test selection criteria

identify suitable partitions of code or specifications

(partitions drive the sampling of the input space)

– verification techniques fold the input space

according to specific characteristics, grouping

homogeneous data together and determining

partitions

(c) 2007 Mauro Pezzè & Michal Young Ch 3, slide 7

Restriction: making the problem easier

• Suitable restrictions can reduce hard
(unsolvable) problems to simpler (solvable)
problems
– A weaker spec may be easier to check: it is

impossible (in general) to show that pointers are
used correctly, but the simple Java requirement that
pointers are initialized before use is simple to
enforce.

– A stronger spec may be easier to check: it is
impossible (in general) to show that type errors do
not occur at run-time in a dynamically typed
language, but statically typed languages impose
stronger restrictions that are easily checkable.

(c) 2007 Mauro Pezzè & Michal Young Ch 3, slide 8

Visibility: Judging status

• The ability to measure progress or status

against goals
• X visibility = ability to judge how we are doing on X, e.g.,

schedule visibility = “Are we ahead or behind schedule,”

quality visibility = “Does quality meet our objectives?”

– Involves setting goals that can be assessed at each

stage of development

• The biggest challenge is early assessment, e.g., assessing

specifications and design with respect to product quality

• Related to observability

– Example: Choosing a simple or standard internal

data format to facilitate unit testing

(c) 2007 Mauro Pezzè & Michal Young Ch 3, slide 9

Feedback: tuning the development
process

• Learning from experience: Each project

provides information to improve the next

• Examples

– Checklists are built on the basis of errors revealed in

the past

– Error taxonomies can help in building better test

selection criteria

– Design guidelines can avoid common pitfalls

(c) 2007 Mauro Pezzè & Michal Young Ch 3, slide 10

Summary

• The discipline of test and analysis is
characterized by 6 main principles:
– Sensitivity: better to fail every time than sometimes

– Redundancy: making intentions explicit

– Restriction: making the problem easier

– Partition: divide and conquer

– Visibility: making information accessible

– Feedback: tuning the development process

• They can be used to understand andvantages
and limits of different approaches and compare
different techniques

