
Call Graphs 63

always be within bounds, but we cannot reasonably expect an automated tool for ex-
tracting control flow graphs to perform such inferences. Whether to include some or
all implicit control flow edges in a CFG representation therefore involves a trade-off
between possibly omitting some execution paths or representing many spurious paths.
Which is preferable depends on the uses to which the CFG representation will be put.

Even the representation of explicit control flow may differ depending on the uses
to which a model is put. In Figure 5.3, the for statement has been broken into its
constituent parts (initialization, comparison, and increment for next iteration), each of
which appears at a different point in the control flow. For some kinds of analysis, this
breakdown would serve no useful purpose. Similarly, a complex conditional expres-
sion in Java or C is executed by “short-circuit” evaluation, so the single expression
i > 0 && i < 10 can be broken across two basic blocks (the second test is not executed
if the first evaluates to false). If this fine level of execution detail is not relevant to an
analysis, we may choose to ignore short-circuit evaluation and treat the entire condi-
tional expression as if it were fully evaluated.

5.4 Call Graphs

The intraprocedural control flow graph represents possible execution paths through a
single procedure or method. Interprocedural control flow can also be represented as
a directed graph. The most basic model is the call graph, in which nodes represent
procedures (methods, C functions, etc.) and edges represent the “calls” relation. For
example, a call graph representation of the program that includes the collapseNewlines
method above would include a node for StringUtils.collapseNewlines with a directed
edge to method String.charAt.

Call graph representations present many more design issues and trade-offs than
intraprocedural control flow graphs; consequently, there are many variations on the ba-
sic call graph representation. For example, consider that in object-oriented languages,
method calls are typically made through object references and may be bound to meth-
ods in different subclasses depending on the current binding of the object. A call graph
for programs in an object-oriented language might therefore represent the calls relation
to each of the possible methods to which a call might be dynamically bound. More of-
ten, the call graph will explicitly represent only a call to the method in the declared
class of an object, but it will be part of a richer representation that includes inheritance
relations. Constructing an abstract model of executions in the course of analysis will
involve interpreting this richer structure.

Figure 5.6 illustrates overestimation of the calls relation due to dynamic dispatch.
The static call graph includes calls through dynamic bindings that never occur in exe-
cution. The call graph includes an (impossible) call from A.check() to C.foo() because
A.foo() calls myC.foo() and myC’s declared class is C. However, since myC is always an
object of subclass S, and S overrides foo(), the call to myC.foo() can only reach S.foo().
In this case a more precise analysis could show that myC is always bound to an object
of subclass S, but in general such precision is expensive or even impossible.

If a call graph model represents different behaviors of a procedure depending on
where the procedure is called, we call it context-sensitive. For example, a context-

Corrected copy 2008.03.19

