
Book Outline

Software Testing and Analysis: Process,
Principles, and Techniques

Mauro Pezzè and Michal Young

Working Outline as of March 2000

Software test and analysis are essential techniques for producing depend-
able software. While one cannot “test quality into” a badly constructed soft-
ware product, neither can one build quality into a product without test and
analysis. Achieving adequate quality through testing is often a major cost in
software development, as well as a major factor in product cycle time. Failing
to obtain adequate quality can be an even greater cost. This book addresses
software test and analysis in the context of an overall effort to achieve an ac-
ceptable level of quality at acceptable cost. It assumes that the reader’s aim is
not ultra-high dependability without regard to cost, nor cutting cost without
regard to quality, but rather maximizing cost-effectiveness while balancing
cost, schedule, and quality. It assumes, moreover, that one is not artificially
constrained to isolated improvements only in a well-defined testing group or
testing phase, but is instead motivated to integrate testing and analysis activ-
ities as effectively as possible across the entire process of software develop-
ment and evolution.

Software testing and software analysis techniques are treated here together,
which is unusual in the current book-length literature but is consistent with a
goal of achieving quality as cost-effectively as possible, using whatever com-
bination of techniques is most appropriate. Moreover, software testing and
software analysis depend on much of the same fundamental technical back-
ground. One must understand both to choose and combine techniques, and
combinations of testing and analysis techniques can often be made to in-
teract synergistically. The traditionally strong distinction between software
testing and formal techniques for software analysis is an artifact of historical
development of the fields, and is no longer useful.

1



Part 1 of this book presents fundamental principles of software test and
analysis techniques in a coherent framework, laying the groundwork for un-
derstanding strengths and weaknesses of individual techniques and their ap-
plication in an effective software process. Part 2 brings together basic techni-
cal background of many testing and analysis methods and techniques. Part 3
presents families of solutions to common test and analysis problems. Part 4
discusses how to design a systematic testing and analysis process and graft it
into an overall development process. Part 5 presents specializations of test-
ing and analysis techniques for some important application domains with
unique requirements.

Part I

Fundamentals of Testing and
Analysis

1 Software Test and Analysis in a Nutshell

Software analysis and test is multi-faceted. This chapter walks through a
sample test and analysis process to illustrate how a combination of methods,
tools, and techniques can be applied in the context of a disciplined approach
to software development to produce quality products at acceptable cost.

2 A Framework for Test & Analysis

The purpose of software test and analysis is either to assess software qual-
ities or else to make it possible to improve the software by finding defects.
Of the many kinds of software qualities, those addressed by the analysis and
test techniques discussed in this book are the dependability properties of the
software product.

There are no perfect test or analysis techniques, nor a single “best” tech-
nique for all circumstances. Rather, techniques exist in a complex space of
tradeoffs, and often have complementary strengths and weaknesses. This
chapter describes the nature of those tradeoffs and some of their consequences,
and thereby a conceptual framework for understanding and better integrat-
ing material from later chapters on individual techniques.

3 Basic principles

This chapter presents some basic, recurring principles that are widely appli-
cable to testing and analysis as well as design for testability.

2



4 Test and Analysis Activities Within a Software Pro-
cess

Quality cannot be added after software development, but results from the in-
teraction of many techniques to be applied during the whole life cycle. Iden-
tifying which technique must be applied when, and understanding interac-
tions with the development process is crucial to tradeoff costs and quality
issues.

This chapter discusses the complex intertwining between development
and test and analysis activities and illustrates tradeoffs for integrating the dif-
ferent activities within a coherent process.

5 Overview of Testing and Analysis Techniques

This chapter overviews the main test and analysis problems and indicates
how they can tackle with different techniques.

Part II

Basic Techniques

6 Finite Models

Many test and analysis techniques are based on a finite model of the soft-
ware. This Chapter present different flow graph representations of the soft-
ware control structure.

7 Data Flow Analysis

Data flow analysis is a well known technique that finds many applications
in computer science, e.g., in compiler design, program optimization, slicing.
Data flow analysis provides interesting information about the structure of the
code that can be used for deducing static properties of the code and for de-
riving coverage information. This chapter introduces the technique.

8 Symbolic Execution

Symbolic execution builds a set of predicates that characterize a set of execu-
tions corresponding to a specific path in the program. Predicates produced
with symbolic execution describes the conditions under which the path can
be executed and the effect of the execution on the outputs.

3



9 Formal proof of properties

This chapter illustrates mathematical techniques to reason about the correct-
ness of the code. Such techniques reduce the code to a set of theorem whose
demonstration imply the correctness of the code.

10 Model checking

In contrast to formal proof of properties that tries to reason on an infinite
space, model checking is tries proof the validity of properties of concurrent
systems reasoning on a finite, although usually very large representation of
the execution space. This chapter illustrates the methods to build a finite
representation of the execution space and to automatically reason on top of
it.

Part III

Problems and Methods

11 Test Case Selection and Adequacy

One of the first problems in software testing is the selection of test cases and
their evaluation. This chapter introduces the different approaches to test case
selection and the corresponding adequacy, that will be illustrated through
this part. The chapter serves as a general introduction of the problem and
proposes a conceptual frame for the various functional and structural ap-
proaches described in subsequent chapters.

12 System and Acceptance testing

System and acceptance testing consider the system as a whole and not as
composed of different parts. This chapter identifies the problems that arise
in this context and describes the possible approaches.

13 Functional Testing

Functional specifications of software are an important source of information
for deriving test cases. This chapter discusses how specifications influence
testing, identifies the main steps that characterize functional testing, and il-
lustrates them by presenting the main approaches to functional testing.

4



14 Structural Testing

The structure of the software itself is a valuable source of information for se-
lecting test cases and determining whether a set of test cases has been suffi-
ciently thorough. We can ask whether a test suite has “covered” a control flow
graph or other model of the program.1 It is simplest to consider structural
coverage criteria as addressing the test adequacy question: “Have we tested
enough.” In practice we will be interested not so much in asking whether we
are done, but in asking what unmet obligations with respect to the adequacy
criteria suggest about additional test cases that may be needed, i.e., we will of-
ten treat the adequacy criterion as a heuristic for test case selection or genera-
tion. For example, if one statement remains unexecuted despite execution of
all the test cases in a test suite, we may devise additional test cases that exer-
cise that statement. Structural information should not be used as the primary
answer to the question, “How shall I choose tests,” but it is useful in combina-
tion with other test selection criteria (particularly specification-based testing)
to help answer the question “What additional test cases are needed to reveal
faults that may not become apparent through black-box testing alone.”

15 Data Flow Testing

Data flow information about code allow a fine grain selection of test cases.
This chapter discusses how to use data flow analysis for steering test selection
and compares the resulting criteria with criteria based on the control flow
structure of the code.

16 Testing Complex Data Structures

Much of the complexity of a program may be in its data structures, particulary
when the logic of a complex procedure is encoded in tables rather than pro-
gram code. Testing of complex data structures includes testing data abstrac-
tions and systematically exercising logic that is encoded in constant data.

17 Testing Object-Oriented Software

The object oriented paradigm introduces new constructs that cannot be al-
ways address with testing techniques defined for imperative code. This chap-
ter discusses the validity of traditional testing techniques for object oriented
systems, identifies the new problems and illustrates the approaches that can
help in solving these problems.

1In this chapter we use the term “program” generically for the artifact under test, whether
that artifact is a complete application or an individual unit together with a test harness. This is
consistent with usage in the testing research literature.

5



18 Fault-Based Testing

Fault taxonomies represent an additional source of information for test case
selection. this chapter illustrates fault based techniques with particular at-
tention to mutation analysis and indicates advantages, limitations and possi-
ble application domains for these techniques.

19 Integration Testing

Practitioners are well aware of the problems of integrating smaller compo-
nents to build a larger system. No mater how well the components have been
designed and tested, integration can result in new unforeseen problems. This
chapter explain why new classes of errors can raise during integration and de-
scribes the related testing strategies. This chapter generalize the problem of
integration testing by discussing the increasingly important problem of test-
ing COTS, libraries and frameworks, the problem of testing software archi-
tectures and the problem of testing systems built with reusable components.
Finally this chapter discusses the relation between design and test illustrating
the important concept of design for testability.

20 Test Case Generation

Most test selection and adequacy criteria indicate which test have to be se-
lected in terms of elements of code or specifications to be exercised, but do
not provide the actual data that constitute the test cases. This chapter de-
scribes techniques for test case generation and discusses the possibility of
automating this important step.

21 Run-Time Support for Testing

Unit and integration testing require the execution of parts of the final code
that cannot be executed independently. This chapter describes different trade-
offs and techniques for generating the run time support required for execut-
ing unit and integration test, also known as scaffolding.

22 Oracles

Each test execution must be characterized as a success (the program exe-
cuted as expected specified) or failure. This may be left to the judgment of
a human if there are only a handful of test cases and the expected behav-
ior is very simple and observable, but for larger numbers of test cases and

6



for complex behaviors and specifications, the “eyeball oracle” is neither effi-
cient nor dependable. Automated test oracles can be part of test harnesses,
or programs can be made self-checking through annotation with run-time
assertions. Often a combination of oracle techniques is most attractive, com-
bining a small number of special-case oracles with a more general procedure
that can quickly but imperfectly classify the results of a large number of test
outcomes.

23 Capture & Replay

Ideally one would have a test driver that systematically drives software through
a set of test cases, and an oracle that checks correctness, all without human
intervention. When that level of automation is not feasible, a capture/replay
system may be a good compromise. With a capture/replay system, a test case
is first exercised and judged manually (e.g., by interacting with a graphical
user interface), but thereafter it can be replayed. Problems addressed in this
chapter include what must be captured, at what level of abstraction, and how
it can be systematically varied during replay.

24 Regression Testing

Software products are often developed iteratively, and they typically continue
to evolve through many versions after the initial product release. Each change
requires re-testing (regression testing), which can easily become the domi-
nant cost of software evolution. The challenge for regression testing, then, is
to limit cost while obtaining adequate assurance against unintended effects.
Approaches to controlling the cost of regression testing have two main as-
pects, limiting the number of tests that must be re-executed by determining
and controlling the possible effects of each change, and reducing the cost of
re-running tests. Test documentation and test automation are crucial to the
second aspect.

25 Inspection

Software inspections are manual, collaborative review activities. Inspections
can be applied to any software artifact from requirements documents to source
code to test plans. This flexibility makes inspections particularly valuable
when other, more automated analyses are not applicable.

7



26 Code Analysis

A number of automated analyses can be applied to program source code.
None of them are capable of showing that the code is functionally correct,
but they may cost-effectively locate some common defects as well as produc-
ing auxiliary information that is useful in inspections and testing. Usually, an
automated source code analysis technique for detecting faults is applicable
or cost-effective in detecting faults only if it is applied together with program-
ming standards, often including some annotation or additional description of
intent. Some techniques require the support of sophisticated program anal-
ysis tools, but others are extremely simple.

27 Testing and Analysis of Specifications

Many product defects are ultimately the effects of faults in specifications,
rather than coding errors. It is more efficient to find and remove these defects
early rather than waiting for them to be revealed in product testing. While
specifications cannot be “tested” in quite the same way as code, a number
of techniques can be applied, ranging from inspections to construction and
validation of scenarios to automated consistency checks.

28 Tools

Many software test and analysis techniques require the repetition of long and
tedious activities, e.g., execution of thousands of test cases during regression
testing. Other techniques are based on activities hardly completed manually,
e.g., computing testing coverage requires the identification of which parts
of the program are actually executed during testing. Some test and analy-
sis techniques can be applied manually and it is possible to improve the test
and analyis process without tools. However, tools are essential to take advan-
tage of many methods and techniques and achieve the degree of efficiency
often required in industrial settings. Many test and analysis tools are appear-
ing on the market, witnessing the awareness of their importance, but also the
maturity of the technology and the market.

This chapter aims at identifying which methods can or should be autom-
atized, and what is the maturity of the required technology. The chapter
does not present an overview of commercially available tools, but summa-
rizes testing and alnaysis activites that are or can be automated and illustrates
the added value of automation.

8



Part IV

Process

29 Fitting Test and Analysis to a Software Process

One does not have the luxury of devising an ideal software process for soft-
ware test and analysis. Approaches to test and analysis interact with other
aspects of software processes, and are to some extent constrained by them.
In this chapter we discuss how effective processes for software test and anal-
ysis can be “fit” to overall software processes with a minimum of disruption
and risk.

30 Improving the Process

There is no a priori “best” quality process that can be selected once and for
all. Rather, quality is best approached through a feedback-driven process in
which cost and quality issues are continuously monitored and tuned. This
chapter presents process improvement specifically with respect to testing and
analysis, and considering cost and schedule issues as well as the quality of the
delivered product.

31 Fault Analysis

A cost-effective process for test and analysis depends on information about
the cost and quality impacts of particular classes of faults. Fault occurrence
frequency and impact differs from organization to organization, and changes
over time as the organization and its products evolve. This chapter describes
an approach to classifying and prioritizing faults and selecting appropriate
counter-measures using root cause analysis.

Part V

Domain Specific Approaches to Test
& Analysis

32 Testing Embedded Systems

Software is embedded in many devices, ranging from industrial equipment to
telephones to automobiles to toys. Current trends suggest that an increasing

9



portion of software development will be targeted to embedded systems. This
chapter addresses problems posed by testing embedded systems, including
observability and controllability of the target system; consistency between
host development system, instrumented test-bed, and the ultimate target en-
vironment; and resource constraints in the target environment.

33 Testing Concurrent & Distributed Systems

An underlying assumption of most testing is that a program is determinis-
tic: If presented with the same input, it will always perform the same com-
putations and produce the same output. Behaviors of concurrent (multi-
threaded) and distributed systems are influenced by process scheduling, com-
munication details, and other factors that are difficult to fully capture or con-
trol, with the result that they appear to be non-deterministic. We review
special-purpose techniques that have been developed for deriving test or-
acles and test coverage criteria from formal models of concurrent and dis-
tributed systems.

34 Testing Graphical User Interfaces

Graphical user interfaces (GUIs) present several obstacles to cost-effective
testing. This chapter describes approaches to factoring design and specifica-
tion of GUIs for more cost-effective testing, development of test scaffolding to
improve GUI test automation, and application of capture/replay specifically
to GUI testing.

10


