
Software Testing and Analysis: Process,
Principles, and Techniques

Mauro Pezzè and Michal Young

Draft Version of 31st March 2000

Chapter 14

Structural Testing

The structure of the software itself is a valuable source of information for se-
lecting test cases and determining whether a set of test cases has been suffi-
ciently thorough. We can ask whether a test suite has “covered” a control flow
graph or other model of the program.1 It is simplest to consider structural
coverage criteria as addressing the test adequacy question: “Have we tested
enough.” In practice we will be interested not so much in asking whether we
are done, but in asking what unmet obligations with respect to the adequacy
criteria suggest about additional test cases that may be needed, i.e., we will of-
ten treat the adequacy criterion as a heuristic for test case selection or genera-
tion. For example, if one statement remains unexecuted despite execution of
all the test cases in a test suite, we may devise additional test cases that exer-
cise that statement. Structural information should not be used as the primary
answer to the question, “How shall I choose tests,” but it is useful in combina-
tion with other test selection criteria (particularly specification-based testing)
to help answer the question “What additional test cases are needed to reveal
faults that may not become apparent through black-box testing alone.”

Required Background

� Chapter 6

The material on control flow graphs and related models of program struc-
ture is required to understand this chapter.

� Chapter 11

The introduction to test case adequacy and test case selection in gen-
eral sets the context for this chapter. It is not strictly required for un-

1In this chapter we use the term “program” generically for the artifact under test, whether
that artifact is a complete application or an individual unit together with a test harness. This is
consistent with usage in the testing research literature.

39

14.1. OVERVIEW Structural Testing

derstanding this chapter, but is helpful for understanding how the tech-
niques described in this chapter should be applied.

14.1 Overview

Testing can reveal a fault only when the execution of the corresponding faulty
element causes a failure. For example, if there were a fault in the statement at
line ?? of the program in Figure 14.1, it could be revealed only with test cases
in which the input string contains the character % followed by two hexadeci-
mal digits, since only these cases would cause this statement to be executed.
Based on this simple observation, a program has not been adequately tested
if some of its elements have not been executed.2 Control flow testing crite-
ria are defined for particular classes of elements by requiring the execution of
all such elements of the program. Control flow elements include statements,
branches, conditions, and paths.

Unfortunately, a set of correct program executions in which all control
flow elements are exercised does not guarantee the absence of faults. Exe-
cution of a faulty statement may not always result in a failure. The state may
not be corrupted when the statement is executed with some data values, and
a corrupt state may not propagate through execution to eventually lead to a
failure. Let us assume for example to have erroneously typed 6 instead of 16
in the statement at line ?? of the program in Figure 14.1. Test cases that exe-
cute the faulty statement with value 0 for variable digit high would not corrupt
the state, thus leaving the fault unrevealed despite having executed the faulty
statement.

The statement at line 31 of the program in Figure 14.1 contains a fault,
since variable eptr used to index the input string is incremented twice with-
out checking the size of the string. If the input string contains a character %
in one of the last two positions, eptr* will point beyond the end of the string
when it is later used to index the string. Execution of the program with a test
case where string encoded terminates with character % followed by at most
one character causes the faulty statement to be executed. However, due to
the memory management of C programs, execution of this faulty statement
may not cause a memory failure, since the program will read the next char-
acter available in memory ignoring the end of the string. Thus, this fault may
remain hidden during testing despite having produced an incorrect interme-
diate state. Such a fault could be revealed using memory checking software
tool that identifies memory violations3.

Control flow testing complements specification-based testing by includ-
ing cases that may not be identified from specifications alone. A typical case
is implementation of a single item of the specifications with multiple parts of

2This is an over-simplification, since some of the elements may not be executed by any possi-
ble input. The issue of infeasible elements is discussed in Section 14.9

3At the time of writing commercial tools providing such capability include Purify and Bound-
sChecker

Draft version produced 31st March 2000

Structural Testing 14.1. OVERVIEW

- 1: /* External file hex_values.h defines Hex_Values[128]

- 2: * with value 0 to 15 for the legal hex digits (case-insensitive)

- 3: * and value -1 for each illegal digit including special characters

- 4: */

- 5:
- 6: #include "hex_values.h"

- 7: /**

- 8: * @title cgi_decode

- 9: * @desc

-10: * Translate a string from the CGI encoding to plain ascii text

-11: * '+' becomes space, %xx becomes byte with hex value xx,

-12: * other alphanumeric characters map to themselves

-13: *

-14: * returns 0 for success, positive for erroneous input

-15: * 1 = bad hexadecimal digit

-16: */

-17: int cgi_decode(char *encoded, char *decoded) {

-18: char *eptr = encoded;

-19: char *dptr = decoded;

*20: int ok=0;

*21: while (*eptr) {

-22: char c;

*23: c = *eptr;

-24: /* Case 1: '+' maps to blank */

*25: if (c == '+') {

*26: *dptr = ' ';

*27: } else if (c == '%') {

-28: /* Case 2: '%xx' is hex for character xx */

-29:
30: int digit_high = Hex_Values[(++eptr)];

31: int digit_low = Hex_Values[(++eptr)];

*32: if (digit_high == -1 || digit_low == -1) {

-33: /* *dptr='?'; */

34: ok=1; / Bad return code */

-35: } else {

*36: *dptr = 16* digit_high + digit_low;

-37: }

-38:
-39: /* Case 3: All other characters map to themselves */

*40: } else {

*41: *dptr = *eptr;

-42: }

*43: ++dptr;

*44: ++eptr;

-45: }

*46: *dptr = '\0'; /* Null terminator for string */

*47: return ok;

-48: }

Figure 14.1: The C function cgi decode, which translates a cgi-encoded string
to a plain ASCII string (reversing the encoding applied by the common gate-
way interface of most web servers).

Draft version produced 31st March 2000

14.1. OVERVIEW Structural Testing

 { char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {

*dptr = ' ';
}

while (*eptr) {

True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high + digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else {
*dptr = *eptr;
}

����int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 14.2: The control flow graph of function cgi decode from Figure 14.1

Draft version produced 31st March 2000

Structural Testing 14.1. OVERVIEW

T0 = f \ ", \test", \test+case%1Dadequacy" g

T1 = f \adequate+test%0Dexecution%7U" g

T2 = f \%3D", \%A", \a+b", \test" g
T3 = f \ ", \+%0D+%4J" g

T4 = f \�rst+test%9Ktest%K9" g

Table 14.1: Sample test suites for C function cgi decode from Figure 14.1

the program. For example, a good specification of a table would leave data
structure implementation decisions to the programmer. If the programmer
chooses a hash table implementation, then different portions of the inser-
tion code will be executed depending on whether there is a hash collision.
Selection of test cases from the specification would not ensure that both the
collision case and the non-collision case are tested. Even the simplest control
flow testing criterion would require that both of these cases are tested.

On the other hand, test suites satisfying control flow adequacy criteria
could fail in revealing faults that can be caught with specification-based cri-
teria. The most notable example is the class of so called missing path faults.
Such faults result from the missing implementation of some items of the spec-
ifications. For example, the program in Figure 14.1 transforms all hexadeci-
mal ASCII codes to the corresponding characters. Thus, it is not a correct
implementation of a specification that requires control characters to be iden-
tified and skipped. A test suite designed only to adequately cover the control
structure of the program will not explicitly include test cases to test for such
faults, since no elements of the structure of the program correspond to this
feature of the specifications.

In practice, control flow testing criteria are used to evaluate the thorough-
ness of test suites derived from specification-based testing criteria, by iden-
tifying elements of the programs not adequately exercised. Unexecuted el-
ements may be due to natural differences between specification and imple-
mentation, or they may reveal flaws of the software or its development pro-
cess: inadequacy of the specifications that do not include cases present in
the implementation; coding practice that radically diverges from the specifi-
cation; or inadequate specification-based test suites.

Control flow adequacy can be easily measured with automatic tools4. The
degree of control flow coverage achieved during testing is often used as an in-
dicator of progress and can be used as a criterion of completion of the testing
activity5.

4At the time of writing commercial tools providing such capability include Cantata, Testbed,
PureCoverge,...

5Application of test adequacy criteria within the testing process is discussed in Chapter 11.

Draft version produced 31st March 2000

14.2. STATEMENT TESTING Structural Testing

14.2 Statement Testing

The first set of control flow elements to be exercised are statements, i.e., nodes
of the control flow graph. The statement coverage criterion requires each
statement to be executed at least once, reflecting the idea that a fault in a
statement cannot be revealed without executing the faulty statement.

� Statement Adequacy Criterion

Let T be a test suite for a program P . T satisfies the statement adequacy
criterion for P , iff, for each statement S of P , there exists at least one test case
in T that causes the execution of S.

This is equivalent to stating that every node in the control flow graph model
of program P is visited by some execution path exercised by a test case in T .

� Statement Coverage

The statement coverage CStatement of T for P is the fraction of statements
of program P executed by at least one test case in T .

CStatement =
number of executed statements

number of statements

T satisfies the statement adequacy criterion if CStatement = 1. The ratio
of visited control flow graph nodes to total nodes may be different from the
ratio of executed statements to all statements, depending on the granular-
ity of the control flow graph representation. Nodes in a control flow graph
often represent basic blocks rather than individual statements, and so some� Basic Block Coverage

standards (notably DOD-178B) refer to basic block coverage, thus indicating
node coverage for a particular granularity of control flow graph. For the stan-
dard control flow graph models discussed in Chapter 6, the relation between
coverage of statements and coverage of nodes is monotonic, i.e., if the state-
ment coverage achieved by test suiteT1 is greater than the statement coverage
achieved by test suite T2, then the node coverage is also greater. In the limit,
statement coverage is 1 exactly when node coverage is 1.

Let us consider for example the program of Figure 14.1. The program con-
tains 18 statements. A test suite T0

T0 = f\ "; \test"; \test+case%1Dadequacy"g

does not satisfy the statement adequacy criterion, because it does not cause
the execution of statement ok = 1 at line 34. The test suite T0 results in state-
ment coverage of :94 (17=18), or node coverage of :91 (10=11) relative to the
control flow graph of Figure 14.2. On the other hand, a test suite with only
test case

T1 = f\adequate+test%0Dexecution%7U"g

causes all statements to be executed, and thus satisfies the statement ade-
quacy criterion, reaching a coverage of 1. A test suite

T2 = f\%3D"; \%A"; \a+b"; \test"g

Draft version produced 31st March 2000

Structural Testing 14.3. BRANCH TESTING

also causes all statements to be executed and thus satisfies the statement ad-
equacy criterion. Coverage is not monotone with respect to the size of the test
suites, i.e., test suites that contain fewer test cases may achieve a higher cov-
erage than test suites that contain more test cases. In the former example, T1
contains only one test case, while T0 contains three test cases, but T1 achieves
a higher coverage than T0. (Test suites used in this chapter are summarized
in Table 14.1.)

Criteria can be satisfied by many test suites of different sizes. In the former
example both T1 and T2 satisfy the statement adequacy criterion for program
cgi decode although one consists of a single test case and the other consists
of 4 test cases. Notice that while we typically wish to limit the size of test
suites, in some cases we may prefer a larger test suite over a smaller suite that
achieves the same coverage. A test suite with fewer test cases may be more
difficult to generate or may be less helpful in debugging. Let us consider, for
example, to have missed the 1 in the statement at line ?? of the program in
Figure 14.1. Both test suites would reveal the fault, resulting in a failure, but
T2 would provide better information for localizing the fault, since the pro-
gram fails only for test case \%1D", the only test case of T2 that exercises the
statement at line ??.

On the other hand, a test suite obtained by adding test cases to T2 would
satisfy the statement adequacy criterion, but would not have any particular
advantage over T2 with respect to the total effort required to reveal and local-
ize faults. Designing complex test cases that exercise many different elements
of a unit is seldom a good way to optimize a test suite, although it may oc-
casionally be justifiable when there is large and unavoidable fixed cost (e.g.,
setting up equipment) for each test case regardless of complexity.

Control flow coverage may be measured incrementally while executing a
test suite. In this case, the contribution of a single test case to the overall cov-
erage that has been achieved depends on the order of execution of test cases.
For example, in test suite T2 introduced above, execution of test case \%1D"

exercises 16 of the 18 statements of the program cgi decode, but it exercises
only 1 new statement if executed after \%A". The increment of coverage due
to the execution of a specific test case does not measure the absolute efficacy
of the test case. Measures independent from the order of execution may be
obtained by identifying independent statements. However, in practice we are
only interested in the coverage of the test suite and in the statement not exer-
cised by the test suite, not in the coverage of test cases.

14.3 Branch Testing

A test suite can achieve complete statement coverage without executing all
the possible branches in a program. Consider, for example, a faulty program
cgi decode0 obtained from program cgi decode by removing line 41. The con-
trol flow graph of program cgi decode0 is shown in Figure 14.3. In the new
program there are no statements following the false branch exiting node D.

Draft version produced 31st March 2000

14.3. BRANCH TESTING Structural Testing

Thus, a test suite that tests only translation of specially treated characters but
not treatment of strings containing other characters that are copied without
change satisfies the statement adequacy criterion, but would not reveal the
missing code in program cgi decode0. For example, a test suite T3

T3 = f\ "; \+%0D+%4J"g

satisfies the statement adequacy criterion for program cgi decode0 but does
not exercise the false branch from node D in the control flow graph model of
the program.

 { char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {

*dptr = ' ';
}

while (*eptr) {

True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high + digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else {
*dptr = *eptr;
}

����int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

L

M

Figure 14.3: The control flow graph of function cgi decode0 which is obtained
from the program of Figure 14.1 after removing node F.

The branch adequacy criterion requires each branch of the program to be

Draft version produced 31st March 2000

Structural Testing 14.4. CONDITION TESTING

executed by at least one test case.
� Branch Adequacy Criterion

Let T be a test suite for a program P . T satisfies the branch adequacy
criterion for P , iff, for each branch B of P , there exists at least one test case in
T that causes execution of B.

This is equivalent to stating that every edge in the control flow graph model
of program P belongs to some execution path exercised by a test case in T .

� Branch Coverage

The branch coverage CBranch of T for P is the fraction of branches of pro-
gram P executed by at least one test case in T .

CBranch =
number of executed branches

number of branches

T satisfies the branch adequacy criterion if CBranch = 1.
Test suite T3 achieves branch coverage of :88 since it executes 7 of the 8

branches of program cgi decode0. Test suite T2 satisfies the branch adequacy
criterion, and would reveal the fault. Intuitively, since traversing all edges of
a graph causes all nodes to be visited, test suites that satisfy the branch ade-
quacy criterion for a program P satisfy also the statement adequacy criterion
for the same program.6 The contrary is not true, as illustrated by test suite T3
for the program cgi decode0 presented above.

14.4 Condition Testing

Branch coverage is useful for exercising faults in the way a computation has
been decomposed into cases. Condition coverage considers this decomposi-
tion in more detail, forcing exploration not only of both possible results of a
boolean expression controlling a branch, but also of different combinations
of the individual conditions in a compound boolean expression.

Assume, for example, that we have forgotten the first operator ’�’ in the
conditional statement at line 32 resulting in the faulty expression

(digit_high == 1 || digit_low == -1):

As trivial as this fault seems, it can easily be overlooked if only the outcomes
of complete boolean expressions are explored. The branch adequacy crite-
rion can be satisfied, and both branches exercised, with test suites in which
the first comparison evaluates always to False and only the second is varied.
Such tests do not systematically exercise the first comparison, and will not re-
veal the fault in that comparison. Condition adequacy criteria overcome this
problem by requiring different elementary conditions of the decisions to be
separately exercised.

6We can consider entry and exit from the control flow graph as branches, so that branch ade-
quacy will imply statement adequacy even for units with no other control flow.

Draft version produced 31st March 2000

14.4. CONDITION TESTING Structural Testing

The simplest condition adequacy criterion, called basic (or elementary)
condition coverage requires each elementary condition to be covered, i.e.,
each elementary condition shall have a True and a False outcome at least
once during the execution of the test set. The basic conditions, sometimes
also called elementary conditions, are comparisons, references to boolean
variables, and other boolean-valued expressions whose component sub-ex-
pressions are not boolean values.

� Basic Condition Adequacy Crite-
rion Let T be a test suite for a program P . T covers all basic conditions ofP , i.e.,

it satisfies the basic condition adequacy criterion for P , iff each basic condi-
tion has a true outcome for for at least one test case in T and a false outcome
for at least one test case in T .

� CBasic Condition

The basic condition coverage CBasic Condition of T for P is the fraction of
the total number of truth values assumed by the basic conditions of program
P during the execution of all test cases in T .

CBasic Condition =
total number of truth values assumed by all basic conditions

total number of truth values of all basic conditions

T satisfies the basic condition adequacy criterion if CBasic Conditions = 1.
Notice that the total number of truth values of all basic conditions is twice
the number of basic conditions, since each basic condition can assume value
true or false. For example, the program in Figure 14.1 contains five basic con-
ditions, which may take ten possible truth values. Three basic conditions
correspond to the simple decisions at lines ??, ??, and 32, i.e., decisions that
contain only one basic condition. Thus they are covered by any test suite that
covers all branches. The last two conditions correspond to the compound de-
cision at line 32. In this case, test suites T1 and T3 cover the decisions without
covering the basic conditions. Test suite T1 covers the decision since it has
an outcome True for the substring %0D and an outcome False for the sub-
string %7U of test case \adequate+test%0Dexecution%7U". However test suite
T1 does not cover the first condition, since it has only outcome True. To sat-
isfy the basic condition adequacy criterion, we need to add an additional test
that produces outcome false for the first condition, e.g., test case \basic%K7".

The basic condition adequacy criterion can be satisfied without satisfying
branch coverage. For example, the test suite

T4 = f\�rst+test%9Ktest%K9"g

satisfies the basic condition adequacy criterion, but not the branch condition
adequacy criterion, since the outcome of the decision is always False. Thuscheck the example and decide if to

ask why as a (solved) exercise or say
it here.

branch and basic condition adequacy criteria are not directly comparable,
i.e., they address different kinds of faults.

An obvious extension that includes both the basic condition and the branch
adequacy criteria is called branch and condition adequacy criterion, with the
obvious definition: A test suite satisfies the branch and condition adequacy� Branch and Condition Adequacy

Draft version produced 31st March 2000

Structural Testing 14.4. CONDITION TESTING

criterion if it satisfies both the branch adequacy criterion and the condition
adequacy criterion.

A more complete extension that includes both the basic condition and
the branch adequacy criteria is the compound condition adequacy criterion,7

which requires a test for each possible combination of basic conditions. It is � Compound Condition Adequacy

most natural to visualize compound condition adequacy as covering a truth
table, with one column for each basic condition and one row for each com-
bination of truth values that might be encountered in evaluating the com-
pound condition. To satisfy the compound condition adequacy criterion, a
test suite must encounter the following evaluations of the compound condi-
tion (digit_high == -1 || digit_low == -1) at line 32:

Test Case digit_high == -1 digit_low == -1

(1) True –
(2) False True
(3) False False

Notice that due to the left-to-right evaluation order and short-circuit eval-
uation of logical OR expressions in the C language, the value True for the first
condition does not need to be combined with both values False and True
for the second condition. The number of test cases required for compound
condition adequacy can, in principle, grow exponentially with the number of
basic conditions in a decision (all 2N combinations of N basic conditions),
which would make compound condition coverage impractical for programs
with very complex conditions. Short circuit evaluation is often effective in
reducing this to a more manageable number, but not in every case. The num-
ber of test cases required to achieve compound condition coverage even for
expressions built from N basic conditions combined only with short-circuit
boolean operators like the && and || of C and Java can still be exponential in
the worst case.

Consider the number of cases required for compound condition cover-
age of the following two boolean expressions, each with five basic conditions.
For the expression a && b && c && d && e, compound condition coverage
requires:

Test Case a b c d e
(1) True True True True True
(2) True True True True False
(3) True True True False –
(4) True True False – –
(5) True False – – –
(6) False – – – –

For the expression (((a || b) && c) || d) && e, however, compound
condition adequacy requires many more combinations:

7Compound condition adequacy is also know as multiple condition coverage

Draft version produced 31st March 2000

14.4. CONDITION TESTING Structural Testing

Test Case a b c d e
(1) True – True – True
(2) False True True – True
(3) True – False True True
(4) False True False True True
(5) False False – True True
(6) True – True – False
(7) False True True – False
(8) True – False True False
(9) False True False True False

(10) False False – True False
(11) True – False False –
(12) False True False False –
(13) False False – False –

An alternative approach that can be satisfied with the same number of
test cases for boolean expressions of a given length regardless of short-circuit
evaluation is the modified condition adequacy criterion, also known as modi-
fied condition / decision coverage or MCDC.� Modi�ed condition adequacy

(MCDC)
The modified condition adequacy criterion requires that each basic con-

dition be shown to independently affect the outcome of each decision. That
is, for each basic condition C, there are two test cases in which the truth val-
ues of all conditions except C are the same, and the compound condition
as a whole evaluates to True for one of those test cases and False for the
other. The modified condition adequacy criterion represents a tradeoff be-
tween number of required test cases and thoroughness of the test, and is re-
quired by important quality standards in aviation, including RTCA/DO-178B,
“Software Considerations in Airborne Systems and Equipment Certification,”
and its European equivalent EUROCAE ED-12B.

Recall the expression (((a || b) && c) || d) && e, which required 13
different combinations of condition values for compound condition adequacy.
For modified condition adequacy, only 6 combinations are required. (Here
they have been numbered for easy comparison with the previous table.)

a b c d e Decision
(1) True – True – True True
(2) False True True – True True
(3) True – False True True True
(6) True – True – False False

(11) True – False False – False
(13) False False – False – False

In the former table, each variable independently affects the true and false
outcome of the expression at least once. The following table indicates which
rows of the former table correspond to the independent effect for each vari-
able:

Draft version produced 31st March 2000

Structural Testing 14.4. CONDITION TESTING

Outcome
Variable True False

a 1 13
b 2 13
c 1 11
d 3 11
e 1 6

Note that the same test case can occur more than once in the table. Case 1
appears here three times in combination with other cases, showing the effect
of conditions a, c, and e. Note also that this is not the only possible set of test
cases to satisfy the criterion; a different selection of boolean combinations
could be equally effective.

As an example, let us consider the following if statement, that appears in
the Java source code of Grappa,8 a graph layout engine distributed by AT&T
Laboratories:

if(pos < parseArray.length

&& (parseArray[pos] == '{'

|| parseArray[pos] == '}'

|| parseArray[pos] == '|')) {

continue;

}

For brevity we will abbreviate each of the basic conditions as follows:

Room for pos < parseArray.length

Open for parseArray[pos] == '{'

Close for parseArray[pos] == '}'

Bar for parseArray[pos] == '|')

In this case again, the requirements for compound condition coverage
and modified condition adequacy coverage are the same. We must have the
following assignments of truth values:

Test Case Room Open Close Bar Outcome
(1) False – – – False
(2) True True – – True
(3) True False True – True
(4) True False False True True
(5) True False False False False

8The statement appears in file Table.java. This source code is copyright 1996, 1997, 1998 by
AT&T Corporation. Grappa is distributed as “open source” software, available at the time of this
writing from http://www.research.att.com/sw/tools/graphviz/. The formatting of the line
has been altered for readability in this printed form.

Draft version produced 31st March 2000

14.5. PATH TESTING Structural Testing

The basic condition Room independently affects the outcome of the deci-
sion for test cases (1) and (2), i.e., in these two cases the outcome of the full
decision changes if only the value of Room is changed.

Note that, for the purpose of determining modified condition adequacy
coverage, we are permitted to assume arbitrary assignments of truth values
to the “don’t care” or “not evaluated” conditions, except for the basic condi-
tion whose effect we are showing. For example, we may consider case (1)
as including the assignment hFalse;True;True;Truei and (2) as including
hTrue;True;True;Truei, thereby differing only in the assignment to theRoom
condition and in the outcome of the evaluation. Consider what would hap-
pen if we did not treat the “don’t care” conditions in this manner: It is non-
sense to require an actual test case with assignments hFalse;True;True;Truei,
because the value of parseArray[pos] is undefined when

pos >= parseArray.length:

Test cases (2) and (3) establish that condition Open has had an indepen-
dent affect on the decision, and likewise cases (3) and (4) show the effect of
Close and cases (4) and (5) show the effect of Bar.

The modified condition adequacy criterion can be satisfied withN+1 test
cases.

Q14.1. Prove that the number of test cases required to satisfy the modified condi-
tion adequacy criterion for a predicate with N basic conditions is N + 1.

14.5 Path Testing

Decision and condition adequacy criteria force consideration of individual
program decisions. Sometimes, though, a fault is revealed only through ex-
ercise of some sequence of decisions, i.e., a particular path through the pro-
gram. It is simple (but impractical, as we will see) to define a coverage crite-
rion based on complete paths rather than individual program decisions

� Path Adequacy Criterion

Let T be a test suite for a program P . T satisfies the path adequacy crite-
rion for P , iff, for each path p of P , there exists at least one test case in T that
causes the execution of p.

This is equivalent to stating that every path in the control flow graph model
of program P is exercised by a test case in T .

� Path Coverage

The path coverage CPath of T for P is the fraction of paths of program P

executed by at least one test case in T .

CPath =
number of executed paths

number of paths

Unfortunately, the number of paths in a program with loops is unbounded,
so this criterion cannot be satisfied for any but the most trivial programs. For

Draft version produced 31st March 2000

Structural Testing 14.5. PATH TESTING

A

C

B

D E

F G

H I

L

M

LL

B B B

L

B

A

C

B

D E

F G

H I

L

M

(i) (ii)

Figure 14.4: Deriving a tree from a control flow graph to derive sub-paths for
boundary/interior testing. Part (i) is the control flow graph of the C function
cgi decode, identical to Figure 14.1 but showing only node identifiers without
source code. Part (ii) is a tree derived from part (i) by following each path in
the control flow graph up to the first repeated node. The set of paths from
the root of the tree to each leaf is the required set of sub-paths for bound-
ary/interior coverage.

program with loops, the denominator in the computation of the path cover-
age becomes infinite, and thus path coverage is zero no matter how many test
cases are executed.

To obtain a practical criterion, it is necessary to partition the infinite set
of paths into a finite number of classes, and require only that representatives
from each class be explored. Useful criteria can be obtained by limiting the
number of paths to be covered. Relevant subsets of paths to be covered can
be identified by limiting the number of traversals of loops, the length of the
paths to be traversed, or the dependencies among selected paths.

The boundary interior criterion groups together paths that differ only in
the sub-path they follow when repeating the body of a loop. � Boundary Interior Criterion

Figure 14.4 illustrates how the classes of sub-paths distinguished by the
boundary interior coverage criterion can be represented as paths in a tree
derived by “unfolding” the control flow graph of function cgi decode.

Figure 14.5 illustrates a fault that may not be uncovered using statement or
decision testing, but will assuredly be detected if the boundary interior path

Draft version produced 31st March 2000

14.5. PATH TESTING Structural Testing

- 1: typedef struct cell {

- 2: itemtype itemval;

- 3: struct cell *link;

- 4: } *list;

- 5:
- 6:
- 7: #define NIL ((struct cell *) 0)

- 8:
- 9: itemtype search(list *l, keytype k)

-10: {

-11: struct cell *p = *l;

-12: struct cell *back = NIL;

-13:
-14: /* Case 1: List is empty */

-15: if (p == NIL) {

-16: return NULLVALUE;

-17: }

-18:
-19: /* Case 2: Key is at front of list,

-20: * No rearrangement is necessary

-21: */

-22: if (k == p->itemval) {

-23: return p->itemval;

-24: }

-25:
-26: /* Remaining cases are simpler because we can omit

-27: * special cases for beginning of list.

-28: * Simple sequential search, keeping a pointer one back

-29: * to enable relinking.

-30: */

-31: /* OOPS, we should have initialized back=p; */

-32: p=p->link;

-33: while (1) {

-34: if (p == NIL) {

-35: return NULLVALUE;

-36: }

-37: if (k==p->itemval) {

-38: /* Move to front */

-39: back->link = p->link;

-40: p->link = *l;

-41: *l = p;

-42: return p->itemval;

-43: }

-44: back=p; p=p->link;

-45: }

-46: }

-47:

Figure 14.5: A C function for searching and dynamically rearranging a linked
list, excerpted from a symbol table package. Initialization of the back pointer
is missing, causing a failure only if the search key is found in the second posi-
tion in the list.

Draft version produced 31st March 2000

Structural Testing 14.5. PATH TESTING

criterion is satisfied (the program fails if the loop body is executed exactly
once, i.e., if the search key occurs in the second position in the list).

Although the boundary/interior coverage criterion bounds the number of
paths that must be explored, that number can grow quickly enough to be im-
practical. The number of sub-paths that must be covered can grow exponen-
tially in the number of statements and control flow graph nodes, even without
any loops at all. Consider for example the following pseudocode:

if (a) {

S1;

}

if (b) {

S2;

}

if (c) {

S3;

}

...

if (x) {

Sn;

}

The sub-paths through this control flow can include or exclude each of
the statements Si, so that in total N branches result in 2N paths that must
be traversed. Moreover, choosing test data to force execution of one partic-
ular path may be very difficult, or even impossible if the conditions are not
independent.9

Since coverage of non-looping paths is expensive, we can consider a vari-
ant of the boundary/interior criterion that treats loop boundaries similarly
but is less stringent with respect to other differences among paths.

� Loop Boundary Adequacy Crite-
rionLet T be a test suite for a program P . T satisfies the loop boundary ade-

quacy criterion for P iff, for each loop l in P ,

� In at least one execution, control reaches the loop and then the loop
control condition evaluates to False the first time it is evaluated.10

� In at least one execution, control reaches the loop and then the body of
the loop is executed exactly once before control leaves the loop.

� In at least one execution, the body of the loop is repeated more than
once.

One can define several small variations on the loop boundary criterion.
For example, we might excuse from consideration loops that are always ex-
ecuted a definite number of times (e.g., multiplication of fixed-size transfor-
mation matrices in a graphics application). In practice the last part of the

9Section 14.9 below discusses infeasible paths.
10For a while or for loop, this is equivalent to saying that the loop body is executed zero times.

Draft version produced 31st March 2000

14.5. PATH TESTING Structural Testing

 return p->itemval;
}

itemtype search(list *l, keytype k)

{ struct cell *p = *l;
 struct cell *back = NIL;
 if (p == NIL) {

 return NULLVALUE;
}

 if (k == p->itemval) {

 while (1) {

{ struct cell *p = *l;
 struct cell *back = NIL;
 if (p == NIL) {

 back = p;
 p = p->link;

 return NULLVALUE;
}

 if (k == p->itemval) {

 back->link = p->link;
 p->link = *l;
 *l = p;
 return p->itemval;

 back = p;
 p = p->link;

false

false

true

true

false
true

true

false

B

C

E

F

G

H

A

I

J

K

D

Figure 14.6: The control flow graph of C function search with move-to-front
feature.

Draft version produced 31st March 2000

Structural Testing 14.5. PATH TESTING

BC

E

F

H

A

I

JK

D

G

F

Figure 14.7: The boundary/interior sub-paths for C function search.

criterion should be “many times through the loop” or “as many times as pos-
sible,” but it is hard to make that precise (how many is “many?”).

It is easy enough to define such a coverage criterion for loops, but how
can we justify it? Why should we believe that these three cases — zero times
through, once through, and several times through — will be more effective
in revealing faults than, say, requiring an even and an odd number of iter-
ations? The intuition is that the loop boundary coverage criteria reflect a
deeper structure in the design of a program. This can be seen by their re-
lation to the reasoning we would apply if we were trying to formally verify
the correctness of the loop. The basis case of the proof would show that the
loop is executed zero times only when its postcondition (what should be true
immediately following the loop) is already true. We would also show that an
invariant condition is established on entry to the loop, that each iteration of
the loop maintains this invariant condition, and that the invariant together
with the negation of the loop test (i.e., the condition on exit) implies the post-
condition. The loop boundary criterion does not require us to explicitly state
the precondition, invariant, and postcondition, but it forces us to exercise es-
sentially the same cases that we would analyze in a proof.

There are additional path-oriented coverage criteria that do not explicitly
consider loops. Among these are criteria that consider paths up to a fixed
length. The most common such criteria are based on Linear Code Sequence
and Jump (LCSAJ). An LCSAJ is defined as a body of code through which the � Linear Code Sequence and Jump

(LCSAJ)flow of control may proceed sequentially, terminated by a jump in the con-
trol flow. Coverage of LCSAJ sequences of length 1 is almost, but not quite,

Draft version produced 31st March 2000

14.5. PATH TESTING Structural Testing

equivalent to branch coverage. Stronger criteria can be defined by requiring
N consecutive LCSAJs to be covered. The resulting criteria are also referred
to as TERN+2, where N is the number of consecutive LCSAJs to be covered.
Conventionally, TER1 and TER2 refer to statement and branch coverage, re-
spectively.

Q14.2. We have stated that coverage of individual LCSAJs is almost, but not quite,
equivalent to branch coverage. How can they differ? Devise a small example
of code which requires more test cases to satisfy TER3 (individual LCSAJs)
than TER2 (branch coverage).

The number of paths to be exercised can also be limited by identifying a
subset that can be combined (in a manner to be described shortly) to form all
the others. Such a set of paths is called a “basis set,” and from graph theory
we know that every connected graph with n nodes, e edges, and c connected
components has a basis set of only e�n+ c independent sub-paths. Produc-
ing a single connected component from a program flow graph by adding a
“virtual edge” from the exit to the entry, the formula becomes e�n+2 which
is called the cyclomatic complexity of the control flow graph. Cyclomatic test-
ing consists of attempting to exercise any set of execution paths that is a basis
set for the control flow graph.� Cyclomatic testing

To be more precise, the sense in which a basis set of paths can be com-
bined to form other paths is to consider each path as a vector of counts in-
dicating how many times each edge in the control flow graph was traversed,
e.g., the third element of the vector might be the number of times a particu-
lar branch is taken. The basis set is combined by adding or subtracting these
vectors (and not, as one might intuitively expect, by concatenating paths).
Consider again the pseudocode

if (a) {

S1;

}

if (b) {

S2;

}

if (c) {

S3;

}

...

if (x) {

Sn;

}

While the number of distinct paths through this code is exponential in the
number of if statements, the number of basis paths is small: Only n + 1 if
there are n if statements. We can represent one basis set (of many possible)

Draft version produced 31st March 2000

Structural Testing 14.6. PROCEDURE CALL TESTING

for a sequence of four such if statements by indicating whether each predi-
cate evaluates to True or False:

1 False False False False
2 True False False False
3 False True False False
4 False False True False
5 False False False True

The path represented as hTrue;False;True;Falsei is formed from these
by adding paths 2 and 4 and then subtracting path 1.

Cyclomatic testing does not require that any particular basis set is covered.
Rather, it counts the number of independent paths that have actually been
covered (i.e., counting a new execution path as progress toward the coverage
goal only if it is independent of all the paths previously exercised), and the
coverage criterion is satisfied when this count reaches the cyclomatic com-
plexity of the code under test.

14.6 Procedure Call Testing

The criteria considered to this point measure coverage of control flow within
individual procedures. They are not well suited to integration testing or sys-
tem testing. It is difficult to steer fine-grained control flow decisions of a unit
when it is one small part of a larger system, and the cost of achieving fine-
grained coverage for a system or major component is seldom justifiable. Usu-
ally it is more appropriate to choose a coverage granularity commensurate
with the granularity of testing. Moreover, if unit testing has been effective,
then faults that remain to be found in integration testing will be primarily
interface faults, and testing effort should focus on interfaces between units
rather than their internal details.

In some programming languages (FORTRAN, for example), a single pro-
cedure may have multiple entry points, and one would want to test invoca-
tion through each of the entry points. More common are procedures with
multiple exit points. For example, the code of Figure 14.5 has four different
return statements. One might want to check that each of the four returns is � Procedure Entry and Exit Test-

ingexercised in the actual context in which the procedure is used. Each of these
would have been exercised already if even the simplest statement coverage
criterion were satisfied during unit testing, but perhaps only in the context
of a simple test driver; testing in the real context could reveal interface faults
that were previously undetected.

Exercising all the entry points of a procedure is not the same as exercising
all the calls. For example, procedureAmay call procedureC from two distinct
points, and procedure B may also call procedure C. In this case, coverage
of calls of C means exercising all three of the points of calls. If the compo- � Procedure Call Testing

nent under test has been constructed in a bottom-up manner, as is common,
then unit testing of A and B may already have exercised calls of C. In that

Draft version produced 31st March 2000

14.7. IMPLICIT CONTROL FLOW Structural Testing

case, even statement coverage of A and B would ensure coverage of the calls
relation (although not in the context of the entire component). Commonly
available testing tools can measure coverage of entry and exit points.

The search function in Figure 14.5 was originally part of a symbol table
package in a small compiler. It was called at only point, from one other C
function in the same unit.11 That C function, in turn, was called from tens of
different points in a scanner and a parser. Coverage of calls requires exercis-
ing each statement in which the parser and scanner access the symbol table,
but this would almost certainly be satisfied by a set of test cases exercising
each production in the grammar accepted by the parser.

When procedures maintain internal state (local variables that persist from
call to call), or when they modify global state, then properties of interfaces
may only be revealed by sequences of several calls. In object-oriented pro-
gramming, local state is manipulated by procedures called methods, and sys-
tematic testing necessarily concerns sequences of method calls on the same
object. Even simple coverage of the “calls” relation becomes more challeng-
ing in this environment, since a single call point may be dynamically bound
to more than one possible procedure (method). While these complications
may arise even in conventional procedural programs (e.g., using function
pointers in C), they are most prevalent in object-oriented programming. Not
surprisingly, then, approaches to systematically exercising sequences of pro-
cedure calls are beginning to emerge mainly in the field of object-oriented
testing, and we therefore cover them in Chapter 17.

14.7 Implicit Control Flow

Note for the readers of this draft version: This section will deal with execution
paths that don’t show up directly in the control flow graph model. This is
primarily exception handling.

TO BE WRITTEN

14.8 Comparing Structural Testing Criteria
Advanced

The power and cost of the structural test adequacy criteria described in this
chapter can be formally compared using the subsumes relation introduced in
Chapter 11. The relations among these criteria are illustrated in Figure 14.8.
They are divided into practical criteria which can always be satisfied by test
sets whose size is at most a linear function of program size, and techniques
which are of mainly theoretical interest because they may require impracti-

11The “unit” in this case is the C source file, which provided a single data abstraction through
several related C functions, much as a C++ or Java class would provide a single abstraction
through several methods. The search function was analogous in this case to a private (internal)
method of a class.

Draft version produced 31st March 2000

Structural Testing 14.9. THE INFEASIBILITY PROBLEM

Path testing

Statement testing

Branch testing Basic condition testing

Branch and condition testing

MCDC testing

Compound condition testing

Cyclomatic testing

Loop boundary testing

Boundary interior testing

LCSAJ testing

T
H

E
O

R
E

T
IC

A
L

C
R

IT
E

R
IA

P
R

A
C

T
IC

A
L

C
R

IT
E

R
IA

Figure 14.8: The subsumption relation among structural test adequacy crite-
ria described in this chapter.

cally large numbers of test cases or even (in the case of path coverage) an
infinite number of test cases.

The hierarchy can be roughly divided into a part that relates requirements
for covering program paths, and another part that relates requirements for
covering combinations of conditions in branch decisions. The two parts come
together at branch coverage. Above branch coverage, path-oriented criteria
and condition-oriented criteria are generally separate, because there is con-
siderable cost and little apparent benefit in combining them. Statement cov-
erage is at the bottom of the subsumes hierarchy for systematic coverage of
control flow. Applying any of the structural coverage criteria, therefore, im-
plies at least executing all the program statements.

Draft version produced 31st March 2000

14.9. THE INFEASIBILITY PROBLEM Structural Testing

14.9 The Infeasibility Problem
Advanced

Sometimes no set of test cases is capable of satisfying some test coverage cri-
terion A for a particular program P , because the criterion requires execution
of some program element that can never be executed. This is true even for
the statement coverage criterion, weak as it is. Unreachable statements can
occur as a result of defensive programming (e.g., checking for error condi-
tions that never occur) and code reuse (reusing code that is more general
than strictly required for the application). Large amounts of “fossil” code may
accumulate when a legacy application becomes unmanageable, and may in
that case indicate serious maintainability problems, but some unreachable
code is common even in well-designed, well-maintained systems, and must
be accomodated in testing processes that otherwise require satisfaction of
coverage criteria.

Stronger coverage criteria tend to require coverage of more infeasible ele-
ments. For example, in discussing multiple condition coverage, we implicitly
assumed that basic conditions were independent and could therefore occur
in any combination. In reality, basic conditions may be comparisons or other
relational expressions and may be interdependent in ways that make certain
combinations infeasible. For example, in the expression (a > 0 && a < 10),
it is not possible for both basic conditions to be False. Fortunately, short-
circuit evaluation rules ensure that the combination hFalse;Falsei is not re-
quired for multiple condition coverage of this particular expression in a C
or Java program. For the modified condition/decision adequacy criterion in
particular, one can make a strong argument that a test case that is required
but not feasible indicates a defect in design or coding.

The infeasibility problem is most acute for structural coverage criteria for
paths in the control flow graph, such as the boundary/interior coverage cri-
terion. Consider, for example, the following simple code sequence:

if (a < 0) {

a = 0;

}

if (a > 10) {

a = 10;

}

It is not possible to traverse the sub-path on which the True branch is taken
for both if statements. In the trivial case where these if statements occur
together, the problem is both easy to understand and to avoid (by placing the
second if within an else clause), but essentially the same interdependence
can occur when the decisions are separated by other code.

An easy but rather unsatisfactory solution to the infeasibility problem is to
make allowances for it by setting a coverage goal less than 100%. For example,
we could require 90% coverage of basic blocks, on the grounds that no more
than 10% of the blocks in a program should be infeasible. A 10% allowance

Draft version produced 31st March 2000

Structural Testing 14.10. THE INCREMENTALITY PROBLEM

for infeasible blocks may be insufficient for some units and too generous for
others.

The other main option is requiring justification of each element left un-
covered. This is the approach taken in some quality standards, notably RTCA/-
DO-178B and EUROCAE ED-12B for modified condition/decision coverage
(MCDC). Explaining why each element is uncovered has the salutory effect of
distinguishing between defensive coding and sloppy coding or maintenance,
and may also motivate simpler coding styles. However, it is more expensive
(because it requires manual inspection and understanding of each element
left uncovered) and is unlikely to be cost-effective for criteria that impose test
obligations for large numbers of infeasible paths. This problem, even more
than the large number of test cases that may be required, leads us to conclude
that stringent path-oriented coverage criteria are seldom useful.

14.10 The Incrementality Problem
Advanced

One would like the cost of re-testing a program after a change to be propor-
tional to the size of the change, and not proportional to the size of the pro-
gram. Structural coverage criteria are not incremental in this sense. Even a
small change has an unpredictable effect on coverage. If a set of test cases
has achieved a certain level of coverage before the change, it is impossible
to determine what level of coverage the same test set will produce after the
program change. This implies that measurement of structural coverage in
quickly evolving software cannot be used in the same way it might for a stable
unit. For example, during development of a unit, structural coverage might
be used to identify untested elements, but measures of satisfaction of cover-
age would be of little value. When the unit is delivered to an independent test
group, structural coverage could be more profitably used as an indicator of
the thoroughness of testing by the developers, or as a termination condition.

Open Research Issues

Devising and comparing structural criteria was a hot topic in the 80s. It is
no longer an active research area for imperative programming, but new pro-
gramming paradigms or design techniques present new challanges. Poly-
morphism, dynamic binding, object oriented and distributed code open new
problems and require new techniques, as discussed in other chapters. Appli-
cability of structural criteria to architectural design descriptions is still under
investigation. Usefulness of structural criteria for implicit control flow has
been addressed only recently.

Early testing research, including research on structural coverage criteria,
was concerned largely with improving the fault-detection effectiveness of test-
ing. Today, the most pressing issues are cost and schedule. Better auto-
mated techniques for identifying infeasible paths will be necessary before

Draft version produced 31st March 2000

14.10. THE INCREMENTALITY PROBLEM Structural Testing

more stringent structural coverage criteria can be seriously considered in any
but the most critical of domains. Alternatively, for many applications it may
be more appropriate to gather evidence of feasibility from actual product use;
this is called residual test coverage monitoring and is a topic of current re-
search. The incrementality problem described above is particularly impor-
tant in the context of rapid cycles of product development and change, and
will surely be a topic of further testing research for the next several years. In
particular we expect further research in inferring coverage during regression
testing.

Further Reading

The main structural adequacy criteria are presented in Myers’ The Art of Soft-
ware Testing [Mye79], which has been a preeminent source of information
for more than two decades. It is a classic despite its age, which is evident
from the limited set of techniques addressed and the programming language
used in the examples. The excellent survey by Adrion et al. [ABC82] remains
the best overall survey of testing techniques, despite similar age. Frankl and
Weyuker [FW93] provide a modern treatment of the subsumption hierarchy
among structural coverage criteria.

Boundary/interior testing is presented by Howden [How75]. Woodward
et al. [WHH80] present LCSAJ testing. Cyclomatic testing is described by Mc-
Cabe [McC83].

Related Topics

Readers with a strong interest in coverage criteria should continue with the
next chapter, which presents data flow testing criteria. Others may wish to
proceed to chapters that describe application of structural testing in the par-
ticular problem domains. Chapter 16 describes testing programs with com-
plex data structures, and Chapter 17 discusses testing object-oriented pro-
grams. Readers wishing a more comprehensive view of unit testing should
continue with Chapters 20 on test data generation and 21 on design of test
scaffolding. Tool support for structural testing discussed in Chapter 29. The
process context of structural testing is described in Chapter 31.

Draft version produced 31st March 2000

Bibliography

[ABC82] W. Richards Adrion, Martha A. Branstad, and John C. Cherniavsky.
Validation, verification, and testing of computer software. ACM
Computing Surveys, 14(2):159–192, June 1982.

[FW93] Phyllis. G. Frankl and Elain G. Weyuker. Provable improvements
on branch testing. IEEE Transactions on Software Engineering,
19(10):962–975, October 1993.

[How75] W. Howden. Methodology for the generation of program test data.
IEEE Transactions on Computer, 1975.

[McC83] T. McCabe. Structured Testing. IEEE Computer Society Press, 1983.

[Mye79] G. Myers. The Art of Software Testing. John Wiley and Sons, 1979.

[WHH80] M.R. Woodward, D. Hedley, and M.A. Hennel. Experience with
path analysis and testing of programs. TSE, 1980.

111

