
Chapter 1

Software Quality

1.1 What is Quality?

The purpose of software quality analysis, or software quality engineering, is to pro-
duce acceptable products at acceptable cost, where cost includes calendar time (time
to market, responsiveness to change requests) as well as conventional measures such
as person-months and payroll cost. But what do we mean by quality? There is no
simple, completely satisfactory answer, because like cost, quality has many different
facets. We can begin to clarify the concept of quality analytically, by considering some
of those facets.

Product and process qualities. Some qualities are properties of software product-
s, while others are properties of the processes by which those products are created,
supported, and evolved. For example, reliability and usability are product qualities,
while visibility and time-to-market are process qualities. It would be folly to attempt
to address the whole field of software process improvement as part of software quali-
ty engineering, and we will not do so here. Instead, we are concerned primarily with
product qualities as the goals of software quality engineering, and process qualities as
means to achieve those goals. For example, development processes with a high degree
of visibility are necessary for creation of products with a high degree of reliability.
The process goals with which software quality engineering is directly concerned are
often on the “cost” side of the ledger. For example, we might have to weigh stringent
reliability objectives against their impact on time-to-market, or seek ways to improve
time-to-market without adversely impacting robustness.

A plethora of terms have been used to describe process aspects of software quali-
ty engineering, including software quality analysis, software quality control, software
quality assurance, and software quality engineering. Among these, the only distinc-
tion we find really useful is between software quality control and all the other terms.
Quality control is specifically a process of measuring differences between results and
goals and providing feedback to the production process; quality analysis, or assurance,
or engineering includes but is not limited to quality control.

1



2 CHAPTER 1. SOFTWARE QUALITY

Software product qualities: Internal and external. Software product qualities can
be divided into those that are directly visible to a customer or client, and those that
primarily affect the software development organization. Reliability, for example, is
directly visible to the client. Maintainability primarily affects the development organi-
zation, although its consequences may indirectly affect the client as well, for example
by increasing the time between product releases. Properties like dependability, latency,
usability, and throughput, which are directly visible to users of a software product, are
calledexternalproperties. Properties like maintainability, reusability, and traceability
which are not directly visible in the product are calledinternal properties, even when
their impact on the software development and evolution processes may indirectly affect
users.

The external properties of software can ultimately be divided into dependability
(does the software do what it is intended to do?) and usefulness. There is no precise
way to distinguish these, but a rule of thumb is that when software is not dependable,
we say it has a fault, or a defect, or (most often) a bug, resulting in an undesirable
behavior or failure.

1.1.1 Dependability

Correctness. The simplest of the dependability properties is correctness: A program
or system is correct if it is consistent with its specification. By definition, a specifi-
cation divides all possible system behaviors1 into two classes,successes(or correct
executions) andfailures. All of the possible behaviors of a correct system are success-
es.

Correctness is an all-or-nothing proposition. A program cannot be mostly correct
or somewhat correct or 30% correct, it is absolutely correct on all possible behaviors
or else it is not correct. It is very easy to achieve correctness, since every program
is correct with respect to some (very bad) specification. Achieving correctness with
respect to a useful specification, on the other hand, is seldom practical for non-trivial
systems. Therefore, while correctness may be a noble goal, we are often interested in
assessing some more achievable level of dependability.

Reliability. Reliability is a statistical approximation to correctness, in the sense that
100% reliability is indistinguishable from correctness. Roughly speaking, reliability is
a measure of the likelihood of correct function for some “unit” of behavior, which could
be a single use or program execution or a period of time. Like correctness, reliability
is relative to a specification (which determines whether a unit of behavior is counted as
a success or failure). Unlike correctness, reliability is also relative to a particular usage
profile. The same program can be more or less reliable depending on how it is used.

Q: We have stated that 100% reliability is indistinguishable from correctness, but
they are not quite identical. Under what circumstance might an incorrect pro-
gram be 100% reliable?Hint: Recall that a program may be more or less reli-

1We are simplifying matters somewhat by considering only specifications of behaviors. A specification
may also deal with other properties, such as the disk space required to install the application, and a system
may thus be “incorrect” also if it violates one of these static properties.

Draft version produced August 20, 1999



1.1. WHAT IS QUALITY? 3

able depending on how it is used, but a program is either correct or incorrect
regardless of usage.

Particular measures of reliability can be used for different units of execution and
different ways of counting success and failure.Availability is an appropriate measure
when a failure has some duration in time. For example, a failure of a network router
may make it impossible to use some functions of a local area network until the service
is restored; between initial failure and restoration we say the router is “down” or “un-
available.” The availability of the router is the proportion of time in which the system
is “up” (providing normal service) as a fraction of total time. Thus, a network router
that averages 1 hour of failure in each 24 hour period would have an availability of23

24
,

or 95:8%.

Q: We might measure the reliability of a network router as the fraction of all pack-
ets that are correctly routed, or as the fraction of total service time in which
packets are correctly routed. When might these two measures be different?
When might availability be the more useful measure of dependability? When
might availability be less useful than the other measure of reliability?

Mean time between failures(MTBF) is yet another measure of reliability, also using
time as the unit of execution. The hypothetical network switch that typically fails once
in a 24 hour period and takes about an hour to recover has a mean time between failures
of 23 hours. Note that availability does not distinguish between two failures of 30
minutes each and one failure lasting an hour, while MTBF does.

Q: If I am downloading a very large file over a slow modem, do I care more about
the availability of my internet service provider or its mean time between fail-
ures?

Safety. The definitions of correctness and reliability have (at least) two major weak-
nesses. First, since the success or failure of an execution is relative to a specification,
they are only as strong as the specification. Second, they make no distinction between a
failure which is a minor annoyance and a failure which results in catastrophe. These are
simplifying assumptions that we accept for the sake of precision, but in some circum-
stances — particularly, but not only, for critical systems — it is important to consider
dependability properties that are less dependent on specification and which do distin-
guish among failures depending on severity.

Software safety is an extension of the well-established field of system safety into
software. Safety is concerned with preventing certain undesirable behaviors, called
hazards.It is quite explicitly not concerned with achieving any useful behavior apart
from whatever functionality is needed to prevent hazards. Software safety is typically
a concern in “critical” systems such as avionics and medical systems, but the basic
principles apply to any system in which particularly undesirable behaviors can be dis-
tinguished from run-of-the-mill failure. For example, while it is annoying when my
word processor crashes, it is much more annoying if it irrecoverably corrupts my doc-
ument files, so the developers of a word processor might consider safety with respect

Draft version produced August 20, 1999



4 CHAPTER 1. SOFTWARE QUALITY

to the hazard of file corruption separately from reliability with respect to the complete
functional requirements for the word processor.

Just as correctness is meaningless without a specification of allowed behaviors,
safety is meaningless without a specification of hazards to be prevented, and in practice
the first step of safety analysis is always finding and classifying hazards. Typically
hazards are associated with some system in which the software is embedded (e.g., the
medical device), rather than the software alone. The distinguishing feature of safety
is that it is concernedonly with these hazards, and not with other aspects of correct
functioning.

The concept of safety is perhaps easier to grasp with familiar physical systems. For
example, lawn-mowers in the U.S. are equipped with an interlock device, sometimes
called a “dead-man switch.” If this switch is not actively held by the operator, the
engine shuts off. The dead-man switch does not contribute in any way to cutting grass;
it’s sole purpose is to prevent the operator from reaching into the mower blades while
the engine runs.

One is tempted to say that safety is an aspect of correctness, because a good system
specification would rule out hazards. However, safety is best considered as a quality
quite distinct from correctness and reliability for two reasons. First, by focusing on
a few hazards and ignoring other functionality, a separate safety specification can be
much simpler than a complete system specification, and therefore easier to verify. To
put it another way, while a good system specificationshouldrule out hazards, we can-
not be confident that either or specifications or our attempts to verify systems are good
enough to provide the degree of assurance we require for hazard avoidance. Second,
even if the safety specification were redundant with regard to the full system specifi-
cation, it is important because (by definition) we regard avoidance of hazards as more
crucial than satisfying other parts of the system specification.

Q: Can a system be correct and yet unsafe?

Q: Under what circumstances can making a system more safe make it less reliable?

1.1.2 Usefulness

It is quite possible to build systems that are very reliable, relatively free from hazards,
and completely unusable. They may be unbearably slow, or have terrible user interfaces
and unfathomable documentation, or be missing several crucial features. How should
these properties be considered in software quality?

One answer is that they are not part of quality at all unless they have been explicitly
specified, since quality is the presence of specified properties. However, a company
whose products are rejected by its customers will take little comfort in knowing that,
by some definitions, they were high quality products.

We can do better by considering quality as fulfillment of required and desired prop-
erties, as distinguished from specified properties. For example, even if a client does not
explicitly specify the required performance of a system, there is alwayssomelevel of
performance which is required to be useful.

One of the most critical tasks in software quality analysis is making desired proper-
ties explicit, since properties that remain unspecified (even informally) are very likely

Draft version produced August 20, 1999



1.2. SOFTWARE QUALITY ANALYSIS 5

to surface unpleasantly when it is discovered that they are not met. In many cases these
implicit requirements can not only be made explicit, but also made sufficiently precise
that they can be made part of dependability or reliability. For example, while it is better
to explicitly recognize usability as a requirement than to leave it implicit, it is better yet
to augment2 usability requirements with specific interface standards, so that a deviation
from the standards is recognized as a defect.

1.2 Software Quality Analysis

We have already stated that the purpose of software quality analysis is to produce
acceptable products at acceptable cost, and we have attempted some analysis of the
properties that might bear on whether a product is acceptable. However, almost ev-
ery software development activity either has some direct affect on these qualities or at
least affects our ability to achieve them cost-effectively. What then should we include
under the rubric of software quality analysis, and what exclude? Since specifications
are crucial to software quality, should software specification be a sub-topic of quality
analysis? Since process and product quality are intertwined, should software process
be a sub-topic of software quality? We have already answered with respect to process:
We will address some aspects of software process, but only as a means to other ends.
We will take the same approach to requirements specification and many other software
development activities, addressing parts of them as they pertain to software quality but
leaving greater parts unaddressed.

It is often said that quality cannot be tested into a product at the end of development;
it must be built in from the beginning. Nonetheless, validation and verification are
a large part of the focus of software quality analysis; much of the “building in” is
in laying the groundwork for validation and verification (V&V), e.g., ensuring that
requirements have been specified and the system has been designed in a manner that
makes V&V possible and cost-effective. Nor does a focus on V&V imply concentrating
software quality analysis in the final stages of a software development process. On
the contrary, not only are many V&V activities carried out in early stages (and on
throughout product evolution as well), but theprocesspart of software quality analysis
is particularly concerned with choosing appropriate and effective V&V activities at
each stage.

1.2.1 Validation and Verification

Assessing the degree to which a software system actually fulfills its requirements, in
the sense of meeting the user’s real needs, is called “validation.” Fulfilling require-
ments is not the same as conforming to a requirements specification. In the first place,
a specification is a statement about a particular proposed solution to a problem, while

2Interface standards augment, rather than replace usability requirements, because conformance to the
standards is not sufficient assurance that the requirement is met. This is the same relation that other spec-
ifications have to the user requirements they are intended to fulfill. In general, verifying conformance to
specifications does not replace validating satisfaction of requirements.

Draft version produced August 20, 1999



6 CHAPTER 1. SOFTWARE QUALITY

a well-written requirements statement should be general enough to admit of differen-
t solutions. More fundamentally, specifications are written by people, and therefore
contain mistakes.

“Verification” is checking the consistency of an implementation to a specification.
Here, “specification” and “implementation” are roles, not particular artifacts. For ex-
ample, an overall design could play the role of “specification” and a more detailed
design could play the role of “implementation;” checking whether the detailed design
was consistent with the overall design would then be verification of the detailed de-
sign. Later, the same detailed design could play the role of “specification” with respect
to source code, which would be verified against the design. In every case, though,
verification is a check of consistency between two formal descriptions, in contrast to
validation which compares a formal description (whether a requirements specification,
a design, or a running system) against actual needs.

Validation against actual requirements necessarily involves human judgment and
the potential for ambiguity, misunderstanding, and disagreement. In contrast, a speci-
fication should be sufficiently precise and unambiguous that there can be no disagree-
ment about whether a particular system behavior is correct. Including a statement
of a property in a requirements specification document does not render it verifiable.
For example, statements like “The system shall be controlled through a user-friendly
graphical user interface” are inherently unverifiable, although they can be validated.

Actual user requirements can almost never be fully formalized. Instead, a speci-
fication contains statements of properties which are intended collectively to fulfill the
requirements. Some examples:

1.3 Exercises

Q: Software application domains can be characterized by the relative importance
of schedule (calendar time), total cost, and dependability. For example, while
all three are important for game software, schedule (shipping product in Septem-
ber to be available for holiday purchases) has particular weight, while depend-
ability can be somewhat relaxed. Characterize a domain you are familiar with
in these terms.

Q: Consider safety analysis for a software application domain with which you are
familiar. What (if any) are the “hazards” that are sufficiently important to
be considered separately from the main specification of required functionality?
How are they typically addressed?

Q: We might have avoided a good deal of trouble by defining software quality
analysis existentially, i.e., software quality analysis is what software quality
analysts do. What would that mean in your organization? Would that definition
have left out activities that, in your view, ought to be included in the scope of
software quality analysis or software quality engineering?

Draft version produced August 20, 1999


