
Asped: Detecting Bugs with Abstract
Dependence

DANIEL JACKSf3N

Carnegie Mellon University

Aspect is a static analysis technique for detecting bugs in imperative programs, consisting of an
annotation language and a checking tool. Like a type declaration, an Aspect annotation of a
procedure is a kind of declarative, partial specification that can be checked efficiently in a
modu~ar fashion. But instead of constraining the types of arguments and results, Aspect

specifications assert dependence that should hold between inputs and outputs. The checker uses
a simple dependence analysis to check code against annotations and can find bugs automatically
that are not detectable by other static means, especially errors of omission, which are common,

but resistant to type checking. This article explains the basic scheme and shows how it is

elaborated to handle data abstraction and aliasing.

Categories and Subject Descriptors: D,2.2 [Software Engineering]: Tools and

Techniques-modules and interfaces; D.2.4 [Software Engineering]: Program

Verficiation-assertiorz checkers; D.2.5 [Software Engineering]: Testing and Debugging—sym -

bolic ezecutton: D.3.3 [Programming Language]: Language Constructs and Features—abstract
data types; F.3.1 [Logics and Meanings of Programs]: Specifying and Reasoning about
Programs-assertions; mechanical verification; pre- and postconditions

General Terms: Documentation, Languages, Verification

Additional Key Words and Phrases: 13ataflow dependence, partial specification, partial verifica-

tion

1. INTRODUCTION

Aspect is an attempt to find some middle ground between program verifica-

tion and type checking. Verification can in theory detect any bug, but for

everyday projects its cost is prohibitive. Type checking, on the other hand, is

cheap, but catches only the grossest flaws.

Currentlyj the only economical alternative is testing. But its dynamic

nature brings many disadvantages. Execution demands completeness, both in

the code-ruling out the analysis of unfinished programs—and in the test

case~~—requiring full details of a sample input, however simple a property of

This research was supported by DAFWA grants NOO014-89J-1988 and F33615-93-1-1330, by NSF
grants 8910848-CCR and CCR-9308726, and by a grant from the TRW Corporation.
Author’s address: School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213; email: daniel.jackson(?cs. crnu.edu.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinay, Im. (ACM. TO COPY
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

@ 1995 ACM 1049-331X/95/0400-0109 $03.50

ACM TransactIons on Software Enghwermg and Methodology. Vol 4, No ‘2,Aprd 1995, Page. 109-145

110 . Daniel Jackson

the output one wants to determine. A static analysis like Aspect manipulates

abstract properties of the code, and it can thus provide partial information at

lower cost than testing and can be applied to fragments of a program during

its construction.

A number of static analyses in this vein have been proposed. All of these,

roughly speaking, are based on abstractions of the program state. The state

may be abstracted explicitly in a state transition model that is finite

[Henderson 1975] or made tractable by approximation [Bourdoncle 1993], or

implicitly through a propositional logic [Howden and Wieand 1994; Perry

1989 b], a set constraint language [Russell et al. 1994], or a type system

[Freeman and Pfenning 1991; Strom 1983]. Section 6 discusses these schemes

in more detail.

Aspect is not based on the values of states, but on dataflow dependence

between their components. Instead of asserting, like a type declaration, that

the poststate of a procedure lies in some set, an Aspect specification asserts a

set of dependence that the components of the poststates should bear on the

components of the prestates. If a required dependence is missing from the

code, then the poststate is computed without adequate information, and there

must be a bug. Checking involves little more than the construction of pro-

gram dependence, so it is automatic, fast, and easy to implement.

The high cost of traditional verification comes not only from the intractabil-

ity of proofs (which burdens the user with providing lemmas and proof

strategies), but also from the difficulty of writing complete formal specifica-

tions. Aspect specifications are trivial in comparison and certainly a lot less

trouble to write than the code itself. They are not, however, as simple as type

declarations.

Although static, in one respect the Aspect analysis is more like testing than

verification. In contrast to state-based analyses like type checking, Aspect

never reports spurious errors. So when an error is reported, there must be a

bug in the code (or, of course, a mistake in the specification), whereas a type

error might, for example, indicate a flaw in dead code that will never affect

an execution. The flip side of this benefit is that Aspect offers no guarantees

of partial correctness: there is no well-defined class of run-time errors that

are eliminated by an empty error listing. To put it another way, type checking

is sufficient (to rule out run-time type errors) but not necessary; Aspect’s

checking is necessary but not sufficient.

Luckily, Aspect appears to detect a class of bug that complements the class

detected by state-based techniques. It is especially good at catching errors of
omission, which plague big projects but usually elude type checking. The

empty procedure, SKIP, satisfies most type specifications, but no nonempty

Aspect specification.

Aspect has been implemented for a programming language that contains

most of the features that complicate static analysis: aliasing, polymorphism,

exceptions, etc. It relies on strong static typing and works best when a

program is structured around abstract types. No large case study has yet

been performed. However, a few thousand lines of specification have been

written, and bugs have been found in real code.

ACM TransactIons on Software Engmeermg and Methodology, Vol 4, No. 2, Aprd 1995

Detecting Bugs with Abstract Dependences . 111

procedure updateAuerage (n: int; a, x: real)

O/Oa ~ a, n, x

‘ZOn * n

1 s: real

2 s=a Xn

3 S=s+x

4 n=n+l

5 Cl. =S/n

Fig.1. Aprocedure annotated with Aspect assertions.

This article explains the main ideas of Aspect: the meaning of assertions,

how they are checked, and how two vital practical issues—aliasing and data

abstraction—are handled. Since the assertion language is tiny, and should

anyway be tailored to the programming language, its syntax is conveyed only

in palssing. Instead, the article uses a simple semantic model to explain the

meaning and checking of assertions. This model is sufficient to demonstrate

the application of Aspect to an Algol-like language with a module structure

for encapsulating abstract types. It should not be too hard to adapt Aspect to

any language in this mold (such as Modula-3 or Ada). The full design of an

Aspect checker for CLU [Liskov et al. 1981] is described in a technical report

[Jackson 1992].

Appendices summarize the Aspect language and define the mathematical

symbols used in the article. Sections 2.2, 3.3, and 3.4 formalize and elaborate

material discussed in other sections and can be omitted. Readers wanting

only a brief overview of Aspect should read Sections 1, 2.1, 2.3, 2.4, and 4.

2. THE BASIC SCHEME FOR STATIC STORAGE

2.1 Simple Dependence

Consider a procedure updateAuerage (Figure 1) that takes three arguments:

n—the number of values in a statistical sample, a—their average, and x—a

value to be added to the sample. The procedure should update the average a

and the sample size n. Assume for now that all arguments are passed by

value/result, so that a change to a formal in the body of the procedure is

propagated to the actual on return.

The comment following the header is an Aspect specification. Each line

asserts a dependence that should hold between the value of a variable in the

poststate (given on the left) and the values of some variables in the prestate

(on the right). The first line, for example, says that the value of a after

depends on the values of a, n, and x before. Or, equivalently, to calculate the

new average, you need the old average, the old sample size, and the sample

value.

Suppose we made a mistake in the coding and forgot line 5. The Aspect
checlker would construct the dependence of this faulty code and display the

message:

Missing: a on n, x

ACM Transactions on Software Engineering and Methodology, Vol 4, No 2, April 1995.

112 . Daniel Jackson

saying that the required dependence of a on n and x are missing. Another

slip might be to write x instead of s on the left-hand side of the assignment

on line 3, eliciting the message:

Missing; a on x.

In addition to giving the dependence of result variables, an Aspect specifi-

cation says, implicitly, which variables are modified: any variable for which a

dependence is not given is assumed to be invariant. So the specification of

updateAverage implies that a and n, but not x, are modified. The assertion

n-n

thus means not only that n after depends on n before, but also that there is

an execution in which n is modified. Failure to modify a variable is detected

as a bug, so omitting line 4 elicits the error message:

Missing: modification of n.

Later, we shall see more interesting bugs that Aspect can detect. But even

this trivial example illustrates its key features. First, the specification is

partial and could not act as a contract between the implementor and user of

the procedure. Nothing about the actual values of the variables is expressed,

so Aspect cannot, for example, express the precondition that n be nonzero or

that it be incremented exactly by one. Nevertheless, the Aspect specification

bears a structural resemblance to a conventional specification, having the

assertion a + a, n, x in place of a formula like a’ ==f(a, 72, x). The similarity

between saying that a after depends on a, n, and x before, and saying that a

is some unspecified function of a, n, and x is no accident; it justifies the

soundness of the checking method (see Section 2.2).

A second key feature is how straightforward checking is: it involves little

more than constructing dependence. This construction is compositional: the

checker derives the dependence of compound statements from the depen-

dence of their parts and derives the dependence of primitive statements

from the specifications of the procedures they call. In line 3, for example, the

checker uses the built-in specification of + to determine that its result

depends on its arguments and that its arguments are not modified. More-

complex datatypes are no harder to analyze. Like type checking (but unlike

symbolic evaluation), Aspect scales easily from integers to editor buffers.
Third, like testing and unlike type checking, the Aspect analysis is inher-

ently nonlocal. The error of writing x for n in line 2 would not be caught,

because the missing dependence of a on n is “masked” by the same depen-

dence contributed by line 5. Consequently, Aspect is less likely to find bugs in

larger procedures.

Fourth, Aspect’s minimal dependence are more like liveness than safety

assertions. This is why they tend to be good at catching errors of omission,

and why they are not susceptible to the “infeasible-paths” problem of state-

based techniques. Infeasible paths may mask bugs by introducing bogus

dependence, but will not cause Aspect to produce spurious error messages,

since these could only result from underestimating the dependence of the

code.

ACM Transactions on ScJftware Engmeermg and Methodology, Vol 4, No. 2, Apr]l 1995

Detecting Bugs with Abstract Dependences . 113

The dependences ofan Aspect specification might be interpreted not only

as minimal but maximal too. We might then report dependence that are not

required by the specification but are found in the code. This analysis, in

contrast to the analysis chosen, would generate spurious messages—too

man,y, it seems in practice, to be useful. Nevertheless, reporting apparent

modifications to variables that are claimed to be invariant is easy to do and

would be a sensible addition to Aspect.

2.2 Formalities of Simple Dependence

A program P has a dependence relation D among its variables

D(P): Var - Var

where a pair (x, y) ● D(P) means that the value of the variable x after

execution of P depends on the value of y before. Each such pair is a

“dependence” of the program P.

Wlhat does it mean to say that x depends on y? Representing the behavior

of the program P as a function p over some set of program variables a, b, c,

etc.

p:(a, b,c, . ..)+ (a. b, c)...)

we say that a variable x depends on a variable y when there are two

prestates s and s’ that are distinguishable only in their y components and

lead., under P, to corresponding poststates having different x components:

(X, y) =D(P) iffdS, S’. ~U #y. SIU = S’IU AP(s)[x #~(S’)lX.

(Here, SIu means the value of variable u in state s.) In other words, x
depends on y if the computation of x uses y.

The Aspect scheme is based on a simple observation: if two functions have

different dependence, they cannot be the same. Take one function to be the

code, from which dependence are extracted, and the other the specification,

whose dependence are given explicitly. Then any discrepancy between these

dependence sets indicates that the specification and the implementation are

different functions, so the code cannot satisfy the specification.

The dependence of the code are built from the bottom up, starting with the

dependence of primitive procedures and assignments. Each compound state-

ment has a rule that gives its dependence in terms of the dependence of its

part~s. The dependence of a sequence, for instance, are obtained by forming

the relational composition of the dependence of its constituent statements:

D(S; T) GOD.

Note the inequality: dependence cannot be calculated exactly, but an approx-

imation that never omits actual dependence is possible. The calculated
dependence of

X’=X+Y;
x:=x—y,

ACM Transactions on Software Engineering and Methodology, Vol 4, No. 2. April 1995.

114 . Daniel Jackson

for example, will, by the above rule, include (x, y), even though the initial

value of y cannot affect the final value of x. The direction of the inequality

motivates Aspect’s focus on missing dependence. Extra dependence may be

artifacts of the calculation and are thus not reliable symptoms of bugs.

The incompleteness of Aspect—its unsurprising failure to catch all

bugs—can now be seen to arise from two sources. First is its view of functions

purely in terms of dependence. Although functions with different depen-

dence cannot be the same, the converse is not true: different functions may

have the same dependence. Second is the dependence calculation itself,

which may add bogus dependence.

If-statements and loops introduce control dependence that must be taken

into account: from outside a procedure, effects due to control dependence are

indistinguishable from dataflow dependence. The statement

if bl then

b2 = true

end

is semantically equivalent to

b2 = bl or b2,

so it must somehow have the dependence (b2, bl), even though it has no

direct dataflow from bl to b2. This dependence is accounted for by making

every variable modified in either branch of an if-statement dependent on the

condition variable.

The modification set of a program P is the set of variables it modifies

M(P): P Var

where a variable u is modified if the program has an execution that alters u:

u EM(P) iff 3s. slu #p(s)lu.

Modifications are, like dependence, constructed compositionally, and are

approximated conservatively:

M(AS;T) CM(S) u M(T)

M(if b then S else T) c M(S) U M(T)

M(while b do S) L M(S)

The rule for calculating the dependence of an if-statement may now be

given:

~(ifb then S eke ~) c~(~) u ~~~) u ((M(S) U ~(~)) X {b})

Finally, a loop can be viewed as an infinite nesting of if-statements

while b do S = if b then (S; while b do S) else SKIP

(writing SKIP for the empty statement) which suggests the dependence rule:

D(while b do S) G D(S; while b do S) U D(SKIP) U ((,M(S; while b do

S) U M(SKIP)) X {b}).

The empty statement SKIP does nothing; so it has no modifications

(M(SK7P) = O), and each variable depends only on itself (D(SKIP) = l); so

ACM Transactions on Software Engineering and Methodology, Vol 4, No 2, Aprd 1995

Detecting Bugs with Abstract Dependences . 115

D(S;!f) = D(Z’)0 D(S)

D(zf b then S .1s. 2’) = D(S) U D(l”) U (M(S) U M(7”)) X {b}

D(d-zile b do S) = D(S)” U ((M(S) X {b}). D(S)’)

M(S;7’) = M(s) u M(T)
M(if b the?l S else T) = M(S) v M(T)

M(zuhile b do S) = M(S)
Fig. 2. Calculating dependence and modifications in alias-free code

Expanding with the sequence rule above produces

Ll(while b do S) ~ (D(whiZe b do S). D(S)) u ~ u (M(S) x {b})

which has the least solution

L)(s)” U ((M(S) X {b}). D(S)*)

where R* is the reflexive and transitive closure of the relation R. The first

expression (D(S)*) is the contribution from the direct dataflow; the second

holds the control dependence of the modified variables on the loop condition

and on the variables that affect it.

Since exact calculation of dependence is not possible, we shall henceforth

drop the inequalities and define D and M to be the smallest relations

satisfying the inequalities. A summary of the rules for calculating D and M

is given in Figure 2. There is no rule for value/result procedure call; the

speci~lcation of the procedure just takes the place of the code, with appropri-

ate renaming of formals to actuals.

2.3 The Roles of a Procedure Specification

Aside from being a yardstick for judging an implementation, a specification of

a procedure also acts as a surrogate, replacing it in the analysis of its callers.

There are several reasons to prefer the specification of a called procedure to

its code.

First, the code may simply be missing; this should not impede the analysis

of callers. Incrementality is a prime goal of Aspect, and it is important to be

able to analyze incomplete programs.

Second is data abstraction: the specification can hide the representation of

the data, making reasoning about its behavior simpler. This is a central

feature of Aspect explained later (Section 4).

The third, and more-subtle reason, has to do with the nature of the

dependence approximation. A specification may assert that the procedure has

fewer dependence than the checker would have inferred by looking at its

code. Using such a specification instead of the code allows more bugs to be

detected in the caller. This feature of specification is analogous to nondeter-

minislm in conventional specifications: any particular implementation may

have properties that are not required by the specification and should not be

relied on by a caller. The analogy is only rough however, since these proper-

ties are syntactic artifacts of the code that are not observable in its behavior.

As an illustration, consider another version of updateAuerage (Figure 3)

with the same behavior as before but coded a bit perversely. Instead of just

ACM TransactIons on Software Engineering and Methodology, Vol. 4, No 2, Aprd 1995.

116 . Daniel Jackson

procedure updateAverage (n: lnt: a, x: real}

%a - a, n, x
%n e n

s real

.s=a Xn

S=s+x

a = ,s/(n + 1)
n = s/a

Fig 3. An implementation with extra, unspecified dependence

adding 1 to n, the new version calculates n by dividing the new sample total

by the average. In calculating the dependence of this procedure, the checker,

unable to perform the algebraic manipulation

s/(s/(rz + 1))= n + 1,

cannot eliminate a and x from the dependence of n, thus effectively

deriving the specification

Unlike the specification provided by the user, this fails to discriminate

between a and x, in which it is symmetrical. Suppose now that we are

checking a call updateAuerage (a, n, ~) in which the arguments n and a

appear in the wrong order. This bug could never be found given only the code

of updateAuerage since it exhibits identical dependence for the first two

arguments.1 Given the user-provided specification of updateAverage, how-

ever, the checker can insert only the specified dependence, and the bug may

be caught.

Despite the advantages of using a specification provided by the user,

sometimes it is more cost-effective to omit specifications of called procedures

and allow the checker to generate a “specification” directly from the code.

Although this might prevent the detection of some bugs, it does not compro-

mise soundness, and spurious bugs will not be reported. If the code of a called

procedure is also missing, the checker can still generate dependence soundly

by including all possible dependence of arguments on one another. This

approximation can be improved with knowledge of the parameter-passing

mechanism. An argument passed by value, for instance, cannot be modified

or have dependence on other arguments.

2.4 Structured Dependence: Records and Arrays

The more the dependence of a program reflect its structure, the more likely

it is that bugs will be manifested as missing dependence. So in code built

with data structures like records and arrays, it makes sense to track depen-

dence on individual components of these structures.

] The case is in fact a type error; the first and second arguments coincidentally have different

types.

ACM TransactIons on Software Engncermg and Methodology, Vol 4, No 2, Aprd 1995

Detecting Bugs with Abstract Dependences . 117

type poly =record [terms: array [l..lO] of term; size: int]

type term =record[ex, co: int]

procedure addTerm(p:poly, e, c: int)

70p. terms .@el.ex, p.terms. ~>el.co, p.size .
% p.size, p.terms. @el. ex, p.terms. @el. co, e, c

i: int, t: term

begin

1 ~ ,= 1.

2 whdel <p.stzedo

3 t =p.terms[i]

4 ift, ex =e then

5 t.co .= t.co + c

6 ift.co = O then

7 p[i] =p[p.stze]

8 p.s~ze =p.size –1

9 else

10 p[i] .= t

11 end

12 i=~+l

13 end

Fig.4. Anexample ofstructured dependences.

To see how this is done, consider a procedure that adds a term cx’ to a

polynomial p represented as an array of exponent/coefficient pairs (Figure

4). To simplify the code, we have assumed (as a precondition) that a term

with the given exponent is already present, so the procedure just has to

search for this term and update its coefficient. Also, the array is statically

allocated, so only polynomials with 10 or fewer terms are allowed. The

number of terms in the array is stored explicitly; any array elements with

index above p. size are ignored. If the new coefficient is zero, the term is

removed by replacing it with the last term and decrementing p. size.

The names that appear in the dependency assertions now identify compo-

nents of the data structures rather than plain variables. Since specifying

dependence of array elements according to their indices would require the

values (and not just the dependence) of other arguments, a single name,

p.terms.@cl, is used to denote the set of array elements. A name like

p.terms.kjel.co then refers to the set of coefficient components of the elements

of the array p.terms. The namespace simply mirrors the syntax of the type

declaration, with one name for each node in the abstract syntax tree, This

naive treatment of arrays works fine, so long as the specifier remembers that

a single name represents many elements: the assignment update cd i 1 ‘= e,

for instance, must be specified as

a.(ijlel +- a.@cl, e, i

with the a.@el on the right to account for the elements that are unmodified.
The single dependence assertion of addTerm is a shorthand, collecting the

common dependence of all the names on the left into a single assertion. It

says that each component of the p structure after depends on all the

components before and on the arguments e and c.

ACM Transactions on Software Engineering and Methodology, Vol 4, No. 2, Aprd 1995.

118 . Daruel Jackson

There are so many reads and write of the polynomial structure that a

dependence analysis based on variables alone would be hopeless. Almost any

error would be masked by a surplus dependence. But with the finer-grained

analysis, a variety of bugs can be detected. Here are a few: omitting line 5 or

writing c on the left instead of t.co (causing missing dependence on c);

omitting line 8 (causing missing dependence of p. size); and writing t .ex for

t .co in the condition of line 6 (causing missing dependence of p. size and

p.terms.(tjel.ex on p.terms.@el.co).

Calculating dependence for components is almost identical to regular

dependence analysis, as if each component name were a variable in its own

right. The only slight complication is that the types of variables must be

available to accommodate copying operations that mention only the names of

whole structures. The assignment t ‘=p.terms[i], for example, gives depen-

dence of t.co on p.terms.@el.co and t.ex on p.terms.@el.ex.

2.5 Making It Practical

The scheme we have outlined so far is feasible, but it has two serious

drawbacks, both evident in the addTerm example (Figure 4).

The first is the completely static model of storage. With only fixed arrays,

we cannot represent all polynomials. Some kind of dynamic allocation is

needed. In imperative programs, this inevitably leads to another problem:

aliasing. When objects can be created at run-time, there are no longer enough

names in the program text to refer to them. This shortage of names is

remedied in two ways. One is to reuse the names of declared variables. The

other is to create names at run-time; names become values in their own right

and can be passed and stored. This is common in object-oriented programs,

where the value of an object frequently includes names of other objects.

Either way, the dissolution of the rigid link between names and storage

locations wreaks havoc for dependency analysis. A syntactic name may no

longer refer to the same location throughout the execution of the program,

and, worse, at some point, two names may refer to the same location so that a

modification under one name may surreptitiously appear to cause a modifica-

tion under the other too. This is aliasing.

Section 3 shows how aliasing is handled. A new model defines dependence

between locations rather than names. The checker calculates the possible

bindings of locations to names in the context of a procedure call and can thus
determine which locations are affected. To keep track of the naming of

objects, a kind of abstract interpretation is performed. The specifications of

procedures must be elaborated too, so that the analysis of a client can include

the changes a called procedure may bring about in the binding of names to

locations.

Aspect can handle dynamic allocation, but it is not discussed here; see

Jackson [1992] for details.

The second drawback of our scheme is the lack of abstraction. The specifi-

cation of addTerm exposes the structure of the poly type. Any client of

addTerm with a polynomial as an argument would show this structure in its

ACM TransactIons on Software Engineering and Methodology, Vol. 4, No, 2, Aprd 1995.

Detecting Bugs with Abstract Dependences . 119

specification. Changing the representation of the polynomial under these

circumstances is catastrophic; the specification of every procedure that has a

polynomial as an argument might need to be rewritten.
Section 4 addresses this second problem by showing how to separate the

concrete components of objects from the names used in specifications. Ab-

stract components of objects called aspects are introduced. The user chooses

the ;aspects of an abstract type and writes specifications of its procedures in

terms of the aspects. Thus clients never see the actual structure exposed in

specifications. To check the abstract procedures themselves, the checker

translates the concrete dependence into aspect dependence using an ab-

straction function given by the user.

Aspects help in other ways too. Specifications are much reduced in size and

complexity, since a single aspect corresponds often to several concrete compo-

nents. Also, the abstraction function can describe redundancy in the repre-

sentation, which might otherwise have required disjunction to be added to

the dependence assertion language.

3. A DYNAMIC STORAGE MODEL

3.1 lDependence Analysis For Pointers

To see why aliasing complicates dependence analysis, consider a type that

represents a bank customer, consisting of a name and a reference to an

account:

type customer = record[nam: name, acc: ~account]

type account = record [id, bal: int]

Now suppose we have two customers, a

that causes them to share accounts:

a, b: customer
. . .

a.acc ‘= b.acc

and b, and we execute an operation

A subsequent operation on a’s account will now affect b’s and vice versa; they

are the same account, stored in the same location. A deposit of x to the

shared account

a.acc~. bul := a.ace?.bal + x,

for example, will be seen by both parties even if performed only under the

name a. Calculating the dependence of this statement by the simple method,

we will obtain, correctly, a dependence of a.acc~. bal on its old value and on

x, the amount added, but we will miss the dependence of b.acc~. bal on x. If

this dependence were required in a specification, the checker would issue a
spurious message saying it is missing, when in fact it is present. Aspect’s

soundness relies on always overestimating dependence, so losing depen-

dence will undermine it and must be avoided.

ACM Transactions on Software Engineering and Methodology, Vol. 4, No 2, Aprd 1995,

120 . Daniel Jackson

One solution to this problem is to assume that all locations referenced by

pointers of the same type maybe aliased. But this is too drastic; it would add

far too many dependence and diminish the chance of catching bugs in

programs that make liberal use of pointers. A better solution, and the one

adopted by Aspect, is to determine the possible aliases according to context,

so that whether the statement incrementing a.ace!. bal affects b.acc~. bal

depends on what was executed previously.

The context of a statement gives the binding of names to locations when-

ever that statement is executed. Of course, at run-time a single statement

may be executed in different contexts—for example, if it follows an if-state-

ment that switches pointers—so the calculated context of a statement must

account for several possibilities. The checker approximates contexts, like the

dependence calculation, in a conservative fashion, so that it guarantees never

to underestimate the potential aliasings of names.

One could calculate dependence between names, as before, by maintaining

an aliasing relation on names and adding extra dependence to aliased

names. But this is unnatural and gets very tricky. When a and b are aliased,

the behavior of an assignment to a is symmetrical in its effect, so there is no

reason to regard a or b as primary.

It makes more sense to view dependence as relations between locations.

The checker uses the context of a program statement to translate its effect in

terms of names into dependence between locations. To check a procedure’s

dependence against its specification, the checker again translates the names

in the specification into locations and finds their dependence accordingly.

Aliasing is thus implicit and handled as a by-product of the translation of

names to locations,

Pointers cause surreptitious dependence not only by aliasing but also in

the very naming of locations. Suppose that our bank, being old-fashioned, will

only allow customers with the same last name to share accounts. Each

customer has a first and last name

type name = record [first, last: string],

and the assignment to the pointer a .acc is now conditional:

ifa. nam.last = b.nam.last then

a.acc Z= b.acc

end.

The context of a subsequent operation will give two possible bindings for

a.acc: to its initial location, for the case in which the condition is false, and to

the location of b.ace, for the case in which the condition is true. But

something more subtle must be captured too. When

a.ace?.bal := a.acc?, bal + x

is subsequently executed, whether the value of b.acc~. bal is altered depends

on whether a names the same location as b and thus on the initial values of

a.nam.last and b.nam.last.

ACM TransactIons on Software Engmeermg and Methodology, Vol 4, No 2, Aprd 1995

Detecting Bugs with Abstract Dependences . 121

To account for these naming dependences, the checker keeps not only the

values of pointers (that is, which locations they might refer to), but also their

dependence. Then, when calculating the dependence of a location refer-

enced through other locations, the checker incorporates their dependence.

SO, in this case, the if-statement would give dependence of a.acc on

a. nam.last and b. nam.last, which would be passed on to a .acc~. bal when it

is subsequently modified.

3.2 Specifications of Procedures that Alter Pointers

So far, we have only considered how pointers complicate the calculation

mechanism. The specification language must be elaborated too. To see why,

suppose the statement that established the sharing of accounts were embed-

ded in a procedure, joinAccounts, of its own. Then to analyze the code

joinAccounts (a, b)

a.ace?.bal := a.acc ~ .bal + x

the checker would infer the context effects of joinAccounts from its specifica-

tion. Of course, if the code of the procedure were available, the checker could

use that, but for the reasons given in Section 2.3, a modular analysis using

the specification of joinAccounts would be preferable. Moreover, we shall see

that changes to contexts can be checked like dependence, so asserting them

in a specification brings more opportunities for detecting bugs.

A new kind of assertion is thus called for. The reconfiguration assertion

a.acc :- b.acc

says that the location named by a.acc after execution of the procedure is any

of the locations named by b. acc before. To express several possibilities, more

than one name may be written on the right, so

~j.acc ;- a.ace, b.acc

says that, after execution, a.acc names a location called a.acc or b.acc before.

Recon@urations can be thought of as specifying values as opposed to depen-

dencies, and so this one could be read: “the value of a.acc after is the value of

a.acc or b.acc before.” Aspect shuns the specification and checking of values

generally but treats pointers as a special case.

What determines the choice can be expressed with a standard dependence

assertion, so a.acc G a.nam.last, b.nam.last says that the value the pointer

a.acc takes depends on a, nam.last and b. nam.last.

To check a reconfiguration assertion, the procedure is executed in an

abstract fashion, and a final context is determined. The set of locations bound

to the name on the left of the assertion in this final context is then compared

to the set of locations bound to the names on the right of the assertion in the

initial context. The former set must then include the latter. Equality is not

required, because the context calculation may overestimate bindings. Any
bind]ngs in the latter but not the former represent possible assignments of

pointers that are required, but not evidenced in the code, and are reported as

errors.

ACM Transactions on Software Engineering and Methodology, Vol 4, No, 2, April 1995

122 . Daniel Jackson

type customer = record [nam name, ace: ?account]

type name = record [first, last: sti-mg]

type account = record [zd, bal: mtl

procedure mergeAccounts (a, b: customer)

Vca, acc -a.ace, b.acc

%a. acc * a.nam last. b.nam.last

!cb. acc~. bal G b.acc~. bal, a.acc~. bal

1 x: lnt;
z if a nam last = b nam last then

3 x = a.acc~ bal

4 a,acc = b.acc

5 a acc~. bal = a.ace?.bal + x

6 end

Fig. 5. A procedure with dependence and reconfiguration assertions.

Since a procedure may alter the bindings of names to locations, a nasty

dilemma arises. When we write an assertion like

a.ace?.bal ~ a.acc~. bal, x

we might wonder which location is meant by a .acc in the expression

a .acc?. bal. the location in the initial state or the location in the final state?

Does a.ace even refer to the same location on both sides of thl

solution adopted by Aspect is to regard every location name

tion, wherever it appears, as interpreted in the initial context

rule, there would be a risk that a series of assertions like

x! :-yt

YT.C T :- x~.c~

assertion? The

n the specifica-

Without such a

might be construed operationally, with the meaning of X’T.CT in the second

assertion affected by the constraint on x? in the first, Aspect is declarative;

so the order of assertions is immaterial, and the meaning of an expression

does not depend on where it is placed in a specification.

Figure 5 shows an annotated specification of a procedure that joins the

accounts of two customers a and b (on condition that they share the same

last name), so that they share the account that was originally just b’s, and

then credits the joint account with the balance of a’s old account, now no

longer accessible.

The specification has three assertions. The first, a reconfiguration, says

that the account associated with customer a after execution may be the
account before, or the account associated with b. The second, a dependence

assertion, says that whether this change occurs depends on the last names of

the customers. The third, a dependence assertion too, says that the value of

the account originally associated with b maybe updated by the balance of the

account originally associated with a.

Let us now consider a few bugs. Suppose we forgot to credit the balance of

a’s original account to the joint account, omitting statements 3 and 5. The

checker would then report

Missing: b.accT. bal on a.acc~. bal.

ACM TransactIons on Software Engmeermg and Methodology, Vol 4, No. 2, Aprd 1995

Detecting Bugs wkh Abstract Dependences . 123

Exactly the same message would be given if we swapped statements 3 and 4

so that the code read

a.acc L= b.ace;

x ~= a.acc~. bal;

this time because the balance assigned to x is the balance of the wrong

account, the preceding assignment causing a.acc~. bal to refer to the balance

originally called b.ace?. bal. Omitting line 4 not only gives a missing depen-

dence message for the failure to update b.accT. bal, but also a missing

reconfiguration message

Missing: final a.acc omits initial b.acc

saying that the value in the final context of the location called a .acc (in the

initial context) cannot hold the value in the initial context of the location

called b. ace. Always performing the merge (instead of doing the test), on the

other hand, omits the case in which a.acc is unchanged, giving

Missing; final a.acc omits a.acc

as well as messages saying that the dependence of a.acc on the last names

are missing. Testing the wrong condition (for example comparing a. acc~. id

and b.acc~. id) would give instead

Missing: a.acc on a.nam.last, b.narn.last.

Contexts thus bring not only complication but also the opportunity to

detect a new class of error—namely, failures to set pointers correctly.

3.3 Formalities of Contexts and Location-Based Dependence

The notion of dependence must be revised to handle aliasing. Previously,

dependence related variables, or in the more-general case, names of loca-

tions. The association of names to locations was fixed, so there was never a

need to mention locations explicitly. But if the name of a location may

chan,ge, we must define dependence and modifications over locations in-

steacl:

a!eps: Loc - Loc

mods: P Lot.

A location may correspond to an address on the stack or the heap. It actually

makes no difference, since Aspect checking is always within the scope of a

single procedure call.
A given statement’s dependence can no longer be inferred from its syntax

alone, since the names the statement uses can denote different locations,

depending on the previous statements. Instead, the dependence are derived
in a (context that binds names to locations.

A context is an abstraction of a set of program states. It consists of an

environment and a store:

ACM TransactIons on Software Engineering and Methodology, Vol 4, NrI 2, April 1995

124 . Daniel Jackson

Con text = En u x Sto

Enu = Var + Place

Sto = Loc - Place

Place = Loc + (Field - Place).

The environment maps each variable to a “place,” which is either simply a

location or, if the variable has compound type (such as record or array), an

association of field names and places. The store maps each location corre-

sponding to an expression of pointer type to a place.

Contexts are a static, textual notion. There is one context for each state-

ment in the program—that is, for each value of the program counter—how-

ever many times the statement is executed. So a single context must account

for all the possible bindings of names to locations under which a statement

may be executed. This is why, in general, there will be more than one place

associated with a location in the store: the store is a relation and not a

function. Places are likewise relations, because an array is represented as a

set of locations all labeled with the same field (@Iel. The environment, in

contrast, is functional, since, for Algol-like languages, the naming of locations

by variables is fixed.

Only location values are mapped in the store. Tracking nonlocation values

such as integers would be pointless, since these play no role in Aspect

checking.

A context for a program with only one variable

c: customer

whose type is given, as before, by

type customer = record [nam: name, ace: ~account]

type account = record [id, bal: in t]

type name = record [first, last: string]

is shown in Figure 6. Note that there are five locations (depicted as solid

boxes): two fur the integers, two for the strings, and one for the pointer. With

arbitrary names for locations, the environment corresponding to this context

is

{c x {?~am - { first H 10C1, last + 1oc2} , acc * 10C3}} ,

and the store is {1oc3 H {bal H 10C4, id ~ 10C5}}.
TO find the locations associated with an expression, we simply follow

through the environment and then, repeatedly for each level of indirection,

through the store. Each expression naming a location is viewed as a sequence

Expr = Var x (Field + Ptr)’

where Ptr is the pointer dereferencing symbol. The elements of the sequence

are looked up in place mappings or the store, depending on whether they are

fields or pointer indirection. The expression c.ace?. bal, for example, is

regarded as the sequence

ACM TransactIons on Software Engmeermg and Methodology, Vol 4, No 2, Aprd 1995

Detecting Bugs with Abstract Dependence . 125

I
I I

1

I

I
I
I
I
I

I
/.—.

\ I
\

I’c
I

I env
y

\
\ /’ I

.—. I

I
I

I
I

I
I

-—

mm I,__––– –________ I
I i,

1,
~ first 1,

in

1,
1,
1,
1,
1,
1,
1,

Fig.6. Anexample ofa context

(c, acc, ~, bal).

We lclok up c in the environment, giving a place in which we look up the field

ace. This in general will give a set of locations (named by the expression

c.ace) which are then looked up in the store, to obtain a set of places, in which

we look up the field bal, finally obtaining the set of locations denoted by the

entire expression.

We shall factor out the naming of locations by defining a function BindsC,

that, for each context C, maps each expression to the set of locations it might

refer to in C:

BindsC: Expr ~ P Loc

BindsC((u) ~ fs) = F(fs, C. Env(u))

F: (Field + Ptr Y’, Place ~ P Loc

F((), P) = {p}

IX(f) n fs, p)
= u {F(fs, p’) I if p G Loc then p’ ~ Sto[{ p}] else p’ G p[{ f}]}

(Square brackets denote relational image: Ed S1 is the set of values associated
with the set S in relation R.) This function will only be applied to expres-

sions that denote locations. A statement such as a. nam f= b. nam will thus be

viewed as an abbreviation for

a. nam. first := b. nam. first

a.nam.last != b.nam.last,

and the question of which locations are associated with a. nam will never

arise.

ACM TransactIons on Software Engineering and Methodology, Vol. 4, No 2, April 1995.

126 . Daniel Jackson

We will also have use for the set of expressions that, for a given context,

denote more than one location:

UnsuresC: P Expr

UnsuresC = {e G dom(Binds,) I #BindsC(e) > 1}.

When an assignment is made to a pointer variable, the value of its location

is replaced in the store by some new value. Since this location’s value may,

through further dereferencing of fields and pointer indirection, lead to further

locations, the value of one expression can determine which locations another

refers to. Altering the value of the expression c.ace, for instance, will give

c.ace?.bal a new set of locations.

When we look at the dependence associated with an expression, we must

therefore include not only the explicit dependence of the locations it refers

to, but also the dependence of the locations that determined which locations

it should name. Since these “stepping-stone” locations are given by expres-

sions that are prefixes of the expression in question, we will have use, when

we formalize this (in Section 3.4), for a relation

Prefix: Expr - Expr

with (r, s) G Prefix when s is a location-valued expression that is a prefix of

r.

To see how this all works, consider some contexts that might arise in the

execution of the if-statement from our example (Figure 5):

if a.narn.last = b.nam.last then

x = a.acc~. bal

a.acc Z= b.acc

a.acc~. bal Z= a.ace?.bal + x

end.

Suppose the initial context has the environment

a - {nam - {first * 10C1, last * 10C2}, ace ~ 10C3}

b - {nam e {first t+ Ioc1l, last * 10C12} , acc * 10C13)

.x ~ loc20

and the store

10C3 H { bal m 10C4, id - 10C5}

10C13 * {bal - 10C14, id - 10C15}.

After the assignment a.acc = b. ace, the environment will be the same, but

the store will have a new value for 10C3, equal to that of 10cI3:

ACM TransactIons on Software Engineering and Methodology, Vol 4, No 2, Aprd 1995.

Detecting Bugs with Abstract Dependences . 127

10C3 - { bal - 10C14, id * 10C15}

10C13 - {bal - 10C14, id - 10C15}.

Locations 10C4 and 10C5 are now inaccessible. The next statement’s mutation

of a.acc~. bal affects 10C14, so its dependence will include, for example, 10C14

on loc20.

Since the if-statement might not be executed, the context following it must

incorporate the two possible values of a.ace, so its store will map 10C3 to two

places:

10C3 -+ {bal + 10C4, id - 10C5}

10C3 I+ {bal + 10C14, id - Loc15)

10C13 - {bal - 10C14, id @ 10C15}

givir~g the unsure expressions {a.acc~.id, a.accT. bal}. What locations these
expressions denote depends on the value of cz.acc since

(a.acc~.id, a.ace), (a.acc~.bal, a.ace) G Prefix.

Ultimately, each of these will contribute a naming dependence; for example,

10C5 (the location originally called a.acc~.id) will depend on 10C3 (the location

originally called a. ace).

3.4 Semantics of Specifications in Contexts

Before we introduced pointers, specifications expressed dependence relations

directly and just had to be instantiated appropriately at any given call site.

Now, however, dependence are between locations that do not have a fixed

correspondence to the expressions that appear in a specification. The depen-

dence relation of a procedure P thus depends on the context c in which it is

invoked:

D(P, c): Loc ~ LOC.

We must therefore explain how a specification S, which has syntactic depen-

dence D,

D,: Expr - Expr,

is translated into a semantic dependence relation

D(S, C): LOC ++ ,!JOC.

There is similarly a distinction to be made between the locations that a

procedure with specification S modifies in a context c

M(S, c): PLOC

and the specified modification set, given implicitly as the domain of the

dependence relation:

M.: P Expr

M, = dom(D,).

ACM Transactions on Software Engineering and Methodology, Vol 4, No 2, April 1995

128 . Daniel Jackson

If a procedure with specification S is called in context c, the modifications

are obtained by using c to translate the syntactic location names into

locations:

M(s,c) = LJ{mdsc(?’n)lm GM,}.

Dependence are harder to calculate. First we define a function to translate

a relation over expressions into a relation over locations for a given con-

text C:

TransC: (Expr - Expr) - (Lot H LOC)

TransC(D) = {(x, y) I ~(e, f) ● D. x ● BindsC(e) A y G BindsC(f)}.

Then the dependence are obtained as follows:

D(s, c) = I~oc @ Tm~.sc(~s U ~Msn Unsuresc U (D, U IM$)o Prefix).

The identity relation on locations appears as a frame condition, so that a

location depends on itself unless explicitly overridden. The main term gives

the explicit dependence as the translation of three relations over expressions

into a relation over locations. The first relation contains the directly specified

dependence. The second makes the modified locations whose naming is

unsure explicitly dependent on themselves, since any such location might not

in fact be modified.

The third adds naming dependence: if a location is altered under some

name, its subsequent value must depend on the locations that determined the

names under which it was altered. A dependence assertion e ~ f will have

naming dependence of the locations denoted by e on the locations denoted by

prefixes of both e and f; this is why the identity relation on modified

expressions and the dependence relation are taken together.

The inclusion of these naming dependence (and no more) reflects a funda-

mental assumption that locations can be accessed only by name. Dependence

introduced by other routes will be missed (and might lead to spurious bug

reports). A daring C programmer, for example, might rely on the collocation of

two fields of a struct and access the second by incrementing a pointer to the

first. This is not expressible in our model.

So far, the meaning of a specification is, as before, a set of dependence and

implicit modifications, still defined over expressions (previously only vari-
ables) but whose effects in terms of locations depend on the context. An

entirely new effect of a procedure is to change the context itself, To express

this, we add a “reconfiguration relation” to the specification, which, like the

dependence specification, relates expressions

R,: Expr - Expr

but has a different meaning. It describes possible values, rather than depen-

dence, of the locations. We write r :- s to include the pair (r, s), which says

that the postvalue of the location called r might be one of the prevalues of the

ACM Transactions on Software Engineering and Methodology, Vol 4, No 2, Aprd 1995

Detecting Bugs with Abstract Dependence . 129

location called s. As with dependence, the omission of an assertion for a

name implies that its value is unchanged.

Since the naming of locations is itself changing here, we have to pick a

context in which r and s are themselves interpreted. This is the

precontext-the context when the procedure is called—as for the interpreta-

tion of D, and ill,. The new context resulting from calling a procedure with

specification S in context c is obtained by translating R. into locations and

composing with the store:

C(S, c) = (EnuC, (l~OC Q TransC(RS u IMsn Un~Ur,s,)) 0 Stoc].

As before, locations that are not mentioned are unchanged (because of the

frame condition given by the identity on locations), and locations named by

unsure expressions retain, in addition to any new bindings, their old values

(because of the identity relation on expressions).
Since the reconfiguration (r, s) involves a dataflow from the location called

s to the location called r, there must also be a dependence, and so any

specification must satisfy

R, GD~.

Rather than requiring the specifier to add the dependence associated with

R, explicitly, we take the reconfiguration assertion r:-s to include the

dependence of r on s. (Figure 7 collects together all the definitions of the

dynamic model introduced so far.)

3.5 Checking with Contexts

Introducing contexts to handle pointers complicates the checking mechanism

considerably. A statement’s dependence cannot be calculated until its con-

text is known, so the checker must construct contexts and dependence

hand-in-hand. The final result of evaluating the code of a procedure is now

not only a dependence relation but also a final context. The context is used,

with the initial context, to check the reconfiguration assertions.

Contexts add not only complications but also new opportunities to detect

errors. By comparing the initial and final contexts, the checker can catch

aliasiing errors. Each reconfiguration assertion is checked against the initial

and ~;nal contexts, and if a location in the final context fails to contain all

possible values dictated by the specification, an error message is displayed.

The rules for constructing contexts, dependence, and modifications from

code (Figure 8) are structured as before but with contexts added throughout.

Note how the modifications or dependence of two statements in sequence

can n.o longer be calculated independently. The first rule for modifications, for

instance, shows how the modifications of the second statement T depend on

the context resulting from the execution of its predecessor S. For loops, the

modifications of the body may change on each iteration.

The recursive rules for loops are to be interpreted as defining the smallest
relation that satisfies the equation. The form of the rule represents accu-

rately how the checker performs the calculation. The dependence, for exam-

ple, are obtained by unwinding the loop, adding pairs to the relation. The

ACM Transactions on Software Engineering and Methodology, Vol. 4, No. 2, April 1995

130 . Daniel Jackson

1); Loc * LOC
M: ~LOC

Context = En u x Sto

Enl, = Name - Loc

Sto = Loc w Enu

Expr = Name+

Bmdsb: Expr * PLoc

13znds,((~) - /%) = F(fs, c.~nu([]))

F (Field + Ptr)*, Place - P Lnc

F((j, p) = {p}

F((f) -. fs, p) = U(F(fs, P’) IZf p G LOC then p’ G Sto[{p}l elseP’ G P[{f}l)

Unsurest. P Expr

Unsures<, = {x G dom(Btnds,) I I Bindsc[xII > 1}

D,: Expr w Expr

M.: P Expr

M< = dom(Db)

M(S, c): PLOC

D(S, C): LOC- Loc

M(S, C) = U{ Blnds(m)l m G M,).

Transc: (Expr - Expr) ~ (Loc - Loc)

Trarzs, (D) = {(x, y)l~(e, f) ~D v x G EJ~nds,(e) V y G Binds.(f)}

D(S, C) = 1~0, @ TransC(D, u I,w, ~ ~n~u,e,(c) U (D, U IJ~,)O Prefix)

R.: Expr * Expr

R,. G D,

C(S, c) = (Eric,, (Ilo, B Binds, [R, v ZM,,7U~,,u~es(,]]). stoc)

Fig. 7. Collected definitions for a dynamic model.

D(S;T, C) = D(T, C(S, C))” D(S, C)
D(Zf b then S else T’, c) = D(S, c) U D(T, C) U (M(S, C) U M(T, c)) x {b}

D(whde b do S, c) = D(Zf b then (S; whale b do S) else SKIP, C)
D(SKIP) = Il.,

M(S;T, c) = M(S, c) U M(T, C(S, C))
M(if b then S else T, c) = M(S, c) U M(T, c)

M(while b do S, c) = M(S; while b do S, c)

M(SKIP) = ~

C(S:T, c) = C(T, as, c))

C(if b then S else 7’, c) = C(S, c) + C(T, c)

C(whtle b do S, c) = c + C(S; whale b do S, c)

where Cl + C2 = (Enu(cl), Sto(cl) U Sto(c2))

C(SKIP, C) = C

Fig. 8 Rules for calculating dependence, modifications, and contexts.

context following the whole loop is calculated simultaneously. When an

iteration is reached in which no further pairs are added to the dependence

relation, and no further bindings to the context, the calculation is terminated.

This fixed point must be reached eventually since there are only a finite

number of names and thus a maximal context and dependence relation. In

practice, two or three iterations suffice.

ACM TransactIons on Saftware En~neerlng and Methodology, Vol. 4, No. 2, Aprd 1995.

Detecting E3ugswith Abstract Dependences . 131

The context itself is calculated in the obvious way. When some point in the

code can be reached by more than one path, its context must account for

the bindings from both paths. So, for an if-statement, the resulting context is

the merge of the contexts resulting from the two branches. The merging

operator preserves the soundness of the approximation by ensuring that if

cont{exts c1 and Cz represent sets of actual program states Z ~ and Zz, then

the merged context c1 + Cz represents a superset of Xl U X2.

The environment of a context changes only at new variable declarations;

the details are straightforward and have been omitted.

The rules for primitive statements (not shown in Figure 8) depend on the

programming language. A copying assignment e := f (as in Pascal) has the

specification e ~ f if e and f are expressions of primitive type (e.g., integer)

and e :- f if they have pointer type. If e and f have record type, the

assignment is regarded as a shorthand for a set of assignments e.c != f.c

with specifications e.c + f.c or e.c :- f.c where each c is a sequence of field

names that dereferences x and y to nonrecord variables.

Procedure specifications cannot be used directly in evaluating procedure

calls, because the context in which the specification is evaluated is not the

same as the context in which the procedure is called. An intermediate context

has to be generated to describe the binding of formals to actuals. Similarly,

there is an intermediate context between the final context given by the

specification and the context after the return of the procedure call. The

procedure call is thus divided into three phases: the call, in which the context

is changed to account for the binding of the formals, the execution of the

body, in which the specification is evaluated, and the return, in which the

context is changed to account for the binding of the return values.

The effect of the call and return phases depends on the parameter-passing

mechanism. In call-by-value, for example, the invocation r := p(al, a2, . . .) of

a procedure p with formals ~1, &, etc. is handled by first creating a new

context in which the formals are bound to fresh locations in the environment.

The values of these locations in the store are copied from the locations of the

actuals al, a2, etc. This calling phase is given dependence that map all

existing locations to themselves and fl to al, fi to a2, etc. The specification

is evaluated in the new context. In the return phase, the bindings of the

formals are removed from the context, and the location for r acquires the

value and the dependence given in the specification for the special variable

result.

Should the names of the formals coincide with variable names in the

calling context, they must be renamed, unless of course they denote global

variables. Local static variables of a procedure are handled by treating them

as globals that are not accessible to other procedures, with renaming to

prevent name clashes.

In value/result parameter passing, the values of the formals’ locations are

copied back to the actuals in the return phase. For call-by-reference, instead

of making a fresh location for each formal, the formal is bound to the location

of the actual.

ACM Transactions on Software Engineering and Methodology, Vol. 4, No, 2, Aprd 1995,

132 . Daniel Jackson

A complication we have ignored arises in the context calculation. Since the

model allows multilevel aliasing, the choice of initial context can determine

which reconfiguration occur. It is thus, in general, not sufficient either to

model a procedure in terms of reconfiguration alone or to check the aliasing

effects of a procedure by evaluating it from a single initial context. Elaborat-

ing the specification language with context preconditions (declaring expected

aliasing patterns at invocation), and adapting the checking mechanism ac-

cordingly, would bring little benefit in practice however, since procedures are

rarely designed with the assumption of aliasing between arguments.

4. DATA ABSTRACTION: INTRODUCING ASPECTS

With the scheme described so far, the shape of a procedure’s specification

reflects the type structure of its arguments. Each expression in a dependence

or reconfiguration assertion is drawn from the finite set of nodes in the

abstract syntax trees of the argument types. In the worst case, therefore, the

size of the specification varies with the square of the size of the argument

type declarations. But in practice, things are rarely this bad. Few procedures

modify more than a handful of components, so most of the dependence are

absorbed by the implicit frame condition. Also, components tend to undergo

similar treatment, so the shorthand of listing the common dependence of two

components together helps significantly. Nevertheless, as types grow, specifi-

cations do become more unwieldy.

More seriously, specifications are extremely vulnerable to changes in repre-

sentation. In a system constructed with abstract types this creates a serious

dilemma. Any change in the structure of the representation type invalidates

the specifications of the abstract type’s procedures, even if the observable

behavior is unaltered. Worse, it forces a rewriting of the specifications of

external procedures that use the type but have no access to its representa-

tion.

The solution adopted in type systems is to hide the structure of an abstract

type completely and treat it as a primitive type with no structure. This is no

good for Aspect—it would result in specifications so trivial that no bugs

would be caught.

4.1 Aspects: Abstract Components

This dilemma is solved by creating a structure for the abstract object that is

independent of the structure of its representation. The specifier of an abstract

type chooses a set of aspects, which are simply names for abstract compo-

nents. The dependence and reconfiguration assertions are written with as-

pects instead of concrete names, so clients of the abstract type see only the

division into aspects, with the actual representation remaining hidden.

Consider, for example, an abstract type for two-dimensional vectors (Figure

9). The two aspects that are declared, X and Y, view the vector in rectangu-

lar terms, although it may well be represented in polar terms. The specifica-

ACM TransactIons on Software Engineering and Methodology, Vol 4, No 2, Aprd 1995

Detecting Bugswith Abstract Dependences . 133

abstract type Vector;

%aspects X, Y;

procedure make (x, y: real): Vector

%result. X ~ x

%result.Y * y

procedureadd(vl, u2: Vector): Vector

%result.X+vl.X, u2.X

~.result.Y~ u1.Y, v2.Y

proceduremag (u: Vector): (real)

%Oresult ~ v.X, v.Y

procedure scale (c: Vector, by: real): Vector

Vrresult. X F u.X, by

Yoresult.Y G v.Y, by

procedure refZect (v: Vector): Vector

‘6result. X~ v.Y

%result, Y* v.X

procedure rotate (v: Vector, by: real): Vector

V.result,X, result.Y~ u.X, u.Y, by

Fig.9. Thespecification ofanabstract type with aspects

tions of the procedures are just like the specifications we have already seen.

It is as if the Vector type were declared as a record with two fields, X and Y.

Suppose we write a procedure to subtract a vector V2 from a vector VI:

,procedure subtractFrom (VI, V2: Vector) is

%7)1.X + U1.x, 7)2.X

%U1.Y + U1.Y, U2.Y

U1 := add(vl, scale (7J2, – 1)).

If we thought mistakenly that the refZect operation reversed the direction of a

vector (when it actually swaps the components) and wrote the body as

1)1 := add (ul, reflect (LIZ))

the checker would display

Missing: u1.X on u2. X

Missing: v1.Y on v2.Y.

Aspects have virtually no effect on the checking mechanism. The aspect

declaration is treated like a type declaration, with the aspects of an abstract

object behaving exactly like the fields of a record. Since the aspect declaration

hides the representation, types that sit at the top of a chain of implementa-

tions (in which each type is implemented in terms of another) have much

smaller structures than they would have without aspects, and checking is

much faster.
We mentioned earlier in our discussion of specifications (Section 2.4) how

an explicit specification of a called procedure may help detect more bugs, by

omitting dependence that are apparent in the called procedure’s code. This

ACM Transactions on Software Engineering and Methodology. Vol. 4, No, 2, April 1995,

134 . Daniel Jackson

happens quite often with aspects. Consider, for example, an alternative

implementation that reverses the direction of U2 by rotating it:

procedure subtractFrom (VI, U2: Vector)

VI Z= add (vI, rotate (v2, pi/2)).

This code has a spurious dependence of VI ,X on v2.Y that can be omitted

from the specification, Here, the dependence approximation is not to blame.

One would need a full specification of rotate to determine that the rotation

angle in this case happens to avoid any projection of the X component of its

argument onto the Y component of its result. The Aspect specification of

subtractFrom thus embodies the specifier’s knowledge of the behavior of

rotate.

Introducing aspects thus allows the specifier to record details of a proce-

dure’s behavior in its specification that could not have been inferred at all

from its code. Aspects can also be attributed to primitive types. A file type, for

example, might have aspects for the data contents of the file and the position

of the file pointer; an integer might have aspects for its sign and magnitude.

4,2 Abstraction Functions

The invention of aspects independent of the actual components of the repre-

sentation raises an obvious difficulty. How are we now to check the imple-

mentation of a procedure of the abstract type? Its specification is cast in

terms of aspects which have no obvious correspondence to the actual compo-

nents of the data representation. What is needed is an association between

the two namespaces: the aspects and the actual components. This is provided

by an abstraction. function, specified along with the aspects, Suppose the

Vector type was implemented in rectangular terms:

rep = record [x, y: real].

In this case, the abstraction function would say that the X aspect of an

abstract object is obtained from the x component of the corresponding

representation object, and similarly Y from y:

abstraction

X<<x

Y << y.

The dependence assertions can then be translated into assertions that can be
checked directly. If instead the Vector type was represented in polar terms

rep = record[r, theta: real]

the abstraction would be

X << r, theta

Y << r, theta

indicating that each aspect is obtained from a combination of both represen-

tation components. When assertions are translated now, the combination

ACM Transactions on Software Engineering and Methodology, Vol 4, No 2, April 1995

Detecting Bugs with Abstract Dependences . 135

abstract type buffer is

TOaspects text, row, col

Toabstraction
To text << lines.@el
W. row << cy I(pos, lines.@el)

% col << cx ~(pos, lines.@cl)

rep = record [CX. q: Znt;

lines: array of string;

pos: int]

Fig. 10. Abstraction function for a representation with redundancy.

becomes a disjunction. To check the assertion result.X + u.Y of refZect, for

instance, the checker looks for representation dependence of result. r or

result. theta on either v.r or u.theta. If none of these is present, it displays

Missing (abs): result. X on v.Y

Missing (rep): (result.r or result. theta) on (result.r or result. theta)

showing both the abstract assertion that is violated and the set of acceptable

representation dependence that would satisfy it.

Both these representations used concrete types. In general though, one

abstract type is implemented in terms of another. The names that appear on

the right-hand side of the abstraction function are then aspects rather than

concrete components. Aspects may also be used to model pointers to external

objects; an abstract set, for example, might have an aspect elt pointing to

contained objects (see Jackson [19921 for details).

4.3 Redundancy in Representations

Sometimes a representation contains some redundancy, in order to speed up

certain operations by trading space for time. Consider an editor buffer, for

example, with aspects text (for the textual contents), row (for the vertical

position of the cursor in the text), and CO1 (for its horizontal position). It

might be represented as an array of strings, one per line (Figure 10). The

position in the buffer is held as a simple character count pos, so that changes

in the buffer at some position can be written through to a file by random

access. The cursor, which can be thought of as a row/column pair, is

expensive to calculate from this position and the array of strings alone, since

it involves adding the line lengths. It therefore makes sense to maintain the

cursm redundantly as the two fields cx and cy.

This redundancy is reflected in the abstraction function. The row aspect,

for instance, is obtained either from cy or from a combination of pos and

lines,@el. Consider now a procedure that gets the column number of the

cursor:

,procedure getCol (b: buffer): int

%result ~ b.col

return (b.cx).

ACM TransactIons on Software Engmeerlng and MethOdOlo~, VO1 4, NO 2, APrll 1995

136 . Daniel Jackson

This satisfies its specification, since the checker allows a dependence of result

on either of the disjuncts. The redundancy in this case weakens the concrete

dependency requirements. But in a procedure that modifies the cursor, the

redundancy strengthens them. To specify a procedure that adds a character

to the end of the last line, for example, we would write:

procedure add (b: buffer, c: char)

%b.text G b.text, c

7ob.col F b.col.

The second assertion now requires two dependence in the representation. If

the code inserted the character correctly and updated the pos field, but failed

to update cx in concert, the checker would complain:

Missing (abs): b.col on b.col

Missing (rep): b.cx on (b.cx or b.lines or b.pos).

The second message says more than could be inferred from the first message

and the abstraction function. Some of the representation dependence have

been found, but the dependence of b.cx is missing. The effect of the depen-

dency analysis here is to ensure that the redundancy is maintained and thus,

albeit crudely, to check a representation invariant implicit in the disjunction

of the abstraction function.

5, EXPERIENCE

An Aspect checker has been implemented for the CLU programming lan-

guage [Liskov et al. 1981] and is described in detail in Jackson [1992]. It

handles a number of programming language features not described here,

such as parametric polymorphism, dynamic allocation, sharing of substruc-

ture between abstract objects, and richer control mechanisms (iterators,

exceptions, structured jumps, multiple return values). The syntax of the

specification language, being tailored to CLU, is slightly different from that

presented here.

The checker performs all the checking of dependence, modifications, and

reconfiguration described in this article. It also does basic consistency

checking of specifications-ensuring, for example, that reconfiguration only

relate locations that contain pointers and that when a name like p. r appears,
the type of p admits a field or aspect r.

The checker includes a facility for saving libraries of specifications in a

compressed form, so that when a procedure is being checked, the specifica-

tions of procedures it calls can be loaded quickly. The built-in types (and in

fact constructors like records too) are not hardwired but specified in a library

that is always loaded. The checker is itself implemented in CLU, in about

15,000 noncomment lines of code.

Aspect has been tested in a series of small case studies. These were of four

types, each with its own purpose. First, specifications were written for all the

ACM Transactions on Software Engmeermg and Methodology, Vol 4, No 2, April 1995

Detecting Bugs with Abstract Dependences . 137

built-in types of CLU to demonstrate that Aspect is at least expressive

enough to describe basic polymorphic types and operations; these specifica-

tions totaled about 500 lines.

Second, several toy programs (a few thousand lines long) were written from

scratch along with Aspect specifications, to see how Aspect compared to type

chec;king as a technique for detecting flaws in incomplete programs long

before testing. Of the bugs missed by the type checker, Aspect caught one bug

for every three found later in testing. The ratio of specification to code was

almcwt a half this was disappointing and led to improvements in the Aspect

language; in the final version of the language, the specifications would have
been only one quarter of the length of the code.

Third, a few modules (totaling about 6500 lines of code) of an existing

program were annotated and checked, to demonstrate that writing and

checking Aspect specifications of industrial-quality code are feasible. The LP

theorem prover [Garland and Guttag 1989] was chosen: it makes ample use

of all the features of CLU, is well documented, and has been used and

maintained for several years. Surprisingly, Aspect caught an error that did

not cause incorrect behavior but was nevertheless a bug: a procedure’s

correctness depended on an unstated precondition. The ratio of specs to code
was again 1:4.

Fcmrth, I added code to an existing program (a new help feature for LP)

using Aspect to check the new code. About 300 lines of code were written,

with about 150 lines of specification, of which about 50 annotated a few

hundred lines of existing code. Three bugs were found: one by Aspect and two
by testing.

The performance of the checker is adequate for small experiments: check-

ing a procedure of 20 lines with about 100 names (program variables and

fields) takes a couple of seconds. The cost of the dependence construction

appears to increase linearly with the length of the procedure and quadrati-

cally with the number of variables. The worst-case complexity is at least cubic

(because of the closure calculation for loops), but this has no practical

consequence. Since the analysis is fully modular, the cost is determined only

by the size of the largest procedure, not the size of the entire program. A

technique for calculating Aspect dependence from the program graph (rather

than the syntax tree) has recently been developed [Jackson and Rollins 1994]

whose performance is comparable to an optimizing compilers.

In total, about 3000 lines of Aspect have been written, and about 8000 lines

of code have been checked. Experience with Aspect indicates that it can

indeed detect bugs missed by the conventional static analyses provided by a

compiler and that annotating and checking large programs is feasible. In all

the case studies, full specifications were written to detect as many errors as

possible. Allowing the checker to generate conservative approximations to
missing specifications, and to complete specifications that cover only some

arguments of a procedure, would reduce the relative size of the specifications
and thus the primary cost of using Aspect.

The kinds of gross error Aspect detects are rare in small programs but a
serious problem in very large programs. The most-promising application of

ACM Transactions on Software Engineering and Methodology, VO1.4, No. 2, April 1995.

138 . Daniel Jackson

Aspect is likely to be in system integration, where misunderstandings about

interfaces are common, and there is a great advantage to any analysis that

can precede testing, especially one like Aspect that can incorporate proce-

dures whose code is either inaccessible or unwritten.

6. DISCUSSION AND RELATED WORK

6.1 Anomaly Analysis

Aspect appears to be the first attempt to detect bugs in code by using

specifications of dependencies. A similar dependence construction is used in

the Spade tool [Bergeretti and Carre 1985] to detect a variety of anomalies,

such as the use of a variable before its definition, dead code, or “stable loops”

that, from their dependency structure, can be shown to be equivalent to a

fixed, finite unfolding. Spade actually uses three dependence relations, of

which one (p) is the same as the Aspect dependence relation. Other anomaly

detectors have used conventional dataflow lattices to determine the possible

orders of elementary operations (such as use and definition). A variety of

anomalies can be expressed as regular expressions on the language of opera-

tions [Fosdick and Osterweil 1976]; the DAVE tool [Osterweil and Fosdick

1976] implemented some important cases.

Some of the assumptions underlying static analysis techniques based on

dependence are exposed in Podgurski and C!larke [1990]; they discuss, for

example, whether the statement following a loop should have a dependence

on the loop test on account of possible nontermination and the resulting

consequences on the soundness of various static analyses. Program depen-

dence are investigated semantically by Cartwright and Felleisen [1989], who

show that the choice between various dependence notions can be related to

the degree of laziness in the store-update operation. A semantic rationale for

the kind of dependence used in Aspect has yet to be established, although

proving the soundness of the dependence rules (Figure 2) using the definition

of dependence given in Section 2.2 is straightforward.

6.2 Dataflow Testing

Dependence have also been used in testing, but for a rather different

purpose. Inadequacies in the coverage of a test suite can be exposed, for

example, by reporting branches of an if-statement that are never

executed—this is branch testing. A more-elaborate coverage criterion can be
based on the dependence of the program. One can require, for example, that

every clef-use association is executed [Rapps and Weyuker 1985]. The costs of

dataflow testing are not exorbitant in practice [Weyuker 1990], nor is it

difficult to instrument the program. The difficulty, in common with most test

coverage techniques and which rises as coverage criteria become more sophis-

ticated, is eliminating spurious demands (in this case for executing clef-use

associations that arise in paths that do not correspond to actual program

executions). Aspect specifications might have a role here: a dataflow test

criterion requiring all specified clef-use associations to be covered would not

ACM TransactIons on Software Engineering and Methodology, Vol 4, No 2, April 1995

Detecting BugswRh Abstract Dependences . 139

suffer from the infeasible-paths problem, since, by the specifier’s claim, at

least one execution satisfying each clef-use pair must exist.

6.3 F’rogram Slicing

Program slicing is a transformation based on program dependence. A vari-

able and a program point are selected; a slice of the program is then a new

program obtained by deleting statements that preserve the behavior of the

original program, for observations of that variable at that point [Weiser

1984]. This notion has found many applications in maintenance, testing, and

debugging, and many variants have been proposed [Tip 19941.

The most-popular form of slicing restricts the slice criterion to the selection

of a variable that is defined or used at some statement and defines a slice to

be a subprogram that includes at least the statements that might affect the

value of any of the variables used or defined at that statement [Reps and

Yang 1989]. Such a slice is easily computed in the program dependence graph

(PDG): it consists of the statements that reach the selected statement via
data~low or control dependence edges [Ottenstein and Ottenstein 1984].

A dependence model that associates Aspect-like dependence with proce-

dures [Jackson and Rollins 1994] can retain the advantages of the program

dependence graph (easy construction and slicing as graph traversal) but also

allow a simpler treatment of interprocedural slicing than the conventional

extension to the PDG [Horwitz et al. 1990] and incorporate external proce-

dures more smoothly.

Moriconi’s [1990] analysis for determining the impact of modifications is

related to slicing, in that it calculates transitive dependence effects. Its

underlying model of dependence is a logic, however; the effects are deter-

mined compositionally with an inference rule for each syntactic construct.

This analysis like Aspect is modular, and the inferred dependence of a

procedure are analogous to an Aspect specification.

6.4 F:ormal Specification Languages

Like the formal specifications of Larch [Guttag and Horning 1993], VDM

[Jones 1990], and Z [Spivey 1992], Aspect specifications are declarative. The

order of assertions makes no difference, and they relate only the pre- and

poststates of a procedure without prejudicing the internal state transitions.
They are “executable” though and, unlike the specifications of these lan-

guages, can be checked el%ciently. Aspect specifications are, of course, woe-

fully inexpressive in comparison and would certainly not do as contracts

between users and implementors.

Whether Aspect specifications are easy enough to write to be cost-effective

remains to be seen. What is clear is that conventional specifications are

prohibitively expensive and should be reserved primarily for the early stages

of the lifecycle and used at the code level only when the correctness of a
procedure is so important that the expense is justified (e.g., for component

libraries, where the cost is amortized, and for critical components whose

failure would be catastrophic).

ACM Transactions on Software Engineering and Methodology, Vol. 4, No. 2, April 1995

140 . Daniel Jackson

6.5 Partial Specification Checkers

Developers of regular software need checking methods that lie in cost be-

tween type checking and verification. Aspect is one of a number of approaches

aimed to fill this gap.

A subset of Larch/C that can be efficiently checked has been implemented

in the LCLint tool [Evans et al. 1994]. The modifies clause of a Larch/C

specification requires that at most some set of variables be modified. LCLint,

in contrast to Aspect (which would check for plausible modifications of those

variable) checks that no other variables are modified. It also detects viola-

tions of declared abstraction barriers, which are not necessarily bugs but are

often symptoms of (sometimes quite subtle) errors.

Henderson’s [1975] work on finite-state modeling of programs would now

be classified as abstract interpretation, even though it predates the work of

Cousot and Cousot [1977]. A program is constructed in layers, with each

implementing an abstract machine. The procedures of each layer are specified

by giving transitions in an abstract state space invented by the specifier;

from these specifications, the transition functions of the procedures of upper

layers are constructed and compared to their specifications. More recently,

the Syntox tool checks assertions in Pascal programs by approximating the

reachable states at each program point with, roughly speaking, an abstract

calculation of the weakest precondition [Bourdoncle 1993]. By exploiting

more-elaborate lattices of abstract values, along with widening and narrow-

ing—ad hoc means for obtaining convergence along infinite chains —Syntox

is able to detect some very subtle bugs, albeit in small numerical programs.

A number of techniques have been developed to detect cases in which

operations are applied to an object in an illegal order. The typestates of the

Nil programming language [Strom 1983] distinguish, in the type system, the

states of a pointer before and after initialization, and by enforcing a require-

ment that all apparent paths to a program point give the same approximated

typestates, they can prevent dereferencing of uninitialized pointers. Refine-

ment types [Freeman and Pfenning 1991] extend the idea to higher-order

functions in ML: a recursive type definition maybe written that allows richer

types to be inferred for the constructors, so that subsequent type inference

can catch more errors. The list type, for instance, can be enriched to distin-

guish the empty, singleton, and longer lists.

The event sequence analysis of Cesar\Cecil [Olender and Osterweil 1992]

lets the user specify explicitly for each datatype the sequences of operations
that are acceptable. A regular expression can express, for example, the

constraint that a read-only file must be opened, read zero or more times, and

then closed.

Perry’s Inscape environment [Perry 1989a] centers around “constructive

use” of specifications, which includes the detection of bugs. The transitions of

a procedure are specified by propositional assertions: for example, one might

assert that the close procedure on the file ~ can only be executed when

Open(~) is true, and subsequently ClosecZ(f) is true. In addition to pre- and

postconditions, a specification may include “postobligations”; for the open

ACM Transactions on Software Engmeermg and Methodology, Vol. 4, No. 2, Aprd 1995.

Detecting Bugs with Abstract Dependences . 141

procedure, we would assert that it must eventually be closed. A novel

propositional logic is used to propagate assertions around the code of a

procedure [Perry 1989b]. Errors are reported when it can be shown that an

assertion is violated. If a read of a file immediately follows a close, for

example, its precondition—that the file be open—cannot be satisfied, and

there must be a bug.

All these state-based schemes identify errors with execution paths that can

produce bad values, so they tend to be good at detecting errors of commission.

Aspect, on the other hand, looks for missing paths and is good at errors of

omission. It is encouraging that the techniques seem to be complementary.

Howden’s [1990] “comments analysls “ “ is similar to these techniques, in

that it associates assertions, called comments, with program points. Roughly,

a comment is a propositional statement about the program variables. The

proposition names are invented by the specifier and thus might be similar to

the assertions of Inscape or the typestates of Nil. But a proposition can

express more than the program state. A flavor assertion can make distinc-

tions like an abstract type system with name equality: for an integer i, for

instance, we might have isTemperature(i) and isLength(i). Alternatively, a

flavor assertion may indicate the computation to be expected—isTotalSum(i)

vs. isParticdSum(i)—and might even incorporate elements of program depen-

dence—dependsOnX(y). The Quick Defect Analyzer (QDA) [Howden and

Wieimd 1994] was designed to perform a comments analysis on an avionics

program written in assembler and was extremely successful in detecting

buga, even though the program had been running for some time. QDA’s basic

function is to propagate flavor assertions along edges of the control-flow

graph, checking the flavors hypothesized at one program point against flavors

asserted at another. In addition, “rules” allow flavors of different variables to

be rlelated across the entire program. One can assert, for example, that some

register holds the value 5 when the nose of the airplane is down. Many errors

were found because different procedures declared inconsistent rules (and

thus interpreted data incompatibly). Rules can also play a role similar to

Aspect’s abstraction function, translating assertions about the detailed repre-

sentation of data into assertions about its abstract properties.

6.6 Alias Analysis

There is a long history of work in alias analysis; for the most-recent contribu-

tions see Choi et al. [1993], Deutsch [1994], and Pande et al. [1994]. Aspect’s

context calculation is not intended to make novel contributions in this

arezl—indeed it is similar to schemes based on abstract interpretation, such

as l~arus and l%lflnger [1988] and Horwitz et al. [1989]—but rather to

provide a minimal treatment of aliasing that is sufficient, in practice, to allow

accurate construction of dependence. Aspect, moreover, is constrained in a

way conventional alias analyses are not. Its representation of aliasing must

not only be computable and sound but also specifiable. It is for this reason

that Aspect does not handle recursive structures such as linked lists and

trees. So long as they are encapsulated within an abstract type that can be

ACM TransactIons on Software Engineering and Methodology, Vol. 4, No. 2, Aprd 1995

142 . Daniel Jackson

viewed as a collection, they can be specified and their clients analyzed, but

the code that manipulates the actual linked structures is not amenable to

Aspect checking. These structures are, incidentally, rare in CLU programs,

since the built-in dynamic array type provides better performance than

linked lists and gives much cleaner code. Perhaps Aspect is worth extending,

but I suspect that the burden of specification may be excessive.

The alias analysis scheme, even within the model presented here, could be

improved. There are circumstances in which patently unnecessary depen-

dence are inserted. The checker actually performs a better analysis than the

analysis described here, but it is unclear whether the complication pays off in

practice. Indeed, reconfiguration are usually far harder to specify than

dependence, and it maybe worth weakening the alias analysis to reduce the

burden of specification. Schemes that divide the store into regions of poten-

tially aliased locations [Gifford and Lucassen 1988] are much simpler and

may be adequate in some applications. They are also more easily extended to

higher-order functions.

APPENDIX

A. THE ASPECT LANGUAGE

This grammar gives the syntax of the subset of the language explained in this

article. The expression S,* (S, ‘) denotes zero (one) or more iterations of S,

separated by commas.

procedure-annotation: = (dependency I reconfiguration)*

dependency: Z= expr” G “expr, *

reconfiguration: .= ptr “:-’’ptr, *

expr: Z= obj-name[aspect]

obj-name: Z= variable ~variable[. fields]

fields: := (field-name ~field-name “~” ~“@cl”)?

type-annotation: = “aspects” aspect,+ “abstraction” abst-decl*

abst-decl: ~= aspect << cone-expr, +

cone-expr: “= fieldsl.aspect](’’l’’fieldsaspectct])*

B. MATHEMATICAL SYMBOLS

Ps powerset of S

S + T functions from S to T

S - T binary relations from S to T

#s size of set S

x - y maplet, equivalent to pair (x, y)

Is = {(x, x) I x G S} identity relation over set S

l?[S] = {y I ax e S. (x, y) G It} image of set S under relation R

ACM Transactions on Software Engineering and Methodology, Vol. 4, No 2, April 1995

Detecting Bugs with Abstract Dependences . 143

Qo.R = {(x, z)12Y. (x, Y) ~ Q A (y, z) G R} relational product

R+= R u (R o R) U . . . transitive closure of R

R*= IuRu(Ro R) u... reflexive and transitive closure of R
Q OR = {(x, y)l(x, y) GR v ((x, y) e Q A ~z. (x, z) cR)} relational

override

() empty sequence

(e) sequence containing single element e

Snt concatenation of sequences s and t

ACKNC)WLEDGMENTS

John Guttag supervised the thesis on which this article is based. He con-

tribui;ed greatly to the emphasis of the work, notably in the role of abstrac-

tion and the declarative nature of the specifications. Butler Lampson com-

plained incessantly about Aspect’s complexity (with some effect, I hope) and

persuaded me to recast Aspect in a more-traditional Algol-like model. David

Gifford gave me helpful feedback, especially early on, and Pamela Zave gave

me the benefits of her careful reading and sound advice on presentation.

Keith Randall was, after me, Aspect’s first user and the implementor of the

second version of the Aspect Checker, with help from Dorothy Curtis. I also

received valuable comments from John Gannon, Michael Jackson, Rustan

Leino, Gail Murphy, Robert 0’Callahan, Mark Reinhold, Mark Vandevoorde,

and the anonymous referees. Many thanks to them all.

REFERENCES

BERGEI?ETTI, J. F. AND CARRE, B. A. 1985. Information-flow and data-flow analysis of while-
programs. ACM Trans. Program. Lang. Syst. 7, 1 (Jan.).

BOURDIONCLE, F. 1993. Abstract debugging of higher-order imperative languages. In Proceed-
ings of the ACM Symposium of Programming Language Design and Implementation. ACM,

New York.

CHOI, J., BuRm, M., AND CARINI, P. 1993. Efficient flow-sensitive interprocedural computation

of painter-induced aliases and side-effects. In Proceedings of the 20th ACM Symposium on

Prmctples of Programmmg Languages. ACM, New York, 232-245.

Cousor, P. AND COUSOT, R. 1977. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th

ACM Symposwm on Principles of Programming Languages. ACM, New York, 238-252.

CARTWRIGHT, R. AND FELLEISEN, M. 1989. The semantics of program dependence. In Proceed-

ings of the ACM Symposium on Programmmg Language Design and Implementation. ACM,

New York.

DEUTSCH, A. 1994. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In

Proceedings of the SIGPLAN T94 Conference on Programmmg Language DesLgn and Imple-

mentation. ACM, New York, 230–24 1.

EVANS.,D., GUmAG, J., HORNING, J., AND TAN, Y. M. 1994. LCLint—a tool for using specifica-

tions to check code. In Proceedings of the ACM SIGSOFT Conference on Foundations of

Software Engineering (New Orleans, La., Dec.). ACM, New York.

FOSDICK, L. D. AND OSTERWEIL, L. J. 1976. Dataflow analy~is in software reliability. ACM

Comput. Surv. 8, 3 (Sept.).

FREEMAN, T. AND PFENNING, F. 1991. Refinement types for ML. In Proceedings of the ACM

Conference on Principles of Programming Languages. ACM, New York.

ACM Transactions on Software Engineering and Methodology, Vol. 4, No. 2, April 1995.

144 . Daniel Jackson

GARLAND, S. J AND GUTTAG, J V. 1989. An overwew of LP, the Larch Prover. In Proceedings

of the 3rd Interns tional Con ference on RewrLtmg Techniques and ApphcatLons. Lecture Notes

in Computer Sc]ence, vol. 355. Springer-Verlag, New York

GIFFOR~, D. K. AND LUCASSEN, J. M, 1988, Polymorphic effect systems. In the ACM Sympo-

szu m on Princ~ples of Program mmg Languages ACM, New York.

GUTTAG, J, V. AND HORNING, J. J. 1993. Larch: Languages and Tools for Formal SpeczfLca-

ttons. Springer-Verlag, New York,

HENDERSON, P. 1975. Fimte state modellingin program development. In Proceedings of the

International Conference on Relzable Software. ACM, New York

HOV,7DEN, W. E, 1990, Comments analysls and programming errors. IEEE Trans. Softw. Eng,

16, 1 (Jan.),

HORWITZ, S,, REPS, T,, AND BINKLEY, D. 1990. Interprocedural slicing using dependence graphs.

ACM Trans. Program. Lang, Syst. 12, 1 (Jan.), 26-60.

HORWITZ, S., PFEIFFER, P., AND REPS, T, 1989. Dependency analysis for pointer variables. In

the ACM Symposium on Principles of Programming Language Design and Implementation.

ACM, New York.

HOWDEN, W. E, AND WIEAND, B. 1994. QDA—a method for systematic informal program

analysis. IEEE Trans. Soft w. Eng. 20, 6 (June).

JACKSON, D. 1992. Aspects. A formal specification language for detecting bugs. Tech. Rep.

MIT/LCS/TR-543, MIT Laboratory for Computer Science, Cambridgej Mass. June.

JACKSON, D. AND ROLLINS, E. J. 1994. A new model of program dependence for reverse

engineering. In Proceedings of the 2nd ACM SIGSOFT Conference on Foundations of Software

Engineering (New Orleans, La., Dec.), ACM, New York.

JONES, C. 1990, Systemat~c Software Development Using VDM, 2nd ed. Prentice-Hall, Engle-

wood Cliffs, N,J,

LARUS, J. R. AND HILFINGER, P. N. 1988. Detecting conflicts between structure accesses. In

Proceedings of the ACM Conference on Programmmg Language Design and Implementation,

ACM, New York.

LISKOV, B., ATKINSON, R., BLOOM, T., Moss, E., SCHAFFERT, C., SCHEIFLER, B., AND SNYDER, A,

1981. CLU Reference Manual. Sprmger-Verlag, Berhn,

MORICONI, M. 1990, Approximate reasoning about the semantics effects of program changes,

IEEE Trans. Softu,. Eng. 16, 9 (Sept.),

OSTERWEIL, L. J, AND FOSDICK, L. D. 1976. DAVE—a validation, error detection and documen-

tation system for Fortran programs, Softw. Pratt. Exper, 6, 4, 473-486,

OTTENSTEIN, K. J, AND OTTENSTEIN, L. M, 1984, The program dependence graph m a software

development environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Symposium on

Practical Software Development Environments ACM SIGPLAN Not. 19, 5 (May), 177-184.

OLENDER, K. M. AND OSTERWEIL, L. J. 1992. Interprocedural static analysis of sequencing

constraints. ACM Trans. Softw. Eng. Method. 1, 1 (Jan,).

PODGURSKI, A. AND CLARKE, L. 1990. A formal model of program dependencies and Its implica-

tions for software testing, debugging and maintenance. IEEE Trans. Softu,, Eng, 16, 9 (Sept.).

PERRY, D. E. 1989a. The Inscape environment, In Proceedings of the llth International

Conference on Softuare Engineering (Pittsburgh, Pa., May). ACM, New York, 2– 12.

PERRY, D. E. 1989b, The logic of propagation in the Inscape envmonment. In Proceedings of

the 3rd ACM Symposium on Software Testzng, Analysis and Ver@catlon (TAV3) (Key West,

Fla., Dec), ACM SoftLL,. Eng, Not. 14, 8 (Dec.), 114-121.

PANDE, H., LANDI, W., AND RYD~R, B. 1994. Interprocedural clef-use associations for C systems.

IEEE Trans. Softw. Eng. 20, 5 (May), 385-403.

RAPPS, S. AND WEYUKER, E. J. 1985. Selecting software test data using data flow information.

IEEE Trans. Softw. Eng. SE-11, 4 (Apr.), 367-375,

RUSSELL, J. R., STROM, R. E , AND YELLIN, D. M. 1994 A checkable interface language for

pointer-based structures. In Proceedings of the Workshop on Interface Deflrutlon Languages.

ACM SIGPLAN Not. 29, 8 (Aug.),

ACM TransactIons on Software Engmeermg and Methodology, Vol. 4, No 2, April 1995

Detecting Bugs with Abstract Dependences . 145

REPS, ‘T. AND YANG, W. 1989. The semantics of program slicing and program integration. In

Proceedings of the Colloquium on Current Issues in Programming Languages (Barcelona,

Spain, Mar). Lecture Notes in Computer Science, vol. 352. Springer-Verlag, New York,

360--374.

SPIVEY, J. M. 1992. The Z IVotat~on: A Reference Manual. 2nd ed. Prentice-Hall, Englewood

Cliffs, N.J.

STROM, R. E. 1983. Mechanisms for compile-time enforcement of security. In Proceedings of

the ACM Conference on Principles of Programmmg Languages. ACM, New York.

TIP, F 1994. A survey of program slicing techniques. Tech. Rep, CS-R9438, Centrum voor

Wiskunde en Informatica (CWI), Amsterdam.

WEISER, M. 1984. Program slicing. IEEE Trans. So@J. Eng. 10, 4 (July).

WEYUr~R, E. J. 1990. The cost of data flow testing: An empirical study, IEEE Trans. Softw.

Eng, 16, 2 (Feb.).

Received November 1993; revised March 1995; accepted June 1995

ACM Transactions on Software Engineering and Methodology. Vol 4, No. 2, April 1995.

