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ABSTRACT
The dissemination of critical information and the syn-
chronization of coordinated activities are critical prob-
lems in geographically separated, large-scale, software
development. While these problems are not insur-
mountable, their solutions have varying trade-o�s in
terms of time, cost and e�ectiveness. Our previous stud-
ies have shown that the inspection interval is typically
lengthened because of schedule con
icts among inspec-
tors which delay the (usually) required inspection col-
lection meeting.

We present and justify a solution using an intranet web
that is both timely in its dissemination of information
and e�ective in its coordination of distributed inspec-
tors. First, exploiting a naturally occurring experiment
(reported here), we conclude that the asynchronous col-
lection of inspection results is at least as e�ective as
the synchronous collection of those results. Second, ex-
ploiting the information dissemination qualities and the
on-demand nature of information retrieval of the web,
and the platform independence of browsers, we built
an inexpensive tool that integrates seamlessly into the
current development process. By seamless we mean an
identical paper 
ow that results in an almost identical
inspection process.

The acceptance of the inspection tool has been excellent.
The cost savings just from the reduction in paper work
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and the time savings from the reduction in distribution
interval of the inspection package (sometimes involving
international mailings) have been substantial. These
savings together with the seamless integration into the
existing environment are the major factors for this ac-
ceptance. From our viewpoint as experimentalists, the
acceptance came too readily. Therefore we lost our op-
portunity to explore this tool using a series of controlled
experiments to isolate the underlying factors or its e�ec-
tiveness. Nevertheless, by using historical data we can
show that the new process is less expensive in terms of
cost and at least as e�ective in terms of quality (defect
detection e�ectiveness).
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INTRODUCTION AND BACKGROUND
An increasingly popular trend in large-scale software de-
velopment is the use of development teams that are ge-
ographically separated. Instances of this trend range
from groups that are contained in multiple buildings to
groups that are located in multiple continents. The for-
mer tend to be separated only geographically; the latter
tend to be separated temporally as well. Where geo-
graphical separation tends to encourage asynchronous
activities because of cost factors, temporal separation
often prohibits synchronous activities because of non-
overlapping work hours.

It is in this context that the dissemination of critical
information and the synchronization of coordinated ac-
tivities are critical problems. While these problems are
not insurmountable, their solutions have varying trade-
o�s in terms of time, cost and e�ectiveness. These so-
lutions range from the simple form of using speaker-
phones to multimedia supported and technologically in-
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tensive computer-supported cooperative work | that
is, from relatively inexpensive (but primitive) solutions
to expensive and sophisticated (but as yet experimen-
tal) solutions. Note, however, that temporal separation
tends to make these synchronized solutions usable only
for short periods during the workday at best and com-
pletely impractical at worst. For example, at Lucent
technologies, the work hours of developers in Chicago
overlap with their partners in Hilversum, Netherlands.
However, work hours in Denver are disjoint from those
in Sydney, Australia.

Because of these two forms of separation there are of-
ten bottlenecks introduced into the project schedules.
For example, our previous studies [2] have shown that
inspection interval is typically lengthened because of
schedule con
icts among inspectors which delay the
(usually) required inspection collection meeting. The
problems of geographical and temporal separation ex-
acerbate the scheduling problems and result in even
greater bottlenecks.

A typical approach to process improvement is to intro-
duce a process change (often incorporating a new tool
as part of the change), and then to evaluate the e�ect of
that change. While it is certainly necessary to assess the
impact of any process change, these improvements are
most often done without understanding thoroughly the
existing process, where the important problems are, and
what the tradeo�s are among the various alternative so-
lutions. Perry, Staudenmeyer and Votta [7] point out
the importance of understanding the existing process
before making improvements and discuss a set of related
studies aimed at gaining that understanding. Bradac,
Perry and Votta [5] report a study to �nd out how de-
velopers spend their time | that is, what they actually
do as opposed to what they are thought to do. Only
by understanding the current process can one �nd out
where the problems are and which of those are impor-
tant.

Critical to making well-founded improvements is under-
standing the range of alternative changes and assessing
their various strengths and weaknesses. Empirical stud-
ies are fundamental to determining the characteristics
of these changes. For example, Ballman and Votta [11]

report that scheduling bottlenecks caused by inspection
meetings lengthen the development interval and that
meetingless inspections avoid this problem without loss
of the important characteristics associated with inspec-
tion meetings. To deepen our understanding of inspec-
tions, Porter, Votta and Basili [9] empirically (and repli-
catably) compare and evaluate detection methods for
software requirements' inspections. Siy's thesis [10] has
the seminal result of showing that the structural changes
commonly-proposed to inspection processes do not alter
the e�ectiveness of those processes.

We present and justify a solution using an intranet web
that is both timely in its dissemination of information
and e�ective in its coordination of distributed inspec-
tors. First, exploiting a naturally occurring experiment
(reported here), we conclude that the asynchronous col-
lection of inspection results is at least as e�ective as
the synchronous collection of those results. Second, ex-
ploiting the information dissemination qualities and the
on-demand nature of information retrieval of the web,
and the platform independence of browsers, we built
an inexpensive tool that integrates seamlessly into the
current development process. By seamless we mean an
identical paper 
ow that results in an almost identical
inspection process. Additionally the new process is con-
sistent with ISO certi�cation.

We provide the context for inspections in general, dis-
cuss the inspection process as it was before and after
the introduction of the web-based support tool, and de-
scribe the technical details of the inspection tool. We
then introduce and discuss the empirical basis and justi-
�cation for the improved process and consider the vari-
ous cost elements in the new inspection process. Finally,
we report the overall results of using the tool in the last
section.

THE INSPECTION PROCESSES
The inspection process is divided into three basic
phases: preparation, collection and repair. The prepa-
ration phases includes such things as initiating the in-
spection process, disseminating the inspection package,
and the inspectors preparing (that is, inspecting the ar-
tifact) for the collection phase. The collection phase
includes the collection, assessment and resolution of de-
fects. The agreed upon defects are then �xed in the
repair phase.

The Manual Inspection Process
In the initial preparation phase (see Figure 1) the author
selects a moderator and inspectors, creates the appro-
priate versions of the code to be inspected, determines
with project management the inspection schedule, and
prepares the scenarios to be used during the inspection
meeting. The inspection package is then generated and
distributed.

The inspectors prepare for the collection meeting by
walking through the code following the scenarios pro-
vided by the author.

At the collection meeting the moderator coordinates the
defect collection process and controls the 
ow of the
meeting to guarantee both thoroughness and complete-
ness. The recorder compiles a written record of the
defects and issues. The inspection team completes the
process by achieving consensus on resolving the defects
and issues.
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Figure 1: Comparison of Inspection Processes.

During the repair phase the author resolves the defects
and issues raised in the collection meeting and does
the basic bookwork to complete the inspection process
which is veri�ed by the moderator.

The hyperCode Inspection Process
The initial preparation phase is essentially identical,
with a few changes in details: the inspection package
when delivered is available on-line rather than as paper
with e-mail noti�cation of availability.

The primary di�erence is in the inspector prepara-
tion, collection and repair phases. Here the inspector
preparation and collection are done concurrently, with
hyperCode providing the automatic collection of the an-
notations, and the resolution of the annotations is done
by the moderator and author as part of the repair phase.

THE hyperCode SYSTEM
We discuss two basic views of hyperCode: the process
view and the implementation view. In the �rst, we dis-
cuss the observable characteristics of the tool and how
they a�ect the authors, moderators and inspectors. In
the second, we discuss various details of how we make
things happen, either directly or indirectly.

Process View
hyperCode is a web-based code inspection system. Dur-
ing a designated inspection interval, inspectors use the

a web browser at their desktop computers to view and
annotate the code under inspection (see Figure 2 for
an example of the user interface). All annotations are
viewable by all participants. This inspection process
does not require the simultaneous participation of the
inspectors, nor do inspectors need to be geographically
co-located. All that is required for participation is ac-
cess to the intranet via a web browser. At the end of
the inspection interval, the author and moderator re-
solve inspector annotations and the author makes code
changes as appropriate. All aspects of the code inspec-
tion are performed via web pages. E-mail noti�cation
replaces paper meeting notices, status reports, etc.

hyperCode makes use of an already existing tool that
generates code inspection packages (see Figure 3). The
essential part of the code inspection package is a di�-
marked code listing that highlights new and modi�ed
lines of source code. Traditionally, this code inspection
package is printed on paper and distributed to the in-
spectors. A hyperCode web-based inspection package is
generated by running the output of the already exist-
ing inspection package generation tool through a �lter
that generates an HTML version of the package (line
numbers become hyperlinks that provide the ability to
annotate, page numbers in the table of contents become
hyperlinks to the corresponding pages, etc.).

The hyperCode inspection package has the same lay-



Figure 2: Example of the User's View of hyperCode.
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Figure 3: Generating the Inspection Packages.

out as the paper version - experienced developers are
therefore immediately familiar with hyperCode inspec-
tion packages. The ability to create and view inspection
packages, create and manage annotations, send e-mail
noti�cations, etc. are provided by a set of CGI scripts
maintained at the webserver. No special purpose soft-
ware is needed by users of hyperCode - the only software
required of users is the Netscape Navigator web browser
(since hyperCode makes use of frames, Netscape Navi-
gator version 2.0 or later is required).

An author creates a hyperCode inspection package by
bringing up the package creation web form and entering
information about the package, including the usernames
of those who are to be inspectors. The author also des-
ignates one of the inspectors to be the moderator of the
inspection. Standard WWW username/password au-
thentication is used to identify users and control access.
The author then submits the form, which causes the
webserver to invoke the standard inspection generation
tool and feed the results to the HTML �lter, the output
of which is the hyperCode inspection package which is
deposited in a node managed by the webserver.

A hyperCode inspection package goes through a lifetime
consisting of 4 states: pending, in progress, resolution,
and done. Packages can be viewed in any state, but
annotations can only be made by the inspectors when
the package is in the in-progress state. A package is ini-

tially created by the author in the pending state. The
author then moves the package to the in-progress state,
which causes e-mail noti�cation to be sent to the inspec-
tors and other interested par- ties (project management,
quality team, etc.). The designated inspectors may now
inspect the code and make annotations.

At the end of the designated inspection interval, the
author moves the package to the resolution state. This
state transition again generates e-mail noti�cation to
the inspectors and other interested parties. The author
then determines the disposition of each annotation and
records (via hyperCode web page) whether any code
changes will be required. After the disposition of all an-
notations has been determined, the author then informs
the moderator via e-mail that the package is ready for
moderator sign-o�. The moderator then veri�es the dis-
position of the annotations.

The moderator then moves the package to the done

state. This state transition generates a �nal e-mail no-
ti�cation to inspectors and other interested parties.

Implementation View
Source code line numbers are hyperlinked to a form that
allows inspectors to enter annotations. That is, when
an inspector clicks on a source code line number, a web
form containing a text input area is presented. The
inspector enters the annotation and submits the form,



which causes the webserver to make a record of the
annotation. The record contains the username of the
inspector, the line number and source code �le name,
along with the text of the annotation.

For each inspection package, hyperCode provides a page
that lists all annotations that have been made to date by
the package inspectors. This contains hyperlinks to the
annotation text and to the relevant source code page,
and is ordered by source �le and line number. The an-
notation list page is generated via a CGI script, so the
page is up to date each time it is reloaded by a web
browser.

If a source code line has been annotated by an inspec-
tor, a graphical element appears in the left hand margin
of the source code display page as a visual cue to in-
spectors or other viewers of the package. The graphical
element is hyperlinked to the text of the corresponding
annotations.

In addition to source �le-speci�c annotations, inspectors
may also make general annotations that do not refer
to any particular line of source code in the package.
These type of annotations may be used to record general
concerns or issues that are global to the source code
under inspection. At the top of each source code display
page is a hyperlink to a web form that enables these
types of annotations to be made. General annotations
also appear on the annotation list page.

EMPIRICAL ASSESSMENT
Given the geographical and temporal separation of
many of our projects, it is immediately obvious that
electronic distribution saves both delivery time and dis-
tribution costs, especially when several continents are
involved.

If on-line inspections are better than manual inspec-
tions, then it must be possible to eliminate meetings
without decreasing e�ectiveness. Previous work [9, 8, 10]

suggests that this is indeed the case, but until now there
has been no direct evidence from an industrial environ-
ment.

One of the advantages of conducting software engineer-
ing research in the context of a number of very large soft-
ware developments at Lucent Technologies is the possi-
bility of gathering important data and insights via ret-
rospective studies and naturally running experiments.
Thus we are fortunate to have data available from one
of these existing experiments that enables us to com-
pare the e�ectiveness of synchronous vs. asynchronous
inspections (see [12] for a similar example). The advan-
tage of this approach is that the empirical infrastructure
is already in place { that is, the software development
organization was already measuring the e�ects of two
di�erent inspection processes (desk-based collection ver-

sus meeting-based collection) and recording critical data
for the two processes. Hence, there was no intrusion on
the part of the experimenters and our role was that of
interpretation.

We compare the results from these two classes of inspec-
tions: new code (Table 1 1) and repaired code (Table 2).
The signi�cance is calculated using the Wilcoxon-Mann
and Whitney Rank Order Test [3] , a two-sided test as-
sessing whether the fault densities observed for each in-
spection when taken from a desk or meeting are drawn
from the same distribution. The smaller the value, the
more signi�cant. For this article, we consider values be-
tween 0.1 and 0.05 to indicate a mild signi�cance and
values less than 0.05 indicate signi�cance.

For example, in Table 1 the row labelled \Average
Faults/Inspection" indicates that desk-based inspec-
tions (10.1 faults/inspection) and meeting-based inspec-
tions (8.8 faults/inspection) are not signi�cantly di�er-
ent since the \signi�cance" is 0.2. Conversely, the dif-
ference in the \Average Code Size/ Inspection" between
desk- and meeting-based inspections is signi�cant be-
cause 0.02 is less than 0.05. Finally, the\Average Repair
Interval" is mildly signi�cant (0.1).

To determine whether the asynchronous desk inspec-
tions are as e�ective as the meeting collections, we look
at inspection statistics taken from almost 3000 inspec-
tions conducted in this environment. Table 1 and Table
2 show these statistics for new and modi�ed code re-
spectively.

The Tables show that there is no di�erence in the av-
erage fault density1 measures of defects of new code
inspections found by desk inspections or meeting-based
inspections. There is a signi�cant di�erence for mod-
i�ed code, but the di�erence is e�ectively 0 (.0031 vs.
.0037). Since this is and order of magnitude smaller
than the densities for new code we conclude that meet-
ingless inspections are no less e�ective than inspection
with meetings.

Moreover, there is very little di�erence in the time
needed to repair new code, though the slightly less time
take might be due to overlapping repair with collection.

RELATED WORK
While there has been much work on inspections struc-
tures, inspection techniques and automated inspection
support, we believe we are the �rst to report on the use
of an intranet-based tool to support asynchronous (that
is, meetingless) code inspections. The primary e�ort in
prior automation is in the application of CSCW sup-
port for inspection collection meetings | that is, in the

1Porter et al. [2] describes several approaches for measuring
and estimating defect detection ratio. We use the observed defect
density estimate they recommended.



Desk Meeting Both Signi�cance
Number of Inspections 202 441 643 NA
Average Faults/Inspection 10.1 8.8 9.2 .20

(Faults)
Average Code Size/Inspection 427 327 358 .02

(NCSL)
Average Fault Density/Inspection .030 .029 .030 .92
(Faults/NCSL)
Average Repair Interval 7.1 8.0 7.7 .10
(Days)

Table 1: Comparison of Desk and Meeting Inspection Detection E�ectiveness for New Code.

Desk Meeting Both Signi�cance
Number of Inspections 2152 197 2152 NA
Average Faults/Inspection .163 .432 .185 < .01
(Faults)
Average Code Size/Inspection 26.0 59.4 28.8 < .01
(NCSL)
Average Fault Density/Inspection .0031 .0037 .0031 .03

(Faults/NCSL)
Average Repair Interval 1.2 3.3 1.3 < .01
(Days)

Table 2: Comparison of Desk and Meeting Inspection Detection E�ectiveness for Repaired Code.

support for synchronous meetings (see for example [4, 1]

). But as we have shown above, asynchronous code in-
spections are more cost e�ective and at least as quality
e�ective as synchronous inspections. Moreover, the cost
of asynchronous automated support is signi�cantly less
than that of synchronous.

The empirical data we report here is the �rst such data
showing speci�cally that asynchronous code defect col-
lection is as e�ective as the synchronous code defect
collection.

What has not been taken advantage of is the possibil-
ity of further concurrency in the inspection process |
namely, that the resolution and repair phase can pro-
ceed concurrently with the inspector preparation and
collection phase (probably because work patterns are
hard to change). While there are undoubtedly cases
where defects interact and the expense of coordinated
changes is less than separate changes, in most cases the
changes are independent and hence concurrent repair
would be cost e�ective2.

RESULTS
The acceptance of the inspection tool has been excellent.
We attribute this to four basic facts. First, the cost sav-
ings just from the reduction in paper work and the time

2In software developments where the fault density is higher
before inspections, this may not be a good assumption.

savings from the reduction in distribution interval of the
inspection package (sometimes involving international
mailings) have been substantial. Second, the new intra-
net tool-based process integrates seamlessly into the ex-
isting environment and work
ow. This point is both
a subtle and a critical one. The disruption of existing
work
ow almost always causes both resistance and un-
expected side-e�ects. Third, the new process opens up
new possibilities for concurrency and inherent speedups
of the elapse time interval. Fourth, the ubiquity of the
web with its distribution and random accessibility as
well as its browser platform independence makes it a
natural platform for such an approach as ours.

From our viewpoint as experimentalists, the acceptance
has come too readily and easily: we have lost our oppor-
tunity to control the important empirical variables and
adequately assess the impact of the tool experimentally
(see [6] for a description of our desired experimental
structure). Because of its immediate acceptance at the
grass roots level, the prototype has become a de facto
product.

What, then, do we do about this situation? How do we
evaluate the e�ects of a new process when we cannot
do the controlled experiments we had originally wanted
to do? While not without its drawbacks, the use of
historical data (which we do have for a large number
of products and their numerous releases) can show that



the new process is at least as good as the existing one if
there is no drop in cost, interval and quality measures.
The primary drawback of course is that we do not have
control over the experimental variables which limits the
validity of our results.
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