CIS 422/522 Winter 1999

Threaded Applications
and Concurrency Control

Applicable to multi-threaded, multi-
process, and distributed applications

(c) 1999 M Young CIS 422/522 2/21/99 1

The Lost Update Problem
Thread 1 Object Thread 2 * Thread 2 update
is lost
—Read—
* Could be
° —Read—) _ Disk TOC
> >
IS IS — Flight reservation
> >
i) i) — Game world
@ @ » Makes reasoning
> >
= 2 hard
5 5 :
8 8 — Hard to think
— Write— ?bout aII.possibIe
W rite— interleavings of
—Write threads
(c) 1999 M Young CIS 422/522 2/21/99 2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzée
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Winter 1999

Lost Update - Multi-Player Game

Game Server

Person 1
Person 1

* Consider: Person | and Person 2 each take treasure
— Each locally thinks “I got it before he did”
— Result is inconsistent local worlds

(c) 1999 M Young CIS 422/522 2/21/99 3

Reasoning Levels

* Individual interleavings
— Good for informal reasoning and design
— Too many to enumerate exhaustively

* Finite-state models (state machines)
— Petri nets, process algebra, ...
— Possible but difficult

* Use when necessary to design isolated protocols

* ldioms & standard protocols

— Overall patterns with known properties

(c) 1999 M Young CIS 422/522 2/21/99 4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzée
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Winter 1999

Concurrency Control Protocols

» Objective: Pretending atomicity
— Treat concurrent activities as if they occurred serially
* So that reasoning about interleavings is not needed
* Transactions = Units of (Pretend) Atomicity
— As if only complete transactions were interleaved
— Typically a complete read/compute/write sequence

— Enough to retain globally consistent state

* But not too much; atomicity and performance are in tension

(c) 1999 M Young CIS 422/522 2/21/99 5

Mutual Exclusion (Locking)

+ Basic mechanism

—Lock — Locks or semaphores
associated with the shared
. resource
Lock
— Example: Java
“synchronized” classes

(Blocked)

—Unlock o
+ Limitations

— Atomicity only with respect
to the locked resource
* Not aggregations

Unlock— — Performance and
responsiveness

* esp. for aggregations

(c) 1999 M Young CIS 422/522 2/21/99 6

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzée
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Winter 1999
4

CREW Locking

+ CREW = Concurrent read, exclusive write

— Reduces blocking when some threads are “pure readers” with
respect to globally consistent state

— Careful --- Independent CREW locking does not provide global
consistency (see next slide on granularity)

Locked for Read Locked for Writing

Obtain Read Lock OK

Obtain W rite Lock block block

(c) 1999 M Young CIS 422/522 2/21/99 7

Granularity of Locking

[(HEE(J [AEEEE /(e
AEEEEEN N A EEE/E]JE]

AN NN FEENEEEEN DN
NN} NN JEEE INiE] el e e
EEEN EEE NN /A EEN /EN

* Airline reservation task:
— Two seats, together, on EUG->SFO and SFO->LAX
* Locking level
— The whole airplane, or individual seats?
— One flight, or all three?
» Coarse grain = easy consistency, lousy performance

(c) 1999 M Young CIS 422/522 2/21/99 8

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzé
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Winter 1999

Two-Phase Locking
X p1 P2 Y X Pl P2 Y
read lock X; read lock X:
templ = x; = x
unIoF::k X: read lock Y; templ =Xx;
temp2 =Y; write lock Y;
unlock Y; Y=Y +templ,; I
unlock Y;
unlock X;
write lock Y; read lO(_:k Y
Y=Y +templ; temp2 =Y;
unlock Y;)
write lock X; write lock X;
X=X+temp2; X=X+temp2
unlock X; unlock X;
unlock Y;
(c) 1999 M Young CIS422/522 2/21/99 9

Two-Phase Locking

» Two-phase locking rule
— Locking phase: Only lock, no unlocking
— Unlocking phase: Only unlocking, no more locking
— Transaction = Locking phase + Unlocking phase
* Theorem
— Transactions with two-phase locking are serializable

— Translation: As if the whole collection of items were
locked; as if transactions did not overlap

(c) 1999 M Young CIS 422/522 2/21/99 10

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzée
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522

Winter 1999

methods)

(c) 1999 M Young

Deadlock & Resource Ordering
— » Circular wait
Lock A Lock B — First process locks A, waits
A oc to lock B
Lock B — Second process locks B,
Lock A waits to lock A
8 * Variations
— any number of resources or
Unlock B = | |Unlock A locks
Unlock A Unioek B » Avoidance
* o — Globally consistent order
for locking resources
(c) 1999 M Young CIS422/522 2/21/99 11
Two-Phase + Resource Ordering
 Pattern of P1 P2 Y
locking/unlocking in read lock X;
two-phase locking templ =x;
with resource write lock Y; I
. . Y=Y +templ;
ordetrlng is proper unlock V-
nesting of locks used unlock X:
by each transaction write lock X;
+ Natural fit with read lock Y;
‘ . »» temp2 =Y;
monitor’ constructs
(e.g., Java classes with X=X+ temp2
: unlock Y;
synchronized unlock X.

CIS422/522 2/21/99

© 1996-1998 Michal Young; portions © 1998 Maur
For reprint permissions contact michal@cs.uorego

o Pezzé
n.edu

CIS 422/522 Winter 1999

Alternatives to Locking?

* Locking is pessimistic concurrency control

— Block to prevent inconsistency before it happens

» Alternative: Optimistic concurrency control
— “Abort” if conflicts cannot be resolved

— Examples:

» RCS vs. CVS version management system

— RCS locks to prevent conflict, CVS allows parallel editing but
may not be able to commit all changes

« Airline reservations

* Variations

— Tree locking, time-stamped versions, ...

(c) 1999 M Young CIS 422/522 2/21/99 13

Abort-oriented vs. Locking control

* Use abort-oriented control when

— Locking (at the right level) is too expensive

* e.g, in a multi-player game, the shared world should not be
locked between messages

— Aborting a transaction has no serious effects, OR
— Abort/Retry can be hidden from user

* Use locking-oriented control when
— Conflicts are rare, or blocking is acceptable

* Use more complex concurrency control when

— there is no other acceptable choice

(c) 1999 M Young CIS 422/522 2/21/99 14

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzée
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Winter 1999

Where to Start?

* What consistency is needed?
— Identify shared state that must be treated consistently

— Include local state with implicit consistency, e.g., what
must player A and B agree about?

* What operations must be serialized?

— Balance simple consistency reasoning with acceptable
performance

» Choose approach and granularity

— Easiest if one approach throughout

* mix and match is possible only under special conditions

(c) 1999 M Young CIS 422/522 2/21/99 15

Example: Networked Multi-Player Game

» Concurrency control handled at level of overall strategy,
then applied (independently) to each module

No local update of
global state (e.g.,
pick-up is a server
action only)

Replicate all unchanging data
(e.g., dungeon layout), keep
keep individual position local

©

Global

Transaction = event + response, game
server serializes events and may
respond to some as "failed"

Person 1

Person 1

(c) 1999 M Young CIS 422/522 2/21/99 16

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzée
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Winter 1999

Using Language Primitives

* Java: Monitors
— “Synchronized” methods provide locking concurrency
control at the level of individual objects
* Adequate if method = transaction
* Makes deadlock unlikely (but not impossible)

* May not ensure global consistency; explicit locking may be
necessary, but is much harder to design correctly

* Distributed processes

— Remote procedure control

* Event dispatch may provide monitor-like concurrency control

— Explicit locking (e.g., Unix flock) also possible

(c) 1999 M Young CIS 422/522 2/21/99 17

Summary

» Concurrency
— Main problems are races (lost update) and deadlock
— Difficult to reason about all possible interleavings

» Concurrency control

— Known (and verified) strategies for maintaining
consistency

— Much easier than reasoning directly about interleavings
— From OS and database research, but widely applicable

» To apply: ldentify consistency needs, then
transactions, then strategy; then design details

(c) 1999 M Young CIS 422/522 2/21/99 18

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzée
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Winter 1999
10

Supplementary Slides

* What are these?

— These are details that don’t fit in a one-hour lecture,
but which you may find useful

* Mostly as starting points. You’ll need outside reading to get
enough detail to actually use these techniques.

* What is here!?

— Other design rules for concurrent and real-time

systems
— Specialized and advanced concurrency control
methods
(c) 1999 M Young CIS 422/522 2/21/99 19

Responsiveness and Priority

* Priority scheduling rules:

— Assign highest priority to tasks with shortest periods or deadlines,
rather than the most “urgent”

* This is called “rate-monotonic” (or “deadline monotonic™)
scheduling, and it results in better response than ad hoc priority
assignment based on urgency [Liu & Layland]

— Auvoid priority inversion

* “Priority inversion” occurs when a high-priority task waits for a low-
priority task

+ At a system level, low-priority tasks should inherit the priority of
high-priority tasks waiting for the locks they hold

* If system doesn’t do it, simulate by using high-priority tasks to
perform operations on objects locked by high-priority tasks

— This is called “priority ceiling,” and is essential to achieving worst-case
timing requirements in hard real-time systems. See me if you want
papers that describe the details.

(c) 1999 M Young CIS 422/522 2/21/99 20

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzée
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Winter 1999

Tree Locking

W, W,

* If the global state is tree-
structured, you can use
that structure to improve
locking performance

Cc] (d) (]

(a] * Locka “path” from root

writing

writing

if they were serialized.

(c) 1999 M Young

Process 1 locks a,b for reading, c for

Process 2 locks a,e for reading, f for

to the node to be locked
— Always starting from the
root
* Locks “above” changed
node can be read locks

— CREW protocol is the
(only) source of
performance improvement

The two updates can proceed
concurrently, and the result will be as

CIS422/522 2/21/99 21

Concurrency Control with Time-Stamps

See Bernstein et al to get the details (and to

- Current

. [34
v
L |27
v
.| 18
v

| 14

(c) 1999 M Young

get it right, since I'm going from memory)

+ Each transaction is initially given a
time-stamp
— They have to be properly ordered, but
need not reflect “real” time
* Writing = creating a new version

— Marked with the transaction time-stamp

* Transactions can “read from the
past”
— Transaction stamped 29 would read
version marked 27, not current version
» Abort may be necessary

— The past is read-only; cannot write a

version older than the current
CIS422/522 2/21/99 22

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzée
For reprint permissions contact michal@cs.uoregon.edu

11

