CIS 422/522 Winter 1999

Threaded Applications
and Concurrency Control

Applicable to multi-threaded, multi-
process, and distributed applications
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The Lost Update Problem
Thread 1 Object Thread 2 * Thread 2 update
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—Read—
* Could be
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Lost Update - Multi-Player Game

Game Server

Person 1
Person 1

* Consider: Person | and Person 2 each take treasure
— Each locally thinks “I got it before he did”
— Result is inconsistent local worlds
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Reasoning Levels

* Individual interleavings
— Good for informal reasoning and design
— Too many to enumerate exhaustively

* Finite-state models (state machines)
— Petri nets, process algebra, ...
— Possible but difficult

* Use when necessary to design isolated protocols

* ldioms & standard protocols

— Overall patterns with known properties
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Concurrency Control Protocols

» Objective: Pretending atomicity
— Treat concurrent activities as if they occurred serially
* So that reasoning about interleavings is not needed
* Transactions = Units of (Pretend) Atomicity
— As if only complete transactions were interleaved
— Typically a complete read/compute/write sequence

— Enough to retain globally consistent state

* But not too much; atomicity and performance are in tension
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Mutual Exclusion (Locking)

+ Basic mechanism

—Lock — Locks or semaphores
associated with the shared
. resource
Lock
— Example: Java
“synchronized” classes

(Blocked)

—Unlock o
+ Limitations

— Atomicity only with respect
to the locked resource
* Not aggregations

Unlock— — Performance and
responsiveness

* esp. for aggregations
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CREW Locking

+ CREW = Concurrent read, exclusive write

— Reduces blocking when some threads are “pure readers” with
respect to globally consistent state

— Careful --- Independent CREW locking does not provide global
consistency (see next slide on granularity)

Locked for Read Locked for Writing

Obtain Read Lock OK

Obtain W rite Lock block block
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Granularity of Locking
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* Airline reservation task:
— Two seats, together, on EUG->SFO and SFO->LAX
* Locking level
— The whole airplane, or individual seats?
— One flight, or all three?
» Coarse grain = easy consistency, lousy performance
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Two-Phase Locking
X p1 P2 Y X Pl P2 Y
read lock X; read lock X:
templ = x; = x
unIoF::k X: read lock Y; templ =Xx;
temp2 =Y; write lock Y;
unlock Y; Y=Y +templ,; I
unlock Y;
unlock X;
write lock Y; read lO(_:k Y
Y=Y +templ; temp2 =Y;
unlock Y; )
write lock X; write lock X;
X=X+temp2; X=X+temp2
unlock X; unlock X;
unlock Y;
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Two-Phase Locking

» Two-phase locking rule
— Locking phase: Only lock, no unlocking
— Unlocking phase: Only unlocking, no more locking
— Transaction = Locking phase + Unlocking phase
* Theorem
— Transactions with two-phase locking are serializable

— Translation: As if the whole collection of items were
locked; as if transactions did not overlap
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Deadlock & Resource Ordering
— » Circular wait
Lock A Lock B — First process locks A, waits
A oc to lock B
Lock B — Second process locks B,
Lock A waits to lock A
8 * Variations
— any number of resources or
Unlock B = | |Unlock A locks
Unlock A Unioek B » Avoidance
* o — Globally consistent order
for locking resources
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Two-Phase + Resource Ordering
 Pattern of P1 P2 Y
locking/unlocking in read lock X;
two-phase locking templ =x;
with resource write lock Y; I
. . Y=Y +templ;
ordetrlng is proper unlock V-
nesting of locks used unlock X:
by each transaction write lock X;
+ Natural fit with read lock Y;
‘ . »» temp2 =Y;
monitor’ constructs
(e.g., Java classes with X=X+ temp2
: unlock Y;
synchronized unlock X.
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Alternatives to Locking?

* Locking is pessimistic concurrency control

— Block to prevent inconsistency before it happens

» Alternative: Optimistic concurrency control
— “Abort” if conflicts cannot be resolved

— Examples:

» RCS vs. CVS version management system

— RCS locks to prevent conflict, CVS allows parallel editing but
may not be able to commit all changes

« Airline reservations

* Variations

— Tree locking, time-stamped versions, ...
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Abort-oriented vs. Locking control

* Use abort-oriented control when

— Locking (at the right level) is too expensive

* e.g, in a multi-player game, the shared world should not be
locked between messages

— Aborting a transaction has no serious effects, OR
— Abort/Retry can be hidden from user

* Use locking-oriented control when
— Conflicts are rare, or blocking is acceptable

* Use more complex concurrency control when

— there is no other acceptable choice
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Where to Start?

* What consistency is needed?
— Identify shared state that must be treated consistently

— Include local state with implicit consistency, e.g., what
must player A and B agree about?

* What operations must be serialized?

— Balance simple consistency reasoning with acceptable
performance

» Choose approach and granularity

— Easiest if one approach throughout

* mix and match is possible only under special conditions
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Example: Networked Multi-Player Game

» Concurrency control handled at level of overall strategy,
then applied (independently) to each module

No local update of
global state (e.g.,
pick-up is a server
action only)

Replicate all unchanging data
(e.g., dungeon layout), keep
keep individual position local

©

Global

Transaction = event + response, game
server serializes events and may
respond to some as "failed"

Person 1

Person 1
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Using Language Primitives

* Java: Monitors
— “Synchronized” methods provide locking concurrency
control at the level of individual objects
* Adequate if method = transaction
* Makes deadlock unlikely (but not impossible)

* May not ensure global consistency; explicit locking may be
necessary, but is much harder to design correctly

* Distributed processes

— Remote procedure control

* Event dispatch may provide monitor-like concurrency control

— Explicit locking (e.g., Unix flock) also possible
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Summary

» Concurrency
— Main problems are races (lost update) and deadlock
— Difficult to reason about all possible interleavings

» Concurrency control

— Known (and verified) strategies for maintaining
consistency

— Much easier than reasoning directly about interleavings
— From OS and database research, but widely applicable

» To apply: ldentify consistency needs, then
transactions, then strategy; then design details
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Supplementary Slides

* What are these?

— These are details that don’t fit in a one-hour lecture,
but which you may find useful

* Mostly as starting points. You’ll need outside reading to get
enough detail to actually use these techniques.

* What is here!?

— Other design rules for concurrent and real-time

systems
— Specialized and advanced concurrency control
methods
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Responsiveness and Priority

* Priority scheduling rules:

— Assign highest priority to tasks with shortest periods or deadlines,
rather than the most “urgent”

* This is called “rate-monotonic” (or “deadline monotonic™)
scheduling, and it results in better response than ad hoc priority
assignment based on urgency [Liu & Layland]

— Auvoid priority inversion

* “Priority inversion” occurs when a high-priority task waits for a low-
priority task

+ At a system level, low-priority tasks should inherit the priority of
high-priority tasks waiting for the locks they hold

* If system doesn’t do it, simulate by using high-priority tasks to
perform operations on objects locked by high-priority tasks

— This is called “priority ceiling,” and is essential to achieving worst-case
timing requirements in hard real-time systems. See me if you want
papers that describe the details.
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Tree Locking

W, W,

* If the global state is tree-
structured, you can use
that structure to improve
locking performance

Cc] (d) (]

(a] * Locka “path” from root

writing

writing

if they were serialized.
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Process 1 locks a,b for reading, c for

Process 2 locks a,e for reading, f for

to the node to be locked
— Always starting from the
root
* Locks “above” changed
node can be read locks

— CREW protocol is the
(only) source of
performance improvement

The two updates can proceed
concurrently, and the result will be as
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Concurrency Control with Time-Stamps

See Bernstein et al to get the details (and to

- Current
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get it right, since I'm going from memory)

+ Each transaction is initially given a
time-stamp
— They have to be properly ordered, but
need not reflect “real” time
* Writing = creating a new version

— Marked with the transaction time-stamp

* Transactions can “read from the
past”
— Transaction stamped 29 would read
version marked 27, not current version
» Abort may be necessary

— The past is read-only; cannot write a

version older than the current
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