Documentation for Developers

(As distinguished from
documentation for end-users)

(c) 1998 M Young CIS 422/522 2/14/99

Purposes

* Capture (and demonstrate) the state of an
evolving system

— “Milestone” documents for each stage

* Freeze decisions

— “Contracts” among developers, and between
developers and clients

* Orient developers to the system

— Including “maintainers’ as developers over the
longer term

(c) 1998 M Young CIS 422/522 2/14/99

Typical Milestone Documents

Requirements

Definition

<

Specification

External*

A

) *Partly
|~ Requirements

**Or

— “architectural”

Design Preliminary**
Detalled
Internal

Code termna

Comments,

— Javadoc, etc.

(c) 1998 M Young

<

/ Operation

Configuration =<

Makefile,
Howto, etc.

CIS 422/522 2/14/99

Requirements

* Definition vs. Specification
— Definition: What the client wants or needs

— Specification: What the developer promises
* Requirements definition (elicitation)
— In the problem space, in the users language
— Should avoid design
* Requirements specification

— In the solution space, necessarily involves
design

(c) 1998 M Young CIS 422/522 2/14/99

Requirements Process

Diagram from Sommerville,
pg. 67

_ ’ProcessOrder/ L
- bility Stud Requirements Dependence e
easioiity uday Ana|y3i3 Material into g
documents e
n
d
l Requirements
Definition
Feasibility System
Report Models Requirements
' Specification
Document L
e 0 ong
SN R | Definition of
- ¢ Requirements Requirements
stp d Document Specification of

Requirements

(c) 1998 M Young CIS 422/522 2/14/99

System Models: Context

e Context Model

— Explores question: What is the environment
of this system

— OR: What system is this system a component
of
* Particularly useful for information
processing

— eX., how does class registration fit with all the
other human and automated information

systems?
(c) 1998 M Young CIS 422/522 2/14/99

Information Modeling

* For any system with structurally rich data
— Business systems, but also CAD/CAM, C3|, ...

* Part requirements, part design
— Understanding existing and required information

— Bringing order and elegance to chaos

* Many alternatives

— Relational, ER, class/inheritance, ...

* All models emphasize some aspects and discard
others

(c) 1998 M Young CIS 422/522 2/14/99

The SRS Document

* Describes both requirements and
specification
— Maybe together, maybe separately

* Includes
— Problem statement: Why this system?
— Rationale (for specification choices)
— Likelihood of change

— Precise Specifications (next slide)

(c) 1998 M Young CIS 422/522 2/14/99

Specifications

* Discriminate between acceptable and
unacceptable systems

— Should say just enough; should not over-specify

* Should include (among other things)

— Negative specifications: What must not happen

* a.k.a. safety specifications

— Desirable responses to undesirable events

* robustness

— Glossary of terms

(c) 1998 M Young CIS 422/522 2/14/99

Narrowing for Checkability

Example: Elevator
response

]Q[{}
Uncheckable requirements can
often benarrowedto checkable

properties (often sufficient but
not necessary conditions)

123?5678

Objective:
Passengers are not
frustrated by waiting
Specified property:
Elevator responds

within 60 seconds,
99% of the time

Excluded solution:
Install 2 mirror in the
waiting area

(c) 1998 M Young CIS 422/522 2/14/99

10

External Design

* Partly requirements, partly design

— May bind some parts early and some late

* Can be specified in user documentation

— User manuals can be written before code
* Avoids redundant external design
* Accelerates document development

* Moves responsibility for detailed external design
decisions

— Probably must be shared among writer, usability expert (if
available), and designers/coders

(c) 1998 M Young CIS 422/522 2/14/99

11

Design Documentation

* Objectives
— Orientation
— Specification (serving as contract and record)
— Prompting (thought tool)

* Dozens of notations and methods to
choose from
— Like any other model: Emphasize and discard

— Important to be well-defined, whether
standard or ad hoc

(c) 1998 M Young CIS 422/522 2/14/99 12

UNIX layer architecture

from C. Schimmel, UNIX Systems for
Modern Architectures (Addison-Wesley 1994)

User UNIX
Written Commands
Applications and Libraries

System call interface

Unix Kernel

Hardware

* What does this diagram tell us about the division
of Unix into Kernel & Commands!?

(c) 1998 M Young CIS 422/522 2/14/99 13

Interpreting Block Diagrams

layers diagram block diagram

A B lexer —{ parser

C

* layers diagram indicates permitted and prohibited
interfaces or dependencies (the “uses’” relation)

* block diagram shows interfaces
— but typically not direction of dependence

— and is often over-simplified (where is symbol table?)

(c) 1998 M Young CIS 422/522 2/14/99 14

Boxologies

create
]

Dgsh

pPop

empty

stack

* The “boxologies” usually have

A design notation
for object-based design
circa 1985

— A set of notations for various stages of design and points of view
(e.g., class hierarchy vs. dynamic architecture vs. static

architecture)

— A corresponding methodology for creating design

* Advantage: Standardization

e Current dominant notation: UML

(c) 1998 M Young

CIS 422/522 2/14/99

15

UML Dependencies (of packages)

Figure 31. Dependencies among packages

]

Controller

1 ¥

Diagram
Elements

—1 ¥ ¥ — V¥

Domain Graphics
Elements Core

(c) 1998 M Young CIS 422/522 2/14/99

UML Class Diagram

(c) 1998 M Young

Rectangle

p1:Point
p2:Point

«constructor»
Rectangle(p1:Point, p2:Point)
ﬂque;"}h:

area (): Real

aspect (): Real

;*‘Liijdﬂteﬂ
move (delta: Point)
scale (ratio: Real)

CIS 422/522 2/14/99

17

UML Collaboration Diagram

Figure 37. Collaboration diagram

redisplay() —- .
Controller Window

window

wire

«parameters»window

‘1: displayPositions{window) *1.1.3.1: add(self

contents {new}

+ 1.1*[i:=1..n]: drawSegment(i) C wire: Wire

wself:

«lgcal=line
1.1.2: create(r0,r1) —=

Line {new}

i-1

1.1.3: display({window) —=

+1 1.1a: r0 := position()

* 1.1.1b: r1:=position()

left: Bead

nght: Bead

(c) 1998 M Young CIS 422/522 2/14/99

18

Boxology Assessment

* Boxologies have been good for
— Standardizing communication

— Making syntactic distinctions (e.g., arrow types)
* Some problems and limitations

— Precision only at low (language) level

— Incomplete semantic definition

* Lots of room for ambiguity

* An alternative (sometimes): Domain-
specific notations / languages

(c) 1998 M Young CIS 422/522 2/14/99

19

