
1

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

&,6 ������� :LQWHU ����

(c) 1999 M Young CIS 422/522 2/9/99 �

,QIRUPDWLRQ +LGLQJ
DQG 0RGXODU 'HVLJQ

(Again)

(c) 1999 M Young CIS 422/522 2/9/99 �

,QIRUPDWLRQ +LGLQJ

• Information =
– Design decisions (data structures, algorithms, …)

– Device characteristics

– Platform

– …

• Hiding =
– Isolating dependence

– Permitting independent change

2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

&,6 ������� :LQWHU ����

(c) 1999 M Young CIS 422/522 2/9/99 �

+LGH ZKDW"

Information hiding is fundamentally a strategy of
“design for change”

• Hide what may change
– Over time

– As the design is refined

– Between versions, platforms, etc.

• Hide so that it can change independently

(c) 1999 M Young CIS 422/522 2/9/99 �

:KDW ZLOO \RX KLGH"

• Application: Electronic ignition
– Delco electronics, ignitions for GM cars

– Same basic design: gather sensor data, adjust timing
forward or back according to driving conditions

• Application: Mosaic web browser
– X, Mac, Windows versions

– Evolution of: http, html, media types

• Application: Tektronix printer engine
– Various ink jet and laser hardware, color and

monochrome

([HUFLVHV

3

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

&,6 ������� :LQWHU ����

(c) 1999 M Young CIS 422/522 2/9/99 �

+LGLQJ LV QRW)UHH

• Hiding means pretending not to know
– Not taking advantage of information that is “hidden”

in other modules

– Not using the faster special-case (optimizing)

– Coding for all cases, not just those that can actually
occur

• So we hide some things and reveal others
– Fundamental assumptions = unlikely to change

• and we pay the price if they do

– Pay the price of hiding for what is most likely to
change

(c) 1999 M Young CIS 422/522 2/9/99 �

/DQJXDJH 6XSSRUW

• OO ≠ Information Hiding
– Helpful, but neither necessary nor sufficient

• Scope rules help “enforce” secrets
– Prevent access to representations we have chosen to

keep secret, e.g., data structures

– Object-based and object-oriented languages are
good at keeping data structures secret, if the object
interfaces are well designed

• abstract = more than one possible instance

• Limited usefulness for some secrets
– e.g., concurrency control strategy

4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

&,6 ������� :LQWHU ����

(c) 1999 M Young CIS 422/522 2/9/99 �

1RQ�22 ,QIR +LGLQJ ([DPSOH ���

• Layered protocol
structure

– Each layer hides the the
layers below

• True abstractions
– Can substitute ATM for

Ethernet, etc.

• Implemented since 70s in
straight C

R eliable S tream

Bes t-e ffort
packe t rou ting

Phys ica l
transport

(c) 1999 M Young CIS 422/522 2/9/99 �

1RQ�22 ,QIR +LGLQJ ([DPSOH ���

• Consider the structure of XML (or HTML, SGML)
– Basic tag syntax <foo> … </foo>

– Particular application-specific tags

• Hiding:
– Particular tag-sets hidden from XML parser and many

generic XML tools

– Concrete syntax hidden from application-specific
tools

• parse/unparse components hide parsing, reveal tree
structure

• Similar “thin tree, fat tree” division in compilers

5

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

&,6 ������� :LQWHU ����

(c) 1999 M Young CIS 422/522 2/9/99 �

([HUFLVH� (�&DUG ([FKDQJH

• Application: Electronic exchange of “business
card” information
– Exchange format + program support for sending and

receiving contact information

• Requirement: Interoperate with off-the-shelf
PIMS (contact managers)
– “product line” must interoperate with several

• Problem: Conversion between native format
and various PIM formats

