
1

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 1

Requirements Elicitation

(c) 1998 M Young CIS 422/522 2/8/99 2

Proactive vs. Reactive Elicitation

• Users seldom provide complete, reasonable
requirements without coaxing.
– The user doesn't know what is practical or possible.

• Requirements elicitation is an active process
– gathering information
– negotiating

• We could do X, but it would take Y months longer.

– suggesting alternatives

2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 3

Problems vs. Solutions

• Users typically have a solution in mind, and it is
typically a small variation on current activities.

• Back up. Understand the problem.
• Separate the what from the how

– The how is already on your mind, but it must be
carefully partitioned from the what.

(c) 1998 M Young CIS 422/522 2/8/99 4

Who do you talk to?

If the client is an organization, analysts should consult with
• Someone with authority

– ensure an organizational commitment (“buy-in”) to
the project objectives and direction

• Each user group
– at all levels: the boss may not know how it's really done

• Each enabling group
– unhappy people can ensure failure

3

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 5

Organizational Context

• Elicitation problems depend partly on the
organizational context of system development

• Example contexts and variations:
– Central development organization vs. decentralized

development
– Client/Buyer vs. Market

• Sometimes we can adjust the context; more
often we must adapt to it

(c) 1998 M Young CIS 422/522 2/8/99 6

External Clients & Contract
Projects

• Advantages
– Variable resource levels and kinds
– Less fixed budget commitment
– “Flatter” organizations

• Problems
– Premature specification freezing
– Institutional memory and relationships
– Products vs. product lines

4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 7

Specifications as Contracts

• Problem: Premature specification freeze
– May narrow solution space and stifle creative approaches
– Changes may become very expensive
– Works best when developers produce a product line with limited

variatons (“precedented” products)

• Problem: Product lines
– Contracting rules can discourage reuse and infrastructure

development
• But some contract developers do well by amortizing development

across several clients

(c) 1998 M Young CIS 422/522 2/8/99 8

Developing for a Market
e.g., shrink-wrap software

• The “client” is potential buyers in a software market, but
we still need requirements analysis

• Approaches:
– Study the competition and market

• and talk to users of the competing or related products

– Recruit potential users
• surveys, interviews, mock-ups
• the “client” may need to be paid!

– Prototypes and incremental deliveries

5

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 9

Internal Development:
Centralized or Decentralized?

Organizational context affects requirements analysis

• In a large enterprise, developers can be organized in a
single centralized “service” organization, or small
development organizations can be distributed throughout
the enterprise

(c) 1998 M Young CIS 422/522 2/8/99 10

Internal Development:
Centralized vs. Decentralized

Software system development for clients within the same
enterprise (e.g., company or agency)

• Centralized resource
– Serves clients in many sub-areas of the enterprise
– Clients are in competition for the resource

• Decentralized resource
– Developers are distributed throughout the enterprise
– Clients have dedicated resource

6

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 11

Requirements Elicitation in
Centralized Development

• Advantages:
– Larger development organization with more

specialized work roles. Experienced analysts work
with a variety of clients and apply “tried and true”
approaches

• Problems
– Developers lack domain expertise
– “Gold plating”: Competition for development

resource encourages clients to hold resource as long
as possible

(c) 1998 M Young CIS 422/522 2/8/99 12

Developing Domain Expertise
Techniques for Centralized Development

• Explicitly schedule and budget for domain analysis
and training

• Develop specializations within the development
organization
– but also cross-train to spread the knowledge

7

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 13

Avoiding Gold-Plating
Techniques for Centralized Development

• Remove the incentive
– Fixed-schedule projects

• Bound the schedule before commiting to a project, and make
schedule feasibility a condition of continuing beyond
requirements

– Prioritize by size
• Special “small projects” development queue

– Rationalize budgeting (difficult!)
• Larger projects should “cost more” (but this is difficult ...)
• Avoid perverse incentives (also difficult)

(c) 1998 M Young CIS 422/522 2/8/99 14

Requirements Elicitation in
Decentralized Development

• Advantages:
– Developers work closely with users and acquire domain and

organizational expertise
– Incremental development and evolution of requirements occur naturally

• Problems:
– Balkanization of information resources

• redundant and inconsistent information; difficult to build applications that
span sub-organizations

– Isolated developers
• do not develop as much “intellectual capital” of reusable design, quality

standards, components, etc.

• do not have as wide a range of specialized skills

• higher risk in losing an individual

8

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 15

Coordinating Decentralized
Development

In Large Enterprises
• “Matrixed” organizations

– Developers belong to a centralized organization but
are semi-permanently assigned to a client organization

• but there is a “two bosses” management problem

– Project teams may be part matrixed, part centralized
• Developers may be rotated

– but this trades away some advantages of
decentralization

(c) 1998 M Young CIS 422/522 2/8/99 16

Everyone must win

• An automated system typically depends on several groups
of users
– Not only the users for who the system is designed; consider

every input and every administrative or other task needed to keep
the system running

• It is surprisingly easy for unhappy users to torpedoe a
system.
– If the introduction of a new or modified system makes work even

a little harder for someone, with no compensation, they can help
it fail.

9

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 17

A Failure to Provide Win
Conditions

City of Eugene, Oregon, information system to schedule
public works projects (repairing signs, patching roads,
trimming trees), early 1980s

• Inputs: Inspectors fill out forms describing needed
repairs.

• Outputs: Planning reports for managers
DISASTER: No win condition for inspectors. The system was

technically sound, but failed miserably.

(c) 1998 M Young CIS 422/522 2/8/99 18

Lollipops

• After the doctor gives the child a shot, she also
gives him a candy

➠ Try to ensure a natural benefit for every class of user on
which a software system depends

➠ If there is no natural benefit, invent a lollipop
· a software function that is not naturally part of the

system functionality, but which provides enough
benefit to encourage use

10

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 19

Systematizing the Domain

• We want to go from a Ptolmeic universe to a
Copernican universe
– A clean specification with general rules and few special cases

• The user sees epicycles, and at first so does the analyst
– Usually there is an (almost) orderly system, but it is not easy to

find
– Strange but true: Humans can use rules without being aware of

them. Example: Language.

(c) 1998 M Young CIS 422/522 2/8/99 20

Rule Discovery and Test

• Similar to scientific method
– Observe cases (procedures, special case rules)
– Hypothesize general rule
– Test hypothesis

• Probably can’t just ask

• Checking rule validity
– It is difficult for ananalysts or users to understand the

consequences of a rule
• quantification (“all”, “some”, “never”) is particularly hard

– Examples (“experiments”) can help

11

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 21

Examples as “Experiments”

• If a rule is valid, then all of its consequences should be
valid
– It is easier for the user to judge the validity of

particular examples than of the general rule
• Try to “cover” the rule

– Consider the “typical” case
– Consider “boundary” cases
– Especially consider “vacuous” cases of quantifiers

• e.g., if rule says “if all foo are pink”, consider no foo

(c) 1998 M Young CIS 422/522 2/8/99 22

Using Redundancy
A general technique for identifying
 and repairing faulty information

• Redundant examples
– Vary factors that shouldn’t matter (check for hidden

variables)

• Multiple reports
– Different users, with different viewpoints should

confirm rules
• a good confirmation must be capable of invalidating the

hypothesized rule; avoid bias toward the original
interpretation

– User should re-confirm (using a few different
examples) on another occasion

12

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 23

Scenarios

• Hypothetical situations and activities
– a “storyboard” is a presentation of a scenario

• Help the user describe requirements through examples
• Help the user and analyst test rule consequences

– Like experimental design in the sciences, look for
consequences that could disconfirm a hypothesis

– Confirmation through strange consequences is more
convincing than obvious consequences

(c) 1998 M Young CIS 422/522 2/8/99 24

Asking questions through scenarios

• “Suppose the furnace is in normal operation, and
then a wild value is recieved from the sensor.
How should the furnace system react?”

• Look for general rules in the examples

• Look for exceptions to the general rules

13

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 25

Scenarios and Prototypes

• If a prototype is produced in the requirements
phase (or in an earlier turn of the spiral), it can
be used to present scenarios
– But mockups and “cardboard prototypes” can often be

good enough for requirements clarification

(c) 1998 M Young CIS 422/522 2/8/99 26

Exceptional Conditions

• Be careful of “always”
– Explicitly ask for exceptions; explore extreme cases
– Users sometimes say “Always X, (except when Y)”

• Some “exceptions” are really consequences of a general
rule

• Some exceptions are not universally known
– especially: The manager may not know how the rules

are really applied

14

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 27

Exploring Undesired Events

• Explore desired responses to unusual and
undesired events
– Especially when replacing a manual system. People

are flexible and creative in coping with problems;
software systems aren’t

• Work forward from undesired events
• Work backward from undesired outcomes

– example: Never remove an old copy of data until a
new version is in place and verified

(c) 1998 M Young CIS 422/522 2/8/99 28

Likelihood of Change

• For each requirement and aspect of the system,
determine
– How likely is it to change over time?
– In what ways is it likely to change?

• Likelihood of change will guide modular organization,
where we “hide” design decisions that may need to be
changed

• Unfortunately, you can’t always believe what you’re told
– Reporting of past changes is often more accurate than prediction

of future changes

15

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 2/8/99 29

Stratifying Requirements

• Developers need a hierarchy of subsets
– for “design to schedule” or incremental delivery

• Users may be reluctant to prioritize features
– especially if they fear losing the resource
– common in large organizations with centralized development, and

in organizations with perverse budget incentives (encouragement
to spend more)

• Incremental delivery may be easier to negotiate than final
feature set

