
11

CIS 422 S98 / M Young 1/21/99 1

Basic Project Hygiene

Change control, coding style, and other
observations on avoiding messes

CIS 422 S98 / M Young 1/21/99 2

Change Control

• Typically three “builds” are current:
– Frozen: The “demo” version (shared)
– Work: The current integrated version (shared)
– Play: Individual developer’s version

• Steps:
– Programmer checks out module to “play”, makes

changes and tests against “work” modules of others
– Programmer checks in module when it has been tested

against the “work” version (this may require
coordination)

– On a regular schedule, “Work” version is tested and
moved to “Frozen” version

22

CIS 422 S98 / M Young 1/21/99 3

Version Management

• Use RCS, SCCS, or similar for version
management and concurrency control (locking)
– Have a policy on holding locks: e.g., 24 hours or less

• Or use a “merging”-based revision control system like CVS

– May need multiple RCS directories, or a protocol for indicating the
components of “work” vs “frozen” versions

Flavio Sara Master

RCS RCS

Play Play Work Frozen

symbolic
links

CIS 422 S98 / M Young 1/21/99 4

Distinguish “Derived” from
“Source”

• All “ultimate source” should be under
version/revision control

• All “derived” objects should be produced
automatically (e.g., when you run “Make”)
– Never edit derived objects

• Examples: Object code (obvious?), lex output

• When generating components, consider revision
procedure
– If post-generation changes are necessary, they should

be saved and applied to revised version

33

CIS 422 S98 / M Young 1/21/99 5

Exploit High-Level Tools

• Use application generators, scripting languages,
libraries, etc. when possible
– Subject to constraints of portability, performance, etc.

• Consider generating parts of the application
– Example: An Awk script can generate a large C struct

initializer for error messages or help from a more
easily editable text file

– Message table in program and user manual could come
from the same ultimate source

– Remember then: generated code is “derived”, not
“source”

CIS 422 S98 / M Young 1/21/99 6

Effective Unit Test

• A little is better than none
– In a group project, the worst bugs are those from your

teammates; yours are easier to find and fix
– Never “leave it for integration”: Give your teammates

clean, tested modules.

• Test drivers:
– A fully automatic test driver should be part of delivered

units, and should be re-run before turning over a
change

• After making a change, regression testing should be fully
automatic (or it won’t be done)

44

CIS 422 S98 / M Young 1/21/99 7

Scaffolding

Build more than the application code

• Test drivers and cases
• Data structure viewers and validators

– For any complex data structure, build tools to view it
on demand, and to perform validity checks

• Instrumentation
– Any performance-critical part of the program should be

capable of measuring itself

• Stubs
– Build “substitute” parts for testing and debugging

CIS 422 S98 / M Young 1/21/99 8

Avoid Inappropriate Optimization

• Consider efficiency only when/where needed
– Efficiency is unimportant for many programs

• Have a concrete performance goal, and a rationale for it.
• KISS: If the goal can be met by simple algorithms and data

structures, do not use complex algorithms and structures

– 80/20 rule: Efficiency is unimportant for most parts of a
program

• Even if performance is a problem, it probably effects only a
small part of the program. Identify them (by measuring), and
put the effort where it matters.

– Work at the highest possible level
• Start with overall design, then algorithms and data structures;

code-level optimizations should be used sparingly, if at all.

55

CIS 422 S98 / M Young 1/21/99 9

Prefer Readable, Editable Files

• Avoid binary files and
other non-editable file
structures if possible
– If you must have them,

provide readers & writers

• Why:
– Debugging, experiments,

prototypes, extensions
– Breaking build-order

dependencies

Application

Reader/
Writer

File or
database

Readable
text form

CIS 422 S98 / M Young 1/21/99 10

Compile-time Errors are Better
than Run-time errors

• Principle: Whenever possible, help the compiler
catch your errors

• Applications:
– Strong typing (the stronger, the better)

• Use explicit casts if necessary, rather than demoting types

– Access functions rather than public data in module
interfaces

• Whenever you can classify “correct” and “wrong” ways to
access the data

– Volatility markers: const (C++), “in” mode (Ada),
“final” (Java)

66

CIS 422 S98 / M Young 1/21/99 11

Suicide is Not a Sin (for Programs)

• “Defensive programming”: check for errors and
violated assumptions

• Better to quick death with a suicide note, than a
lingering illness
– In C, C++: the “assert” macro or Gnu nana
– In Ada, Java, etc.: use exceptions

• throw exception as close as possible to sign of trouble

– Create “safe” versions of unsafe services
• e.g., malloc/free with extra checking (for C/C++)

CIS 422 S98 / M Young 1/21/99 12

Programs are for Reading

• Each line of code is written once, but read many
times
– Saving time in typing is a poor decision

• Code should be readable for the unfamiliar
programmer (e.g., maintenance programmer)
– Overall organization is more important than coding

details; e.g., how can I separate the “front end” from
“back end” files in the g++ compiler?

– Within a file, most important is ability to scan for
relevant parts

77

CIS 422 S98 / M Young 1/21/99 13

Architectural Overview

• “Orientation” documentation
– What are the organizing principles for this system
– What are the major pieces and their interfaces
– Where are the parts making up those major pieces

CIS 422 S98 / M Young 1/21/99 14

An architectural diagram of GCC

lexer parser

front end L1

front end L2
. . .

build

emit

Machine
description

Tree
rewriter

(not entirely accurate)

language dependent

machine
dependent

RTL tree

88

CIS 422 S98 / M Young 1/21/99 15

Orientation to GCC ...

• Front/back interface is (only)
– construction of register-transfer-language tree
– invoking code generator after each procedure

• Code generation for each machine is controlled
by table (machdef.h)

• Should say where to look to answer questions:
– How would I build a native code Java compiler?
– How would I compile C to Java byte codes?

CIS 422 S98 / M Young 1/21/99 16

Comments

• Header comments: What I should know before
reading the code
– Consider extracting and indexing them, as in JavaDoc

• Code comments: What I might need to
understand the code
– Avoid restating the obvious
– Help the reader “recover the design”

• More is not always better
– But a ratio of 2-3 lines of comment for each line of

code is often about right

99

CIS 422 S98 / M Young 1/21/99 17

Header Comments

• Interface comments: State the contract
– What, not how

• If an interface comment says “first this procedure does foo,
then it does bar”, then either the comment or the procedure is
badly designed

• Design comments: Approach
– In the implementation, not in the interface
– Provide an overall view

CIS 422 S98 / M Young 1/21/99 18

Namespace is Precious

• The “name space” of a system is the set of
available names (for programs, modules, files,
variables, ...)

• In a large system, a “flat” namespace is quickly
exhausted
– “But there is already an object called Queue, so ...”

• Conserve namespace by ...
– Partitioning (e.g., use local names in preference to

global names, create hierarchy (structs, packages))
– Using specific names with low likelihood of clash

1010

CIS 422 S98 / M Young 1/21/99 19

Choosing Names

• The wider the scope, the longer the name
– Global names (e.g., system constants, classes) should

be very specific, even if the names are long and
cumbersome

– In very local scope, names may be shorter
• i and j are perfectly good index variable names, for small loops

• Distinctness matters more than length
– “Long_name_1” and “Long_name_2” are worse than

“theta” and “gamma”

• Standards help
– like_this or LikeThis or Like_This; GLOBAL or

Global_

CIS 422 S98 / M Young 1/21/99 20

Pretty-Printing

• Pretty-printed code can be read more quickly
– easier to “scan” for relevant parts

• Automatic pretty-printing exposes errors
– choose a style in which common errors are obvious
– color, fonts etc. help too: e.g., distinguishing comment

from executable code.

• Consistency helps
– Choose a team-wide standard, and stick to it

