
1

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 1

Software Development Processes

Sequential, Prototype-based RAD,
Phased, Risk-based Spiral

Software Life-Cycle Models

• Planning
– ``What do I do next?''

• Process visibility
– ``Are we on schedule?''

• Intellectual manageability
• Division of labor

Breaking projects down into pieces for ...

(c) 1998 M Young CIS 422/522 1/10/99 3

Process Models in Other Fields

• Reliable, efficient production
– Process improvement for quality, efficiency

• Predictable production
– Ability to plan, schedule, and budget

production

• Standardization
– Economic advantage of standard processes and

components

• Automation

2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 4

Inadequacy of
Industrial Process Models

• Software is primarily an intellectual,
design-based process
– Unlike fabrication of physical things
– More like designing an automobile than

building it

• Software is “unstable”
– Malleability is a major advantage of software

over hardware, but
– Changing requirements and design make

controlled processes more difficult

(c) 1998 M Young CIS 422/522 1/10/99 5

The “Code and Fix” Model
(or, Software through Chaos)

• Process steps:
– Write some code
– Fix and enhance
– Repeat until satisfied, or until unmanageable

• Characteristics of code-and-fix model
– Suitable when: Developer is the user (no formal

requirements), schedule is short (no planning), quality
need not be high (fix as needed)

– Highly unstable: Software structure deteriorates over
time, or collapses as complexity increases

(c) 1998 M Young CIS 422/522 1/10/99 6

Changes Motivating Defined
Processes

• Non-technical users, distinct from developers
– Problem of “building the wrong system”
– Need for careful analys is of requirements, distinct

from design and implementation

• Scale and complexity => Team development
– Organizational structure and coordination
– Control of communication complexity
– Need for design phase, unit & integration testing

• Need for predictability => Scheduling
• Quality requirements => Checkpoints

3

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 7

The “Waterfall” model

• Inspired by industrial product development
cycles, esp. aircraft

• A document-based model
– Stages in development are marked by

completion of documents
– Feedback and feed-forward are through

documents

• Several variations

(c) 1998 M Young CIS 422/522 1/10/99 8

Waterfall Model (example)

Feasibility
Study

Requirements
Analysis

Design

Code &
Unit Test

Integration &
System Test

Delivery

Maintenance

Each passage from phase to phase
is marked by completion of a document
that governs the following phase

(from Ghezzi et al, 1991)

(c) 1998 M Young CIS 422/522 1/10/99 9

Waterfall Model Phase

• Goal is an output document consistent with the
input document; an “error” is an inconsistency

• Phase is complete when document is finished
• Each phase has specific methods

Input document Output document

Elaboration
Method

4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 10

Feasibility Study

• Evaluate costs and benefits of a proposed
application
– Required for go/no-go decision or choice

among competing projects

– Ideally requires complete analysis and design;
 Practical reality: Limited time and resources

– Results in problem definition, alternative
solution sketches, and approximate resource,
cost, and schedule

Example waterfall stages ...

(c) 1998 M Young CIS 422/522 1/10/99 11

Requirements Analysis

• Produce specification of what the software must
do
– User requirements; may be divided into problem

analysis and solution analysis
– Suppress the “how” until design phase
– Must be understandable to user, which in practice

means it is necessarily somewhat informal

– To the extent possible, should be precise, complete,
unambiguous, and modifiable; Should include object
acceptance tests and a system test plan

Example waterfall stages ...

(c) 1998 M Young CIS 422/522 1/10/99 12

Design and Specification

• May be divided into external design (and/or
system specification), preliminary design,
and detailed design

• Results in (semi-)formal diagrams and text
defining structure and function of the
software, ready for programming individual
units

• Many notations, methods, and tools for
different “styles” of design

Example waterfall stages ...

5

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 13

Coding and Module Testing

• Individual programmers produce program
“units,” which are assembled into
subsystems and the final system

• Includes unit testing and debugging, and may
include inspections

• Often includes much non-product code,
called “scaffolding”

Example waterfall stages ...

(c) 1998 M Young CIS 422/522 1/10/99 14

Integration and System Testing

• Assembly of units into larger and larger
substructures

• Proceeds according to a “build plan” which
is typically “top-down” or “bottom up”

• Subsystem test followed by system, apha,
and beta test; purpose of testing shifts
from debugging to acceptance, and may
involve an independent test team

Example waterfall stages ...

(c) 1998 M Young CIS 422/522 1/10/99 15

Delivery and Maintenance

• Beta test: controlled release to a small (or
adventurous) real-world clientele

• Alternative: single-client and critical
applications “run parallel”

• After delivery, further change to sofware is
called “maintenance” (of which most is
NOT fixing bugs)

Example waterfall stages ...

6

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

Royce’s Waterfall
 Model (1970)

System
Requirements

Software
Requirements

Preliminary
Design

Analysis

Program
Design

Coding

Testing

Operation

Preliminary
Design

(c) 1998 M Young CIS 422/522 1/10/99 17

Characteristics of the Waterfall
Model

• Limited iteration
– Naive version is purely sequential; more

commonly there is some iteration and
adjustment, but the model is highly sequential

– Well-suited to a “contract” mode of
application

• “Big bang” development
– Beginning from nothing
– Ending with a single delivery of a single

product

(c) 1998 M Young CIS 422/522 1/10/99 18

RAD: Rapid Application
Development

A variant of “evolutionary
prototyping”

Based partly on: The Impact of the development context on the
implementation of RAD approaches by D. Fulton, 1996

(was: www.cs.ucl.ac.uk/staff/D.Fulton/interim.html)

7

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 19

Main characteristics of RAD

• Rapid ≈ 6 weeks to 9 months

• Small, flat, highly skilled teams
• Intense user participation
• Iterative prototyping (with less paper-

based documentation)

(c) 1998 M Young CIS 422/522 1/10/99 20

Origins

• Evolutionary prototyping
– vs. throw-away prototypes: closer to

incremental build, but more dynamic

• DuPont (mid-80s) Rapid Iterative
Production Prototyping

• IBM Joint Application Development
method (JAD)

• Popularized by J. Martin (1991) and others

(c) 1998 M Young CIS 422/522 1/10/99 21

RAD “philosophy”

• Initially fix:
– high-level requirements,

– project scope
– plan (schedule)

• Then iteratively build the product
– with intense user involvement to negotiate

requirements and test deliverables

8

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 22

Joint Application Development
“Workshops”

• Objective: Scope the project
• Participants:

– Development team
– User representatives
– Facilitator

• Intense negotiation to create stable scope
and plan
– similar to “design to schedule,” applied to

requirements

(c) 1998 M Young CIS 422/522 1/10/99 23

RAD communication structure

• Peer-to-peer communication between users and
developers

• Intense user involvement (and commitment) in
negotiating requirements and testing prototypes

Conventional RAD

User organization Developers User organization Developers

(c) 1998 M Young CIS 422/522 1/10/99 24

RAD team structure

• Small teams of highly-skilled developers
• Fixed team through full development

– Less specialization; each developer must fi ll
several roles

– Less reliance on formal documents to record
requirements and design

• Requires stable staffing
– Loss of a developer is a larger risk than in

document-based process models
– Loss of user representatives is also a danger

9

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 25

Timeboxing

• If functionality not delivered by date, scale
back or abandon
– Radical application of “design-to-schedule”

• The build-plan is stable; the product
functionality is fluid within bounds of
project scope
– What is actually built depends on technical

feasiblity as well as user wants

(c) 1998 M Young CIS 422/522 1/10/99 26

Prototype-based requirements
elicitation

• Cycle: Build, demo, revise design
– Scheduled review meetings with demos and

feedback

– Additional internal prototype build cycles
– Additional ad hoc user demos

• “Shopping list” replaces detailed
requirements document
– Broad list of desirable functions can change

depending on user feedback

(c) 1998 M Young CIS 422/522 1/10/99 27

Reduced Paper Documentation

• Emphasis on rapid delivery and change
– Not on preserving information for a longer period
– Fixed personnel (including user representatives)

reduces need for documents as orientation and
communication

– Active, intense user participation

• Reliance on computerized documentation
– CASE tools, databases and application generators
– The prototype itself as “documentation”

• Developer “logs” of design rationale

10

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 28

RAD on Contract?

• Requires stronger relationship than typical
contracts
– Since requirements are not fully known when

contract is let

• May be based on fixed effort, rather than
fixed functionality

(c) 1998 M Young CIS 422/522 1/10/99 29

RAD tools

• RAD projects typically rely on strong tool
support
– application generators, database engines

(including interface builders, etc.)

– CASE tools
– ...

• Reported success is mostly within well-
understood and supported domains, esp.
information systems

(c) 1998 M Young CIS 422/522 1/10/99 30

“Super designers”?

• Small, flat teams require multi-talented
individuals
– Technical, inter-personal, and manageria l skills
– Overall view of project, not only pieces

• Vague requirements require strong motivation
to do more than “enough”

• Strong management needed to hold human
resources
– Loss of a developer can be disastrous
– Loss of adequate user involvement can be nearly as

bad

11

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 31

When is RAD appropriate?

• Requirements are not clear or stable
• Technical pre-requisites available:

adequate tool and facility support
• Developer expertise in domain and tools

– especially: able to anticipate likely change

• Strong facilitator/manager
– able to keep project appropriately scoped

– able to hold resource (people) for duration of
project

(c) 1998 M Young CIS 422/522 1/10/99 32

RAD issues

• Quality: Little process control, little
documentation on which to base measurement
and acceptance
– Quality measured by “the smile on the user’s face”

• Lifetime cost: What will it cost to maintain RAD
projects?
– BUT if initial build cost is comparable to a revision

cycle, a “disposable” system may be acceptable

• Heavy reliance on individuals
– Risk may be too high for critical projects

(c) 1998 M Young CIS 422/522 1/10/99 33

Summary: RAD

• Evolutionary prototyping method
– with particular management features like

“timeboxing”

• Small team, limited scope approach
• Intense, continuous user involvement

• “Programming in the small” at its outer limits?
– Most of what has been omitted (documents, clear

process, etc.) are the measures we use to cope with
multiple people and long schedules

12

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 34

Phased Projects

• Develop & Deliver in Increments
– May repeat entire waterfall model in each

increment

• Goals:
– Keep clients/customers happy
– Improve requirements through feedback

– Improve process visibility through more
frequent milestones

(c) 1998 M Young CIS 422/522 1/10/99 35

Dividing a Large Project into Phases

• Division by function • Incremental Delivery

Time
Tim

e

(c) 1998 M Young CIS 422/522 1/10/99 36

Functional Division in Practice

• Some shared infrastructure is developed
(incrementally)

• Some revision to previous phases is required

13

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 37

Planning Incremental Development
What is a good increment?

• Identify system subsets
– Minimal usable feature sets
– Encapsulated functions (limit scope of

change)

• Choice driven by:
– Schedule

(opportunity cost, time-to-market)
– Decomposability

(minimize duplicated work)
– Risk control

Spiral Model
(Risk-driven evolutionary development)

(c) 1998 M Young CIS 422/522 1/10/99 39

In each “turn” of the spiral

• Problem definition
– Determine objectives (qualities to achieve)
– Identify alternatives and constraints

• Risk analysis
– Determine risks
– Gain information (typically through prototyping)

• Develop & verify next level “product”
– may be only requirements, or design

• Plan next phase

14

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 1/10/99 40

Prototypes vs. Incremental
Deliveries

• The primary goal of a prototype is information
– Should address the most significant risks

• Incremental deliveries should be useful
– May avoid the highest r isks

• These goals are in conflict!
– It is sometimes possib le to serve both purposes
– but ... Many “prototypes” fail to serve either purpose,

because developers fail to distinguish goals and plan
accordingly

(c) 1998 M Young CIS 422/522 1/10/99 41

Prototyping for Information

• Requirements clarification
– Users “learn what they want” by using the

prototype

– Implicit requirements are identified through
failure

– Human interface can be assessed and refined

• Design alternatives
– Performance, complexity, capacity, ...
– Requires evaluation plan before

implementation

(c) 1998 M Young CIS 422/522 1/10/99 42

Choosing a Process Model

• No single “best” model
– Depends on many factors, including the

experience of a particular organization in a
particular application domain

• Larger team, larger product
=> More elaborate process

• More risk, less experience
=> More iteration

