

Syllabus Spam Filter Architecture / version of 10/14/98 1 of 7

Spam Filter Architecture

Strawman Architecture Description

Michal Young, 13 October 1998

Aside

This is not the “correct” solution to the exercise posed for the OMSE software architecture class;
the exercise does not have a “correct” solution. It may not even be a particularly good solution,
although I have not purposely introduced flaws. At the risk of embarassing myself, I am simply
contributing one solution, which should be subject to the same critical evaluation as possible solu-
tions contributed by other members of the class.

Introduction

This document is a sketch of an architecture for a spam filter application. More precisely, it
describes an organization intended to cover a family of possible spam filter products; these prod-
ucts would have different execution architectures and feature sets, but would share a module
dependence architecture with as few differences as possible.

Desiderata

The tentative requirements and characteristics that we have been informed of include several con-
straints that may be difficult to satisfy simultaneously with a single product. The organization
described here is therefore motivated mainly by flexibility to produce variant products (a “product
family”) by combining basic parts in different ways. That is, the design decisions that are “hid-
den” in the major components include, as far as possible, decisions about how the components are
combined to form a product with a particular run-time architecture. Of course, not all components
can be ignorant of the overall organization; these decisions have therefore been centralized in a
few components. The idea is that it will be cheaper and less error-prone to replace a few such
components entirely, rather than distributing such changes through the product(s).

Key Separations

The architecture

1

 is designed with certain key separations in mind. Each of these separations is
motivated either by likely differences between two variant spam filter products, or by likely
changes to a single spam filter product over time (e.g., adding new filtering features). The key sep-
arations are:

• Spam filter functionality is separated from “packaging.” By “packaging,” I mean whether
the functionality is invoked through a mail program plug-in interface, by a stand-alone pro-
gram running on a mail host computer, by a stand-alone program running on a mail client

1. I will write “the architecture” for brevity in this section; a later section will distinguish the overall organiz-
tion of module dependencies (which is what “the architecture” refers to here) from other aspects of architec-
ture, including run-time organization.

CS510 Spam Filter Architecture/ version of 10/14/98 2 of 7

program, etc.

 Rationale:

Permit variant products to be packaged as stand-alone programs to be executed
on mail server or client machines, as well as plug-ins for various mail programs.

• Classification is separated from manipulation of mail.

 Rationale:

Variant products that manipulate mail in different ways (e.g., by accessing mail
storage directly, by invoking functionality of a mail program plug-in interface, or through
POP3 or IMAP) may identify potential spam in the same manner.

• Classification policy from mechanism.

 Rationale:

The same basic mechanisms (regular expression matching, mail parsing, etc.)
can support many different policies. Although not all product variants will support exactly
the same mechanism, and new mechanism may be added over time, changes to policy may
occur much more rapidly (by analogy to virus detection utilities that periodically download
new tables of virus “signatures.”) Moreover, policy could vary from user to user (e.g.,
through scripting), while we do not anticipate that it will be necessary to support dynamic
addition of new classification mechanism by users (e.g., through a plug-in interface).

• Major classification mechanism components from each other.

 Rationale:

While we expect the basic mechanisms used in mail classification to change
more slowly than the policy, it is likely that it will vary between products and possibly over
time. For example, it might be desirable to omit some advanced capabilities like collabora-
tive spam filtering from the initial version of the product, to reduce time-to-market.

Example invocation architectures

We found it useful to sketch the “invokes” architecture of product variants to evaluate and refine
the overall module dependence architecture.

Mail agent plug-in

We begin with a product packaged as a plug-in for a mail agent such as Eudora. In this organiza-
tion, we assume actual manipulation of the message is left to the mail agent. The mail agent may
present one message at a time to the plug-in, or it could present a block of messages; the “adapter”
would present one message at a time to the spam filter API, which would return an indicator of the
message classification. (If message manipulation, e.g., refiling the message, were also to be per-
formed by the plug-in, it would be invoked by the plug-in adapter.) This design is shown in Figure
1 below:

In this invocation architecture, the “mechanism” of classifying messages is divided mainly into
two components, a message parser and an interpreter. The message parser is responsible for
extracting named parts of messages (e.g., it can be asked to extract the “From:” field of a message,
or each of the “Received: “ fields). The message parser is the only component that depends on the
rules of internet mail formatting, and should be (almost) the only the component that changes if,

Syllabus Spam Filter Architecture / version of 10/14/98 3 of 7

AAAAAA
AAAAAA
AAAAAA

Mail Agent
(e.g., Eudora)

AAAAA
AAAAA
AAAAA

Message
manipulation

Key:
Invokes (controls)

Data flow

AAAExternal component

Spam filter component

AAAAAA
AAAAAA
AAAAAA
AAAAAA

Plug-in
adapter

AAAAAA
AAAAAA
AAAAAA
AAAAAA

Spam filter API

AAAAA
AAAAA
AAAAA

AAAAA
AAAAA
AAAAA

Filter spec
manager

Filter interpreter

AAAAAA
AAAAAA
AAAAAA

Mail parser
(RFC 822
 or MIME) AAAAAA

AAAAAA
AAAAAA

RegExp matcher

AAAAAA
AAAAAA
AAAAAA

Address tracer

AAAAAA
AAAAAA
AAAAAA
AAAAAA

(etc.)

(This non-standard symbol indicates
that the filter interpreter dispatches
to various primitive functions, possiby
through a table or through an inheritance-
based scheme like the “visitor” pattern.)

Spam filter API takes is presented
one message at a time, and
returns an indication of the
classification of that message.

Run-time organization,
plug-in to mail user
agent

Figure 1.

CS510 Spam Filter Architecture/ version of 10/14/98 4 of 7

for example, the classification mechanism were extended to allow filtering on the types of MIME
attachments.

The filter spec manager returns a (possibly named) set of instructions to be executed by the filter
interpreter. It is separated from the interpreter because of potential dependencies on the invoking
environment, e.g., if it provided some user interface through the mail agent. The “invokes” rela-
tion shown in this figure fails to characterize two other important relations: The component shown
here that retrieves a classification specification is part of a module or subsystem that also manages
creating and editing such specifications (and perhaps also retriieving canned specifications from a
server, during periodic product updates). It shares with the filter interpreter a dependence on a lan-
guage for defining filtering criteria (which is not shown because it is not something that exists at
execution time).

The filter interpreter is dependent on the mail parser for retrieving individual fields of messages as
specified in a filter specification (e.g., it retrieves the “From: xxxx” field if a filter specification
classifies all mail from certain addresses as spam). This dependence should be fairly stable, but
nonetheless the interface of the mail parser does not prescribe a fixed set of fields that can be
retrieved; rather, a field is specified as a string, and the contents of the field are returned as strings.
Note that there must be an iterator-like interface to the mail parser, since a single field may appear
many times (e.g., there may be many “To: xxxx” fields if the message has many recipients.)

While the filter interpreter may invoke several different components to perform its functionality, it
is undesirable for this invocation relation to create a “uses” relation; that is, adding or removing a
component like the address tracer should not require changing the interpreter. In practice this can-
not be entirely true; actually what is shown here as a single “interpreter” component must be fur-
ther factored into a core interpreter and a mechanism for extending that core interpreter with
additional mechanism. This is a fairly common structure; it appears, for example, in the Emacs
text editor through dispatch table, as well as the “visitor” design pattern [Gamma et al] for object-
oriented systems. Since we can be fairly confident of being able to structure the interpreter in this
manner, we will not break it down further in this architectural sketch.

Remote POP3/SMTP forwarding-based filter

As a check on the structure above, we consider how it might be modified to produce a filter that
operated as a stand-alone application program. We imagine a filter that works by “selective for-
warding,” retrieving messages using POP3 and then forwarding to another or the same address
those that are not classified as spam. A minor variation is that all messages are forwarded, and an
“X-spam-class: xxxxx” field is added to each (e.g., “X-spam-class: probably-not”). This architec-
ture is illustrated in Figure 2 below.

This change of “packaging” appears to be straightforward; some new components are added, and
one (the plug-in adapter) is omitted, but there seem to be no changes to the remaining compo-
nents. Unfortunately it isn’t quite as clean as one would guess from the “invokes” diagram. First,
the “filter spec manager” component is likely to be changed, or possibly replaced entirely to suit a
different environment. Second, the “annotate message” component shares knowledge of mail
message formats with the mail parser; these two components should be part of the same module
or subsystem.

Syllabus Spam Filter Architecture / version of 10/14/98 5 of 7

AAAAAA
AAAAAA
AAAAAAStandalone

filter shell

AAAAA
AAAAA
AAAAA

Key:
Invokes (controls)

Data flow

AAAExternal component

Spam filter component

AAAAAA
AAAAAA
AAAAAA
AAAAAA

Spam filter API

AAAAA
AAAAA
AAAAA

AAAAA
AAAAA
AAAAA

Filter spec
manager

Filter interpreter

AAAAAA
AAAAAA
AAAAAAMail parser

(RFC 822
 or MIME)

AAAAAA
AAAAAA
AAAAAA

RegExp matcher

AAAAAA
AAAAAA
AAAAAA

Address tracer

AAAAAA
AAAAAA
AAAAAA
AAAAAA

(etc.)

(This non-standard symbol indicates
that the filter interpreter dispatches
to various primitive functions, possiby
through a table or through an inheritance-
based scheme like the “visitor” pattern.)

Spam filter API takes is presented
one message at a time, and
returns an indication of the
classification of that message.

Run-time organization,
POP/SMTP-based remote filter

AAAAA
AAAAA
AAAAA

POP3 client
inteface

AAAAA
AAAAA
AAAAA

AAAAA
AAAAA
AAAAARetrieve

messages Delete
messages

SMTP transmit

AAAAA
AAAAA
AAAAA

Annotate
message

Figure 2.

Syllabus Spam Filter Architecture / version of 10/14/98 6 of 7

POP Proxy

One can easily imagine a variation on the “selective forwarding” or “forwarding with annotation”
schemes of the previous example. Suppose we are checking email on a Palm Pilot or other PDA,
with insufficient resources and interfaces to support a plug-in spam filter. We might instead imple-
ment the spam filter as an application on a host computer. The spam filter would present a POP
interface to the PDA, but would provide that interface by communicating with another POP server
(such arrangements are sometimes called “proxies”). It would, of course, apply filtering on mes-
sages before sending them on. It is apparent that a minor variation on the POP/SMTP filtering sce-
nario suffices for this, with a new “POP3 server” component but with few other changes.

Modules and dependence

We now discuss an architecture of module dependence, rather than invocation relations. The mod-
ule dependence architecture is more closely tied to a work breakdown structure than is the invoca-
ton relation (e.g, it will reflect the fact that mail parsing and mail annotation should almost
certainly be implemented by the same individual or team). However, it is somewhat more difficult
to understand “at a glance” because it is a structure designed to accomodate several variations on
the product. This is illustrated in Figure 3 below.

Syllabus Spam Filter Architecture / version of 10/14/98 7 of 7

Key:
Depends on

Data flow

Component
(of most variants)

AAA
AAA
A
AAAAAAA

A
A
A

Component
(of few variants)

Module breakdown

POP3 client
inteface

Packaging (one variant per product)

AAAA
AAAA

A
AAAAAA

AAAA
A
A
A
A
A
A AAA

AAA
A
AAAAA

AAA
A
A
A
A
A
A AAAA

AAAA
A
AAAAAA

AAAA
A
A
A
A
A
A

Plug-in Proxy etc.

Network

AAAAA
AAAAAAAA

AA
AA
AAA

POP3 client

POP3 server

AAAAAA
AAAAAAAAA

A
A
AA

SMTP client

AAAAAAAA
AAAAAAAA

A
A
AATraceroute

RFC822 (mail format)

Parse/extract

Annotate

Classifier core engine

Language spec

Parser /
interpreter core

Dispatch

Classifier functions

Regular expressions

AAAAAAAA
AAAAAAAA

AA
AA
AAAddress validity

AAAAAAAA
AAAAAAAA

AA
AA
AAetc.

Spec management

AAAAA
AAAAAAAA

AA
AA
AAAStore/Fetch

AAAAA
AAAAAAA

A
AAAAA
AAAAA
A
A
A
A
A
AAAAAA

AAAAAAAA
A
A
AAA

Store/fetch

AAAAAA
AAAAAAAA

A
A
AA

Spec editor

