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Abstract

PVS is a veri�cation system that provides a speci�cation language integrated
with support tools and a theorem-prover. It has been used at SRI and elsewhere
to perform veri�cations of several signi�cant algorithms (primarily for fault-
tolerance) and large hardware designs.

This tutorial introduces some of the more powerful strategies provided by
the PVS theorem prover. It consists of two parts: the �rst extends a previous
tutorial by Ricky Butler[But93], demonstrating how his proofs may be performed
in a more automated manner; the second uses the \unwinding theorem" from the
noninterference formulation of security to introduce theorem-proving strategies
for induction that cannot be demonstrated in the framework of Ricky Butler's
example.

Using the more powerful strategies of PVS to automate easy proofs (and the
easy parts of hard proofs) frees users to concentrate on truly di�cult proofs. Au-
tomation also makes proofs more robust to changes in the speci�cation, thereby
facilitating active design exploration and adaptation to changed requirements.

This tutorial also shows how speci�cations and proofs may be better pre-
sented using the LaTEX and PostScript generating facilities of PVS. The PVS �les
for these examples are available at http://www.csl.sri.com/pvs/examples/
csl-95-10.html.
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Chapter 1

Introduction

This tutorial invites you to explore some of the more powerful theorem proving capabilities
of the PVS veri�cation system, moving from long, mundane proof scripts full of trivial
details, to more automatic theorem proving where the user directs only the key steps. It
is suggested that you follow through the tutorial with PVS running on your workstation.
You can obtain the speci�cations and proofs developed here over the World Wide Web from
http://www.csl.sri.com/csl-95-10.html or by ftp from ftp://ftp.csl.sri.com/pub/

pvs/examples/elementary-tutorial.

1.1 Why Seek Highly Automated Proofs?

The motivations for performing proofs in an automated manner are: �rst, to liberate human
users from the drudgery of low-level details, so that they can best direct their energies to
the truly di�cult and signi�cant steps in a proof; second, to make it feasible to prove
big theorems; and, third, to make the investment in a proof an incentive|rather than a
disincentive|to the exploration of alternative speci�cations and designs.

The �rst of these motivations should need little justi�cation: exposure to the tedium of
low-level \proof assistants" has convinced many that mechanized proof is infeasible for real
examples. This is unfortunate, because many formal speci�cations contain signi�cant errors
when �rst written, and automated proof checking can be one of the fastest ways to detect
errors early in the lifecycle. Note, however, that the theorem prover needs to be designed
to facilitate this: most highly automated approaches to proof are intended to prove true
theorems|not to help detect errors in untrue ones|so that when an automated prover fails
to complete a proof, it can be di�cult to determine whether the cause is a false theorem or
an inadequate proof method. For this reason, the basic PVS proof steps are powerful, but
deterministic (being based on decision procedures), and are used under interactive control.
When one of the more powerful heuristic proof strategies fails, the user can explore the
cause of failure by interactively invoking the more basic steps.

The second motivation concerns the fact that formal veri�cation is often applied to theo-
rems that are large, but shallow|such as those that assert the correctness of the microcode
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2 Chapter 1. Introduction

or the pipeline control circuitry of a microprocessor. Formal veri�cation can accomplish
what massive simulation and testing cannot: examination of the behaviors of these de-
signs under all circumstances. But to be practical, it must be possible to actually carry
out the formal veri�cations for industrial-scale designs. This is simply infeasible without
massively automated theorem proving. Advances over the last few years have brought
theorem proving to the point where it is now feasible to tackle such industrial-scale prob-
lems [SM96, RSS96, PD96].

The third motivation is prompted by the observation that formal speci�cations are
seldom static: they change as 
aws are corrected, as new requirements emerge, and as
improved approaches and designs are discovered. Mechanization of formal methods should
support such changes and should encourage active design exploration in the same way that
computational 
uid dynamics supports the re�nement of aerofoil designs. To achieve this, it
is important that previously developed proofs should be robust in the face of small changes
to the speci�cation|since otherwise investment in an existing proof will discourage change
and experimentation. For proofs to be robust, they must be recorded at a fairly high
level|giving just the main steps of the argument, and leaving automation to �ll in the
details|since highly detailed, line-by-line arguments are unlikely to remain correct in the
face of changes. In the case of PVS proofs, the goal should generally be to use the highest
level, most automatic proof strategies possible, and to use explicit proof steps (e.g., those
naming a speci�c sequent formula) as sparingly as possible. Such proof descriptions guide
the prover along the main steps of the argument (which is likely to be robust), and allow
automation to calculate the details afresh each time.

This tutorial introduces some of the higher-level PVS proof strategies and explains, by
example, how to use them e�ectively. The remainder of this chapter provides a brief intro-
duction to the PVS veri�cation system. Chapter two presents an extension to a tutorial
by Ricky Butler [But93], describing how more automated proofs can be developed for his
examples. The third and �nal chapter uses a veri�cation of Goguen and Meseguer's unwind-
ing theorem for noninterference security policies [GM84] to illustrate some PVS induction
strategies, and also demonstrates how PVS can be used to formalize a pencil-and-paper
development.

1.2 PVS

PVS is the most recent in a line of speci�cation languages, theorem provers, and ver-
i�cation systems developed at SRI, dating back over 20 years. That line includes
the Jovial Veri�cation System [EGMS79], the Hierarchical Development Methodology
(HDM) [RLS79, SLR78], STP [SSMS82], and Ehdm [MSR85, RvHO91]. PVS stands for
\Prototype Veri�cation System," because it was built partly as a lightweight prototype to
explore \next generation" technology for Ehdm, though it has now outgrown that role.

PVS consists of a speci�cation language, a number of prede�ned theories, a theorem
prover, various utilities, documentation, and several examples that illustrate di�erent meth-
ods of using the system in several application areas. PVS exploits the synergy between a
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highly expressive speci�cation language and powerful automated deduction; for example,
some elements of the speci�cation language are made possible because the typechecker can
use theorem proving. This distinguishing feature of PVS has allowed perspicuous and e�-
cient treatment of many examples that are considered di�cult for other veri�cation systems.

The speci�cation language of PVS is based on classical, typed higher-order logic. The
base types include uninterpreted types that may be introduced by the user, and built-in
types such as the booleans, integers, reals, and the ordinals up to �0; the type-constructors
include functions, sets, tuples, records, enumerations, and recursively-de�ned abstract data
types such as lists and trees. Predicate subtypes and dependent types can be used to intro-
duce constraints, such as the type of prime numbers. These constrained types may incur
proof obligations during typechecking, but greatly increase the expressiveness and natural-
ness of speci�cations. In practice, most of the obligations are discharged automatically by
the theorem prover. PVS speci�cations are organized into parameterized theories that may
contain assumptions, de�nitions, axioms, and theorems. De�nitions are conservative (i.e.,
cannot introduce inconsistencies); to ensure this, recursive function de�nitions generate
proof obligations to guarantee termination. PVS expressions provide the usual arithmetic
and logical operators, function application, lambda abstraction, and quanti�ers, with a tra-
ditional syntax. Names may be freely overloaded, including those of the built-in operators
such as AND and +. A case expression provides pattern-matching over the constructors of
abstract data types, and tables allow piecewise-continuous functions to be speci�ed in a
visually appealing manner.

The PVS theorem prover provides a collection of powerful primitive inference procedures
that are applied interactively under user guidance within a sequent calculus framework.
The primitive inferences include propositional and quanti�er rules, induction, rewriting,
and decision procedures for linear arithmetic over both integers and reals and for Park's �-
calculus. The implementations of these primitive inferences are optimized for large proofs:
for example, propositional simpli�cation and �-calculus use BDDs, and auto-rewrites are
cached for e�ciency. User-de�ned procedures can combine these primitive inferences to yield
higher-level proof strategies, such as those for induction and CTL model checking. Proofs
yield scripts that can be edited, attached to additional formulas, and rerun. This allows
many similar theorems to be proved e�ciently, permits proofs to be adjusted economically
to follow changes in requirements or design, and encourages the development of readable
proofs.

PVS is fully documented in separate manuals for the language [OSR93a],
prover [SOR93], system [OSR93b], and semantics [SO96]. Tutorials provide a general in-
troduction [But93, COR+95], plus more specialized treatments for hardware [ORSS94],
abstract data types [Sha93a], and tabular and requirements speci�cations [ORS95].

PVS has been installed at hundreds of sites in North America, Europe, and Asia;
recent work has developed PVS methodologies for highly automated hardware veri�-
cation [CRSS94, RSS96, SM96] (including integration with model checking [RSS95]),
and for concurrent and real-time systems [Sha93b, Hoo94, AH96] (including a transpar-
ent embedding of the duration calculus [SS94]). Applications have included microcode
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veri�cation for a commercial microprocessor [SM95], veri�cation of fault-tolerant algo-
rithms [LR93, LR94] and a cache-coherence protocol [PD96], and formalization of Space
Shuttle requirements [Di 96, CD96], IEEE standards for 
oating point [CM95] and multi-
media collaborations [RRV95]. A comprehensive bibliography of applications performed in
PVS is available [Rus].

1.3 Obtaining PVS

PVS is implemented in Common Lisp and runs on several modern Unix workstations.
Versions in Allegro Lisp for Sun and IBM workstations are available by anonymous ftp.
All PVS installations must be licensed by SRI International, but there is no charge. (We
do charge for tapes and for nonstandard versions.)

The speci�cations and proofs presented here require PVS 2, released June 1, 1995.
To obtain a copy of PVS by anonymous ftp, retrieve the �le README from directory
/pub/pvs/pvs2 on ftp.csl.sri.com [192.12.33.94] and follow the instructions.1 Or via
the World Wide Web, open the URL http://www.csl.sri.com/pvs.html (this also gives
access to the mirror sites). For further information on PVS, please send a message to
pvs-request@csl.sri.com.

Acknowledgments

We are grateful to Ricky Butler, Drew Dean, Piotr Rudnicki, and N. Shankar for reading
earlier versions of this report and for providing comments that substantially changed and
improved its content and presentation.

1There are mirror sites at the Universities of York, England (ftp://ftp.cs.york.ac.uk/pub/pvs),
Paris VI, France (ftp://ftp.ibp.fr/pub/pvs), Ulm, Germany (ftp://ftp.informatik.uni-ulm.de/pub/
KI/pvs), and Tokyo, Japan (ftp://nicosia.is.s.u-tokyo.ac.jp/pub/misc/pvs).



Chapter 2

Seat Reservation Problem

This chapter develops proofs for an example due to Ricky Butler [But93]. Butler's tutorial
also develops proofs for the same theorems, but in a low level, step-by-step manner. Here, we
show how the more powerful rules and strategies of PVS may be used to produce higher level,
more automated proofs. As explained in the introduction, the main bene�t of automated
proofs is that they tend to be robust in the face of reasonably small changes to a speci�cation.
They are also closer to the level at which you might wish to describe a proof to a human
colleague, and thereby facilitate the extraction of a \journal style" proof description. Also,
as you gain experience, you will �nd that it is generally faster and less distracting to let
the automation deal with easy theorems (and the easy parts of hard theorems), leaving you
free to concentrate on the hard theorems and crucial steps.

2.1 Requirements

Ricky Butler's report considers the formal speci�cation and veri�cation of an automated
airline seat assignment system. This section brie
y outlines the problem covered|for more
details refer to Ricky Butler's original report.1 The requirements for the system are given
as:

1. The system shall make seat assignments for passengers on scheduled airline 
ights.

2. The system shall maintain a database of seat assignments.

3. The system shall support a 
eet having di�erent aircraft types.

4. Passengers shall be allowed to specify preferences for seat type (e.g., window or aisle).

5. The system shall provide the following operations or transactions:

� Make a new seat assignment

� Cancel an existing seat assignment

1This is available electronically from http://atb-www.larc.nasa.gov/ftp/larc/PVS-tutorial; get the
�les named \revised-pvs-tutorial.*" and \revised-specs.dmp."

5



6 Chapter 2. Seat Reservation Problem

2.2 The PVS speci�cation

Ricky Butler speci�es the basic properties of aircraft and reservations in the PVS theory
basic defs. These include the seating grid of the aircraft (row/position), identi�ers for
the 
ight, aircraft type, position preference and passenger ID. Uninterpreted functions are
used to specify existence of a particular seat on a particular type of aircraft (not all will hold
nrows � nposits passengers), whether a particular seat meets a passenger preference, and
a mapping from 
ight identi�er to aircraft type.

The PVS theory ops then uses these de�nitions to specify the required operations on the
database, i.e., to make a reservation/seat assignment and to cancel an assignment. Putative
theorems are speci�ed to validate the speci�cation of these operations, which are also shown
to preserve certain invariants.

The PVS speci�cation used here di�ers in only minor ways from that given in Ricky
Butler's report. These di�erences are explained below. To format the speci�cation as
presented here, we used the PVS command M-x latex-pvs-file to generate prettyprinted
LaTEX output (you will need to use the style option pvs.sty to process the output of this
command). Note that comments are dropped in LaTEX-printed speci�cations; this is a bug.
The raw ascii representations of the speci�cation are given in Appendix A.1.

basic defs : theory

begin

nrows : posnat

nposits : posnat

row : type = fn : posnat j 1 � n ^ n � nrowsg containing 1

position : type = fn : posnat j 1 � n ^ n � npositsg containing 1


ight : type

plane : nonempty type

preference : type

passenger : nonempty type

seat assignment : type = [# seat : [row; position]; pass : passenger #]


ight assignments : type = set[seat assignment]


t db : type = [
ight ! 
ight assignments]

initial state((
t : 
ight)) : 
ight assignments = ;[seat assignment]

seat exists : pred[[plane; [row; position]]]

meets pref : pred[[plane; [row; position]; preference ]]

aircraft : [
ight ! plane]

end basic defs
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ops : theory
begin

importing basic defs


t : var 
ight

pas : var passenger

db : var 
t db

a; b : var seat assignment

pref : var preference

seat : var [row; position]

Cancel assn(
t; pas; db) : 
t db =
db with [(
t) := fa j a 2 db(
t) ^ pass(a) 6= pasg]

pref �lled(db; 
t; pref) : bool =
8 seat : meets pref(aircraft(
t); seat; pref) � (9 a : a 2 db(
t) ^ seat(a) = seat)

Next seat : [
t db; 
ight; preference ! [row; position]]

Next seat ax : axiom
: pref �lled(db; 
t; pref) � seat exists(aircraft(
t); Next seat(db; 
t; pref))

Next seat ax 2 : axiom
:pref �lled(db; 
t; pref) � (8 a : a 2 db(
t) � seat(a) 6= Next seat(db; 
t; pref))

Next seat ax 3 : axiom
: pref �lled(db; 
t; pref) � meets pref(aircraft(
t); Next seat(db; 
t; pref); pref)

pass on 
ight(pas; 
t; db) : bool = 9 a : pass(a) = pas ^ a 2 db(
t)

Make assn(
t; pas; pref; db) : 
t db =
if pref �lled(db; 
t; pref) _ pass on 
ight(pas; 
t; db) then db
else let a = (# seat := Next seat(db; 
t; pref); pass := pas #)
in db with [(
t) := add(a; db(
t))]

endif

Lookup(
t; pas; db) : [row; position] = seat("(fa j a 2 db(
t) ^ pass(a) = pasg))

existence(db) : bool = 8 a; 
t : a 2 db(
t) � seat exists(aircraft(
t); seat(a))

uniqueness(db) : bool =
8 a; b; 
t : a 2 db(
t) ^ b 2 db(
t) ^ pass(a) = pass(b) � a = b

one per seat(db) : bool =
8 a; b; 
t : a 2 db(
t) ^ b 2 db(
t) ^ seat(a) = seat(b) � a = b

db invariant(db) : bool = existence(db) ^ uniqueness(db)
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Cancel assn inv : theorem
db invariant(db) � db invariant(Cancel assn(
t; pas; db))

MAe : theorem existence(db) � existence(Make assn(
t; pas; pref; db))

MAu : theorem uniqueness(db) � uniqueness(Make assn(
t; pas; pref; db))

Make assn inv : theorem
db invariant(db) � db invariant(Make assn(
t; pas; pref; db))

initial state inv : theorem db invariant(initial state)

Cancel inv one per seat : theorem
one per seat(db) � one per seat(Cancel assn(
t; pas; db))

Make inv one per seat : theorem
one per seat(db) � one per seat(Make assn(
t; pas; pref; db))

initial one per seat : theorem one per seat(initial state)

Make Cancel : theorem
: pass on 
ight(pas; 
t; db)

� Cancel assn(
t; pas; Make assn(
t; pas; pref; db)) = db

Cancel putative : theorem
:(9 (a : seat assignment) :

a 2 Cancel assn(
t; pas; db)(
t) ^ pass(a) = pas)

Make putative : theorem
: pref �lled(db; 
t; pref)

� (9 (x : seat assignment) : x 2 Make assn(
t; pas; pref; db)(
t) ^ pass(x) = pas)

Lookup putative : theorem
: (pref �lled(db; 
t; pref) _ pass on 
ight(pas; 
t; db))

� meets pref(aircraft(
t); Lookup(
t; pas; Make assn(
t; pas; pref; db)); pref)

end ops

Incidentally, the exact form of a LaTEX-printed PVS speci�cation is partly determined
by the value of PVS's LaTEX-linelength variable, which in
uences where the prettyprinter
chooses to break lines. This variable can be set by M-x latex-set-linelength. Often,
some declarations look best set with one value of this parameter, and others with another.
In this case, it is often simplest to generate two copies of the LaTEX-printed speci�cation
using di�erent values of the parameter and then select individual declarations from one �le
or the other for the �nal version. This was done here, using linelengths of 100 and 120.
Editing the LaTEX text generated by PVS is also possible, but requires a good understanding
of the macro package pvs.sty.
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2.3 Theory Dependencies

Ricky Butler structured his speci�cation into two theories: basic defs and ops. In more
complicated speci�cations it is easy to lose track of the dependencies between theories,
and PVS can help (if it is running under X-windows on a machine with Tcl/Tk avail-
able) by representing these graphically. On Ricky Butler's example, the command M-x

x-theory-hierarchy produces the following display.

ops

basic_defs

A much more complicated example might produce something like the following.

bv_top

bv

bit

bv_bitwise

bv_nat

exp2

bv_concat

bv_fract

bv_extractors

bv_int bv_concat_nat

bv_concat_lems bv_sum

sums

bv_shift

bv_rotate bv_manipulations bv_extend

bv_arithmetic

bv_arith_shift

bv_arith_nat

mod

floor_div_props

floor_ceil

integer_bounds

div

bv_bitwise_lems bv_AAMP5 bv_rules

exp2_table mod_lems



10 Chapter 2. Seat Reservation Problem

The theory names in these displays are mouse sensitive: clicking left-mouse on a theory
name causes PVS to jump to the corresponding theory in its Emacs bu�er. Holding down
the control key and left-mouse simultaneously allows you to rearrange the layout of the
graphical display, while clicking left-mouse on the Gen PS button generates a postscript �le
that can be included in a document such as this.

2.4 Adjustments to the Speci�cations

The di�erences between our speci�cation and Ricky Butler's are �vefold:

� We give the declarations in a di�erent order in ops.pvs, and tend to use global
variable declarations, rather than declarations local to a given declaration. These
di�erences are simply stylistic and due to the fact that Ricky Butler rearranged his
speci�cation in updating it to PVS 2, whereas we independently updated his original
PVS 1 speci�cation.

� We de�ne seat exists and meets pref in basic defs.pvs explicitly as predicates
(using the PVS identi�er pred), rather than as functions with range type bool. These
are semantically equivalent, but we consider it closer to their intended interpretation
to declare seat exists and meets pref explicitly as predicates.

� We use NONEMPTY TYPE and CONTAINING clauses in a few places in order to eliminate
TCCs or to automate their proofs. This is the most signi�cant di�erence and is
explained in the section that follows.

� At the end of his Section 3.5, Ricky Butler challenges the \ambitious reader" to add
the following de�nition to the speci�cation.

Lookup(flt: flight, pas: passenger, db: flt_db): [row,position] =

seat(choose( fa | member(a,db(flt)) AND pass(a) = pasg ))

Our speci�cation uses epsilon in place of choose. The di�erences between these two
approaches are discussed later in Section 2.4.1.

� We add NOT pref filled(db, flt, pref) as an antecedent to the axiom
Next seat ax 2 that is introduced by Ricky Butler at the end of his Section 3.4,
thereby producing the following modi�ed axiom.

Next_seat_ax_2: AXIOM

NOT pref_filled(db, flt, pref) IMPLIES

(FORALL a: member(a,db(flt)) IMPLIES

seat(a) /= Next_seat(db,flt,pref))
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Without the antecedent, this axiom is false in the case of a full 
ight, and renders the
whole speci�cation inconsistent. This 
aw was pointed out by Piotr Rudnicki of the
University of Alberta2 and illustrates the perennial danger of axiomatic speci�cations:
it is all too easy to write inconsistent axioms. PVS speci�cations that do not use
axioms (except those from the prelude) are guaranteed to be consistent (provided all
the TCCs have been proved), but it is not always appropriate to restrict speci�cations
to this de�nitional fragment of PVS. Here, for example, the goal is to develop and
to validate a \requirements" speci�cation in which we postulate only the properties
required of the Next seat function; we do not wish to prescribe an implementation. A
de�nitional speci�cation of Next seat would necessarily suggest an implementation.
When an axiomatic style of speci�cation seems appropriate, the best approach is
indeed to present the speci�cation in this style, but also to supply a de�nitional
(and therefore consistent) speci�cation that is proven to satisfy the axioms. This is
described in Section 2.4.3.

2.4.1 Nonempty Types and Type Correctness Conditions

PVS allows empty types, provided you do not attempt to declare (or assert the existence
of) any constants of such types, since this would be unsound. By default, PVS makes no
assumptions about uninterpreted types (such as flight or plane), other than that di�erent
types are disjoint; in particular, the set that interprets an uninterpreted PVS type may have
zero, �nite, countable, or uncountable cardinality. When you declare a constant of a type,
however, PVS needs to be sure that the type is nonempty. If both the type and constant
are interpreted (e.g., if we added x: row = 1 to basic defs) the typechecker may need to
generate a TCC to check that the constant satis�es the de�nition for the type (i.e., 1 <=

1 AND 1 <= nrows). If the type is interpreted but the constant is uninterpreted (e.g., if
we simply had added x: row to the speci�cation), PVS may generate a TCC requiring you
to show that the type is nonempty (i.e., EXISTS (y:row): TRUE). PVS is usually unable
to prove such TCCs on its own (because they require exhibition of a member of the type
concerned) unless you give it a hint by adding a CONTAINING clause to the type declaration
concerned. Finally, if both the type and constant are uninterpreted, PVS requires you to
explicitly declare the type to be nonempty using the NONEMPTY TYPE or TYPE+ keywords
instead of simply TYPE (otherwise you will get an unprovable TCC).3

With the present speci�cation, in the absence of NONEMPTY TYPE and CONTAINING key-
words, PVS generates several TCCs for basic defs, including the following one.

% Existence TCC generated (line 31) for aircraft: [flight -> plane]

aircraft_TCC1: OBLIGATION (EXISTS (x: [flight -> plane]): TRUE);

2Piotr Rudnicki has developed a treatment of this example in the Mizar system. The example, and infor-
mation about Mizar, are available from http://web.cs.ualberta.ca/~piotr/Mizar/FLT_DB/. Appendix B
to the present report develops a PVS speci�cation in the spirit of Rudnicki's Mizar treatment.

3The remaining combination, an uninterpreted type and interpreted constant (e.g., foo: TYPE FROM nat

and bar: foo = 99), is not meaningful and always generates unprovable TCCs.
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This is due to the following declaration.

aircraft: [flight -> plane]

Here we are asserting the existence of a function of type [flight -> plane]; now, a
function type is nonempty if its range type is nonempty (or if both its domain and range
are empty, but that is seldom an interesting case unless dependent types are involved), so
we need to ensure that the uninterpreted type plane is declared as a NONEMPTY TYPE.

As Ricky Butler noted, typechecking ops.pvs also generates a TCC from the declaration
of the function Next seat requiring us to show that its function type is nonempty.

% Existence TCC generated (line 22) for

% Next_seat: [flt_db, flight, preference -> [row, position]]

Next_seat_TCC1: OBLIGATION

(EXISTS (x: [[flt_db, flight, preference] -> [row, position]]): TRUE);

Ricky Butler discharged this TCC by constructing a suitable function, but we think it is
neater to establish that the range type [row, position] is nonempty, thereby allowing
PVS to suppress the TCC. To do this, the types row and position must be shown to
be nonempty and, since these are interpreted, we can help PVS to do this by adding
CONTAINING 1 clauses to their declarations in basic defs.pvs. This will cause PVS to
generate TCCs to prove that 1 is a member of both these types, and the standard proof
strategy invoked by the M-x tcp command is able to discharge those proof obligations
automatically.

However, we are not done yet, because we �nd that typechecking ops.pvs generates yet
another TCC. This particular TCC does not occur in Ricky Butler's description because
the de�nition of Lookup is part of one of the examples he left to the reader.

% Existence TCC generated (line 47) for epsilon

Lookup_TCC1: OBLIGATION (EXISTS (x: seat_assignment): TRUE);

The function epsilon in the de�nition of Lookup returns a seat assignment, and this type
is therefore required to be nonempty. Inspecting the type seat assignment, we see that
it is a record consisting of a [row, position] pair (which we have just ensured is known
to be nonempty), and a passenger. The latter is an uninterpreted type, so we modify its
declaration to be NONEMPTY TYPE and ops.pvs no longer generates TCCs.

2.4.2 Choose vs. Epsilon

The function Lookup(flt, pas, db), which Ricky Butler (at the end of his Section 3.5)
challenges the \ambitious reader" to add to the speci�cation, is intended to return the [row,
position] pair for the seat of passenger pas on 
ight flt, as recorded in the database db.



2.4. Adjustments to the Speci�cations 13

Now db(flt) is the set of seat assignments for 
ight flt, so the seat of passenger pas is
seat(a), where a is the seat assignment such that member(a, db(flt)) and pass(a)=pas.
We know that if the passenger is on the 
ight, there will be exactly one seat assignment a
with this property, but this is not self-evident from the speci�cation (it has to be established
by proving the several \invariant" theorems). However, we can identify the set of relevant
seat assignments as

1f a | member(a, db(flt)) AND pass(a) = pas g

and can then choose one member of that set. (We \know" that the set will be a singleton,
and the choice will therefore be deterministic.) A choice function choose is de�ned in the
PVS prelude, so it looks as though we can write the speci�cation of Lookup as follows.

2Lookup(flt, pas, db): [row,position] =

seat(choose( f a | member(a, db(flt)) AND pass(a) = pas g ))

The problem with this speci�cation, which is the one proposed by Ricky Butler, is that it
does not deal with the case where the passenger is not booked on the 
ight. The set in box
1 will be empty in this case, and it is not obvious how to apply a choice function to an
empty set. In fact, the choice function choose may be applied only when the set concerned
is nonempty, and a TCC is generated to ensure this. Thus, Ricky Butler's speci�cation
generates the following unprovable TCC from the de�nition 2.4

% Subtype TCC generated (line 51) for fa | member(a, db(flt)) AND pass(a) = pasg

Lookup_TCC1: OBLIGATION

(FORALL (db, flt, pas):

nonempty?[seat_assignment](fa | member[seat_assignment](a, db(flt))

AND pass(a) = pasg));

There are three ways to deal with this di�culty. One is to cause Lookup to return some
speci�c, �ctitious seat, such as (0, 0) when the passenger is not booked on the 
ight; the
second is to cause it to return an arbitrary seat in this circumstance; and the third is to
constrain Lookup so that it can be applied only when the passenger is known to be on the

ight. The �rst of these has nothing to recommend it, the second and third are described
below.

The PVS prelude provides two \choice" functions: choose and epsilon. Of these,
epsilon is more basic, and less restrictive.5 If p is a predicate (or, equivalently, a set) on
some type T, then epsilon(p) is a value of type T; furthermore, if p is satis�able (nonempty),
then epsilon(p) satis�es (is a member of) it. This is speci�ed in the de�ning axiom for
epsilon, given in the PVS prelude as follows.

4Drew Dean of Princeton University �rst reported this.
5The name comes from Hilbert's use of the symbol " (epsilon) for this operator [Lei69].
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epsilon_ax: AXIOM (EXISTS x: p(x)) => p(epsilon(p))

Notice that if p is unsatis�able (or, interpreted as a set, is empty), then epsilon(p) is some
arbitrary value of type T.

When we know that p is satis�able, it can be preferable to use choose instead of
epsilon; choose is de�ned as follows.

choose(p: (nonempty?)): (p) = epsilon(p)

Notice that the return type speci�ed is (p); this is shorthand for the predicate subtype fx:T|
p(x)g|so the fact that choose(p) satis�es p is embedded in its type, where the theorem
prover can make automatic use of it, rather than requiring invocation of epsilon ax. The
price for this convenience is the need to establish during typechecking that the predicate p
is indeed satis�able (or, interpreted as a set, nonempty).

Since we do not know that the set given by speci�cation 1 is nonempty, we cannot use
choose and must revert to epsilon as follows.

Lookup(flt, pas, db) : [row, position] =

seat(epsilon( fa | member(a, db(flt)) AND pass(a) = pasg ))

With this de�nition, which generates no TCCs, Lookup returns an arbitrary seat when the
passenger has no seat assignment; this might not be what is expected, but it is su�cient
to prove the challenge theorem Lookup putative, in which the relevant seat assignment is
sure to exist (because it is explicitly constructed by Make assn).

Lookup_putative: THEOREM

NOT (pref_filled(db, flt, pref) OR pass_on_flight(pas, flt, db)) IMPLIES

meets_pref(aircraft(flt),

Lookup(flt, pas, Make_assn(flt,pas,pref,db)),

pref)

This de�nition is the one used in this report. It may be considered unsatisfactory,
however, to return an arbitrary seat when the passenger is not on the 
ight. An alternative
approach is to disallow application of Lookup in this circumstance. This can be accomplished
by modifying the argument types in the speci�cation of Lookup as follows.

3Lookup(flt,

pas,

(db: fd : flt_db | pass_on_flight(pas, flt, d)g) ): [row, position] =

seat(choose( fa | member(a, db(flt)) AND pass(a) = pasg ))

The function Lookup is said to be dependently typed in this version, since the type of the
argument db depends on the values of the earlier arguments pas and flt: speci�cally, it
is restricted to the subtype of flt db consisting of those databases in which passenger pas
is on 
ight flt. This de�nition generates the following TCC to establish that choose is
applied to a nonempty argument.
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% Subtype TCC generated (line 54) for fa | member(a, db(flt)) AND pass(a) = pasg

Lookup_TCC1: OBLIGATION

(FORALL (flt, pas, db: fd: flt_db | pass_on_flight(pas, flt, d)g):
nonempty?[seat_assignment](fa | member[seat_assignment](a, db(flt))

AND pass(a) = pasg));

The dependent typing ensures that this TCC is true|and, in fact, it is proved automatically
by the default TCC proof strategy. A consequence of the dependent typing in this version
of Lookup is that TCCs are generated to ensure that the typing is respected whenever it is
applied. Thus, the following TCC is generated from the theorem Lookup putative.

% Subtype TCC generated (line 147) for Make_assn(flt, pas, pref, db)

Lookup_putative_TCC1: OBLIGATION

(FORALL (db: flt_db, flt: flight, pas: passenger, pref: preference):

NOT((pref_filled(db, flt, pref) OR pass_on_flight(pas, flt, db)))

IMPLIES pass_on_flight(pas, flt, Make_assn(flt, pas, pref, db)));

This TCC is also discharged by the default TCC proof strategy.

2.4.3 De�nitional version of Next seat

We noted earlier that to show that the axiomatic speci�cation of Next seat is consistent, we
can provide a de�nitional version of the function and show that it satis�es all of the axioms
asserted of the uninterpreted function. We could develop a truly constructive de�nition
for Next seat, but since our purpose here is merely to demonstrate consistency, we use a
de�nition based on the epsilon operator. This is a convenient approach because we have
three properties we wish the returned seat to have and do not care which seat the function
returns when none satisfy these conditions.

We use here a syntactic variation of epsilon|epsilon!. The expression epsilon!

(x : T) : p(x) is equivalent to, and we suggest more readable than, the standard forms
epsilon(fx : T | p(x)g) and epsilon(lambda (x:T): p(x)). All functions that take
a predicate as their argument can use this variant form, which transforms their syntax to
that of variable-binding constructions such as quanti�er and � expressions.

Next seat defn(db,flt,pref) : [row, position] =

epsilon! (seat : [row,position]) : seat exists(aircraft(flt),seat)

AND (FORALL a : member(a,db(flt)) IMPLIES seat(a) /= seat)

AND meets pref(aircraft(flt),seat,pref)

We now reformulate our three axioms about Next seat as theorems about
Next seat defn.6

6This is clumsy and rather tedious; a forthcoming version of PVS will provide theory interpretations to
simplify and automate this process.
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Next seat th : THEOREM

NOT pref filled(db, flt, pref) IMPLIES

seat exists(aircraft(flt),Next seat defn(db,flt,pref))

Next seat th 2: THEOREM

NOT pref filled(db, flt, pref) IMPLIES

(FORALL a: member(a,db(flt)) IMPLIES

seat(a) /= Next seat defn(db,flt,pref))

Next seat th 3: THEOREM

NOT pref filled(db, flt, pref) IMPLIES

meets pref(aircraft(flt),Next seat defn(db,flt,pref),pref)

It turns out that these are not true theorems|there is an assumption underlying our
speci�cation that needs to be made explicit before these theorems can be proved. We use
the attempted proof of the �rst theorem to demonstrate how theorem proving can assist
the development of formal speci�cations by highlighting such missing assumptions. Since
we have not yet introduced the powerful proof commands that are the subject of the latter
part of this chapter, we perform this proof in rather small steps.

Our proof begins with the following sequent.

Next_seat_th :

|-------

f1g (FORALL (db: flt_db, flt: flight, pref: preference):

NOT pref_filled(db, flt, pref)

IMPLIES seat_exists(aircraft(flt), Next_seat_defn(db, flt, pref)))

We use (skosimp) to Skolemize the universal quanti�er, and to simplify the implication:

Rule? (skosimp )

Skolemizing and flattening,

this simplifies to:

Next_seat_th :

|-------

f1g pref_filled(db!1, flt!1, pref!1)

f2g seat_exists(aircraft(flt!1), Next_seat_defn(db!1, flt!1, pref!1))

Next, we expand the de�nitions of pref filled and Next seat defn and use (skosimp)

again.
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Rule? (then (expand* "pref_filled" "Next_seat_defn")(skosimp))

Expanding the definition(s) of (pref_filled Next_seat_defn),

this simplifies to:

: : : intermediate sequent omitted
Skolemizing and flattening,

this simplifies to:

Next_seat_th :

f-1g meets_pref(aircraft(flt!1), seat!1, pref!1)

|-------

f1g (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)

[2] seat_exists(aircraft(flt!1),

epsilon! (seat: [row, position]):

seat_exists(aircraft(flt!1), seat)

AND

(FORALL (a: seat_assignment):

member(a, db!1(flt!1)) IMPLIES seat(a) /= seat)

AND meets_pref(aircraft(flt!1), seat, pref!1))

There are now no more useful expansions to perform, so we introduce the epsilon ax axiom
to reason about the application of the epsilon! operator.
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Rule? (use "epsilon_ax[[row,position]]")

Using lemma epsilon_ax[[row,position]],

this simplifies to:

Next_seat_th :

f-1g (EXISTS (x: [row, position]):

(LAMBDA (seat: [row, position]):

seat_exists(aircraft(flt!1), seat)

AND

(FORALL (a: seat_assignment):

member(a, db!1(flt!1)) IMPLIES seat(a) /= seat)

AND meets_pref(aircraft(flt!1), seat, pref!1))(x))

=>

(LAMBDA (seat: [row, position]):

seat_exists(aircraft(flt!1), seat)

AND

(FORALL (a: seat_assignment):

member(a, db!1(flt!1)) IMPLIES seat(a) /= seat)

AND

meets_pref(aircraft(flt!1), seat,

pref!1))(epsilon(LAMBDA (seat: [row, position]):

seat_exists(aircraft(flt!1), seat)

AND

(FORALL (a: seat_assignment):

member(a, db!1(flt!1))

IMPLIES seat(a) /= seat)

AND

meets_pref(aircraft(flt!1),

seat, pref!1)))

[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)

|-------

[1] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)

[2] seat_exists(aircraft(flt!1),

epsilon! (seat: [row, position]):

seat_exists(aircraft(flt!1), seat)

AND

(FORALL (a: seat_assignment):

member(a, db!1(flt!1)) IMPLIES seat(a) /= seat)

AND meets_pref(aircraft(flt!1), seat, pref!1))

The square brackets around formula numbers -2, 1, and 2 indicate that these are unchanged
from the previous sequent; the curly braces around -1 indicate that it is new, and a good
place to focus our attention. Using (ground) to simplify formula -1 generates two subgoals;
the �rst of these is trivial and is discharged with another (ground), leaving us with the
following sequent.
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Rule? (repeat (ground))

Applying propositional simplification and decision procedures,

this yields 2 subgoals:

: : : intermediate sequent omitted
Applying propositional simplification and decision procedures,

This completes the proof of Next_seat_th.1.

Next_seat_th.2 :

[-1] meets_pref(aircraft(flt!1), seat!1, pref!1)

|-------

f1g (EXISTS (x: [row, position]):

seat_exists(aircraft(flt!1), x)

AND

(FORALL (a: seat_assignment):

member(a, db!1(flt!1)) IMPLIES seat(a) /= x)

AND meets_pref(aircraft(flt!1), x, pref!1))

[2] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)

[3] seat_exists(aircraft(flt!1),

epsilon! (seat: [row, position]):

seat_exists(aircraft(flt!1), seat)

AND

(FORALL (a: seat_assignment):

member(a, db!1(flt!1)) IMPLIES seat(a) /= seat)

AND meets_pref(aircraft(flt!1), seat, pref!1))

Formula 3 is no longer needed, so we hide it and then, comparing formulas -1 and 1, select
seat!1 to instantiate the existential quanti�er in formula 1.

Rule? (then (hide 3)(inst 1 "seat!1"))

Hiding formulas: 3,

this simplifies to:

: : : intermediate sequent omitted
Instantiating the top quantifier in 1 with the terms:

seat!1,

this simplifies to:

Next_seat_th.2 :

[-1] meets_pref(aircraft(flt!1), seat!1, pref!1)

|-------

f1g seat_exists(aircraft(flt!1), seat!1)

AND

(FORALL (a: seat_assignment):

member(a, db!1(flt!1)) IMPLIES seat(a) /= seat!1)

AND meets_pref(aircraft(flt!1), seat!1, pref!1)

[2] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)
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We use (prop) to simplify the conjunction in formula 1, which generates 2 subgoals. We
postpone examination of the �rst and examine the second.

Rule? (prop)

Applying propositional simplification,

this yields 2 subgoals:

: : : intermediate sequent omitted
Rule? (postpone)

Postponing Next_seat_th.2.1.

Next_seat_th.2.2 :

[-1] meets_pref(aircraft(flt!1), seat!1, pref!1)

|-------

f1g (FORALL (a: seat_assignment):

member(a, db!1(flt!1)) IMPLIES seat(a) /= seat!1)

[2] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)

We notice that formulas 1 and 2 are quite similar, so use (skolem!) then (inst?) to
Skolemize the universal quanti�er in 1, and then use the generated Skolem constant in 2

Rule? (then (skolem!)(inst?))

Skolemizing,

this simplifies to:

: : : intermediate sequent omitted
Found substitution:

a gets a!1,

Instantiating quantified variables,

this simplifies to:

Next_seat_th.2.2 :

[-1] meets_pref(aircraft(flt!1), seat!1, pref!1)

|-------

[1] member(a!1, db!1(flt!1)) IMPLIES seat(a!1) /= seat!1

f2g member(a!1, db!1(flt!1)) AND seat(a!1) = seat!1

This subgoal now completes with (prop), and the postponed �rst subgoal returns.

Rule? (prop)

Applying propositional simplification,

This completes the proof of Next_seat_th.2.2.

Next_seat_th.2.1 :

[-1] meets_pref(aircraft(flt!1), seat!1, pref!1)

|-------

f1g seat_exists(aircraft(flt!1), seat!1)

[2] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)
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Examining this sequent, we can see no clear way to proceed. Formula 2 (and the
previously hidden formula 3) provide little of interest, and we conclude that we really need
to deduce that formula 1 follows from -1|that is, if a seat meets a preference, then that seat
really exists on the aircraft type concerned. The speci�cation provides no way to deduce
this|it seems to be an implicit assumption. In order to complete the proof, we need to
make the assumption explicit. We do this by adding a new axiom to the speci�cation.

4new_ax: AXIOM meets_pref(aircraft(flt), seat, pref)

IMPLIES seat_exists(aircraft(flt), seat)

We could do this by abandoning the current proof, modifying the speci�cation, and then
rerunning the proof to return to the current state. This would be obviously ine�cient, so
PVS allows declarations to be modi�ed and added to the speci�cation mid-proof. Here, we
position the cursor in the speci�cation bu�er above Next seat th, and give the command
M-x add-declaration. A new bu�er is created and we type the declaration new ax from
4 into it, indicating when we are �nished by C-c C-c. PVS parses and typechecks the
declaration and incorporates it into the speci�cation. We can then return to the proof
bu�er and make use of this new axiom.

Rule? (use "new_ax")

Using lemma new_ax,

this simplifies to:

Next_seat_th.2.1 :

f-1g meets_pref(aircraft(flt!1), seat!1, pref!1)

IMPLIES seat_exists(aircraft(flt!1), seat!1)

[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)

|-------

[1] seat_exists(aircraft(flt!1), seat!1)

[2] (EXISTS (a: seat_assignment): member(a, db!1(flt!1)) AND seat(a) = seat!1)

The proof then completes with (prop).

Rule? (prop)

Applying propositional simplification,

This completes the proof of Next_seat_th.2.1.

This completes the proof of Next_seat_th.2.

Q.E.D.

Context was modified in mid-proof.

Would you like to rerun the proof?



22 Chapter 2. Seat Reservation Problem

Since the speci�cation was modi�ed during proof, the proof is regarded as provisional, and
PVS o�ers to rerun it \clean" against the newly expanded speci�cation. It is prudent to
do so. No errors detected in this example, and the formula is considered proved.

We have seen how the act of attempting to prove consistency revealed an implicit as-
sumption in the speci�cation. This assumption was noted independently by Piotr Rudnicki
in his Mizar treatment. Proofs of Next seat th 2 and Next seat th 3 do not reveal the
need for any further assumptions,7 and we deduce that our axiomatization of the Next seat

function is consistent.

2.5 The Proofs

In this section, we develop automated proofs for the theorems and lemmas in the theory ops.
Ricky Butler's proofs mainly use a fairly restricted set of PVS prover commands: skosimp*,
assert, expand, lift-if, lemma, inst, inst?, case, and apply-extensionality. In order
to develop higher-level, more automated proofs, it is useful to have an idea of how the various
higher-level prover commands are related to each other.

2.5.1 PVS Proof Commands

Below is a list of many of the PVS commands; the most useful are underlined. Note
particularly those commands marked with

p
; these package the functionality of those that

precede them in a convenient way and are the workhorses of automated proofs.

� Using decision procedures and auto-rewrites: assert, simplify, do-rewrites, record

� Basic propositional reasoning: bddsimp, prop, iff, flatten, split
p

Combine prop and assert: ground

� Simplifying if-then-else and with structures: lift-if
p

Iterate lift-if with bddsimp: smash

� Case split: case-replace, case (also split in combination with lift-if automates
many case-splits)

� Note type information: typepred

� Skolemization: skosimp*, skosimp, skolem-typepred, skolem!, skolem

7Suitable proofs are

(GRIND :IF-MATCH NIL) (USE "epsilon ax[[row,position]]") (GROUND) (("1" (REDUCE)) ("2"

(INST?) (GROUND) (("1" (USE "new ax") (ASSERT)) ("2" (SKOSIMP) (INST?) (ASSERT))))))

and

(GRIND) (USE "epsilon ax[[row,position]]") (GROUND) (INST?) (USE "new ax") (REDUCE)

respectively.
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� Instantiation: inst?, inst
p

Combine inst? with skosimp*, smash, and assert: bash
p

Iterate bash: reduce

� Setting up auto-rewrites: install-rewrites

auto-rewrite, auto-rewrite-theory, auto-rewrite-theories
p

Set up auto-rewrites and then reduce: grind, tcc, termination-tcc

� Beta reduction: beta

� Lemma introduction: use*, use, forward-chain, lemma

� Equality reasoning: replace, replace*

� De�nition expansion: expand (also see auto-rewriting)

� Conditional rewriting: rewrite, simplify-with-rewrites (also see auto-rewriting)

� Extensionality: replace-extensionality, apply-extensionality, extensionality

The commands listed above are su�cient to do the proofs in this chapter. In the third
chapter we will meet some of the commands for induction.

� induction: induct-and-simplify, measure-induct-and-simplify, generalize,

measure-induct, name-induct, induct

When large formulas (or nonlinear arithmetic) is involved, it can be helpful to name selected
terms.

� Naming: name-replace*, name-replace, name, same-name

More advanced tutorials will introduce the eta rules and the model-checking commands.

� Eta rule: replace-eta, apply-eta, eta

� CTL model checking and �-calculus: model-check

It is also necessary to know the commands for controlling the main functions of the prover.

� Control: quit, undo, postpone, rerun, help (also delete, hide, reveal, copy)

And for writing or understanding strategies, it is useful to know the combinators.

� Combinators: apply, then, repeat, try, branch, spread, else, let, skip, fail, lisp

Armed with this list of prover commands, we will now work through the proofs from
Ricky Butler's tutorial.
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2.5.2 Cancel assn inv

This, the �rst theorem in the speci�cation, asserts that the db invariant is preserved when
a seat assignment is been canceled.

Cancel_assn_inv : THEOREM

db_invariant(db) IMPLIES db_invariant(Cancel_assn(flt,pas,db))

The proof session begins with the following sequent.

Cancel_assn_inv :

|-------

f1g (FORALL (flt: flight, pas: passenger, db: assn_state):

db invariant(db) IMPLIES

db invariant(Cancel assn(flt, pas, db)))

This theorem is an \obvious" one whose proof simply requires expansion of de�nitions and
straightforward propositional calculus and equality reasoning. PVS 2 provides a strategy
called grind to do this. It is based on the tcc strategy from PVS 1 (the default strategy
applied to TCCs by the M-x typecheck-prove or M-x tcp command). Grind performs
Skolemization, heuristic instantiation, if-lifting, rewriting and propositional simpli�cation.
The rewriting and instantiation can be closely controlled, as sometimes grind can be too
large a hammer for the nut you are trying to crack. By default, grind sets up all the
de�nitions relevant to the theorem as automatic rewrites, but uses them in a fairly cautious
manner: any top-level conditions in a de�nition (i.e., antecedents to implications, or the
condition of an if-then-else) must simplify to true or false in the context of a potential
rewrite in order for the rewrite to take e�ect.

The Emacs interface to the PVS prover provides a number of shortcuts for common
commands: rather than type (grind), it is su�cient to simply strike the two keys TAB

G. To see a list of all these shortcut keystrokes (which were originally developed by C.
Michael Holloway of NASA Langley Research Center), type TAB h. In the present case, the
command (grind) fails to prove the theorem; following a 
urry of messages about rewriting
(these messages can be globally turned o� by the prover command (rewrite-msg nil),
or made terse by the prover command (rewrite-msg 0) or by the Emacs command M-x

set-rewrite-depth), the strategy terminates with the following sequent.
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Rule? (grind)

: : : reporting of rewrites omitted
Trying repeated Skolemization, instantiation, and if-lifting,

this yields 3 subgoals:

Cancel_assn_inv.1 :

f-1g db!1(flt!2)(a!1)

f-2g db!1(flt!2)(b!1)

f-3g pass(a!1) = pass(b!1)

|-------

f1g db!1(flt!1)(a!1)

f2g flt!1 = flt!2

f3g a!1 = b!1

We notice that the formulas -1 and 1 are almost the same, except for the di�erent Skolem
constants flt!1 and flt!2. We can inspect the other sequents at the leaves of the proof
tree with the command (postpone) (its shortcut is TAB P).

Rule? (postpone)

Postponing Cancel_assn_inv.1.

Cancel_assn_inv.2 :

f-1g seat_exists(aircraft(flt!1), seat(a!1))

f-2g db!1(flt!2)(a!1)

|-------

f1g flt!1 = flt!2

f2g seat_exists(aircraft(flt!2), seat(a!1))

Rule? (postpone)

Postponing Cancel_assn_inv.2.

Cancel_assn_inv.3 :

f-1g db!1(flt!2)(a!1)

|-------

f1g db!1(flt!1)(a!1)

f2g flt!1 = flt!2

f3g seat_exists(aircraft(flt!2), seat(a!1))

Rule?

Again, we see formulas above and below the line that are similar, except for the Skolem
constants flt!1 and flt!2. Circumstances like these indicate that the grind strategy
probably chose the wrong instantiation somewhere along the way. Suitable responses are to
try the strategy again, but with an additional argument that can tell grind either to leave
the instantiation to us or to use a di�erent criterion for choosing instantiations than its
default method. Here, we'll try the manual approach. We undo the grind proof step with
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the (undo) command (TAB u), and then give the command (grind :if-match nil). The
:if-match token is a keyword that is used to indicate that the token following (here nil)
is the value of an optional argument to grind called if-match. You can see the available
arguments to a PVS strategy by giving a command such as (help grind) to the prover
Rule? prompt, or by giving the Emacs command M-x pvs-help-prover-command grind

(the Emacs command has completion|just hit the space bar or ? to �nish o�, or to see
the options for, a partly-typed command). Alternatively, you can give the command M-x

x-prover-commands to create a persistent mouse-sensitive display of all prover commands,
and then click the middle mouse button on grind. In all cases, the help given for grind is
as follows (the vertical dots indicate material deleted for brevity).

(GRIND/$ &OPTIONAL (DEFS !) THEORIES REWRITES (IF-MATCH T) EXCLUDE (UPDATES? T)):

A super-duper strategy.aDoes auto-rewrite-defs/theories,

auto-rewrite then applies skolem!, inst?, lift-if, bddsimp, and

assert, until nothing works. Here
...

IF-MATCH is either NIL (no instantiation), T (yes instantiation),

ALL (all instances) or BEST (best instance) depending on which version

of INST? is required.

aThe term ``super-duper" here is a reference to [ALW93].

This tells us that the optional arguments to grind are defs, theories, rewrites, exclude,
if-match, and updates? (upper/lower case distinctions are not important). Parentheses
are used to indicate default values (so the default value for if-match is t). If we wish to
supply values for each of these arguments, we can just supply them in order; but if we wish
to supply values only for some of them, we must indicate the ones concerned by preceding
each value with a keyword derived by pre�xing a colon to name of the relevant argument.
From the help display, we see that the :if-match nil argument tells grind to not attempt
heuristic instantiation.

Here, (grind :if-match nil) generates four subgoals, the �rst of which is the follow-
ing.
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Rule? (grind :if-match nil)

: : : reporting of rewrites omitted
Trying repeated Skolemization, instantiation, and if-lifting,

this yields 4 subgoals:

Cancel_assn_inv.1 :

f-1g FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):

db!1(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a))

f-2g FORALL (a: [# pass: passenger, seat: [row, position] #]),

(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):

db!1(flt)(a) AND db!1(flt)(b) AND pass(a) = pass(b) IMPLIES a = b

f-3g flt!1 = flt!2

f-4g db!1(flt!2)(a!1)

f-5g db!1(flt!2)(b!1)

f-6g pass(a!1) = pass(b!1)

|-------

f1g (pass(b!1) = pas!1)

f2g a!1 = b!1

It looks as though the obvious instantiations for the variables of formula -2

should take care of this branch and, indeed, the sequence of proof commands
(inst? -2)(inst? -2)(prop) discharges it and presents us with the next sequent.

Rule? (prop)

Applying propositional simplification,

This completes the proof of Cancel_assn_inv.1.

Cancel_assn_inv.2 :

f-1g FORALL (a: [# pass: passenger, seat: [row, position] #]), (flt: flight):

db!1(flt)(a) IMPLIES seat_exists(aircraft(flt), seat(a))

f-2g FORALL (a: [# pass: passenger, seat: [row, position] #]),

(b: [# pass: passenger, seat: [row, position] #]), (flt: flight):

db!1(flt)(a) AND db!1(flt)(b) AND pass(a) = pass(b) IMPLIES a = b

f-3g db!1(flt!2)(a!1)

f-4g db!1(flt!2)(b!1)

f-5g pass(a!1) = pass(b!1)

|-------

f1g flt!1 = flt!2

f2g a!1 = b!1

This should follow in the same way, but we note that the (inst?) and (prop) commands
used on the previous sequent are subsumed by the functionality of (grind), so we try
(grind) instead. It works|and (grind) also takes care of the other two proof branches
as well. We have now �nished the proof, and can inspect the saved proof description using
M-x edit-proof. This looks as follows.
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(""

(GRIND :IF-MATCH NIL)

(("1" (INST? -2) (INST? -2) (PROP)) ("2" (GRIND)) ("3" (GRIND))

("4" (GRIND))))

We conjecture that the �rst branch of the proof tree could also have been discharged by
(grind), yielding a more uniform proof. We check this conjecture by starting the proof
again, and giving the following single proof command.

(then (grind :if-match nil)(grind))

In this command, then is a proof sequencing strategy|it successively applies the proofs
steps supplied as its argument. More particularly, it �rst applies its �rst argument, then
recursively applies the rest of its arguments to the subgoals so created.

If we examine (with M-x edit-proof) the proof saved after running this strategy, we
see that it has the following form.

(""

(GRIND :IF-MATCH NIL)

(("1" (GRIND)) ("2" (GRIND)) ("3" (GRIND)) ("4" (GRIND))))

Notice that this is not the command we typed in, but the collection of proof steps that it
generated. If we had wished to save the (then: : :) form, we could have run the proof as an
atomic step by wrapping it in an apply as follows.

(apply (then (grind :if-match nil)(grind))).

Most of the standard strategies of PVS automatically run and are saved in this atomic
manner; they can be caused to run in the expanded, verbose manner by appending a $

symbol to their names. This can be useful if you want to know how a strategy such as
grind actually performed a proof at the level of primitive steps. In the present example,
we can discover the primitive steps generated by the applications of grind by giving the
following proof command.

(then (grind$ :if-match nil)(grind$)).

The result is shown in Figure 2.1. It is sometimes di�cult to follow the structure in a fairly
long proof such this, and a graphical display can be very helpful. PVS can produce such
graphical displays of proof-trees by the command M-x x-show-current-proof whilst in
the prover, or by M-x x-show-proof to see the saved proof for a formula under the cursor.
The graphical display can be adjusted interactively and saved as a postscript �le that can
then be included in a LaTEX document by commands such as the following (using the LaTEX
epsf style option).
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\begin{figure}[htp]

\begin{center}

\leavevmode

\epsfxsize=.65\hsize

\epsfbox{ops_Cancel_assn_inv.ps}

\end{center}

\caption{\label{proof-tree}Proof Tree for Theorem {\tt Cancel\_assn\_inv}}

\end{figure}

The result is shown in �gure 2.2.

We might wonder why the sequence (then: : :) of grind steps succeeds in proving this
theorem, when (grind) on its own does not. The explanation is that grind is a fairly
simple heuristic that iteratively simpli�es and looks for instantiations|and sometimes it
�nds the wrong instantiations because it looks for them too early. The strategy (then

(grind :if-match nil)(grind)) e�ectively postpones the search for instantiations until
all simpli�cation has been completed. We might consider this a su�ciently useful strategy
that we would like to save it for future use. We can do this by placing the following lisp
code in the �le pvs-strategies in our current or home directories.

(defstep lazy-grind ( )

(then (grind$ :if-match nil)(grind$))

"Equiv. to (grind) with instantiations postponed until after simplification."

"By skolemization, if-lifting, simplification and instantiation")

Notice that the inner calls to grind use the $ (verbose) form|this is so the command
lazy-grind$ will cause those inner commands to run in their expanded form. The normal
(non-$) form of the lazy-grind command will automatically run its inner commands in
the terse form. Once this de�nition of lazy-grind has been placed in our pvs-strategies
�le, PVS will automatically load it the next time the prover is called, and our theorem can
be proved with just the single command (lazy-grind).

Our de�nition of lazy-grind is really rather crude. If we wish to create a strategy
that will be generally useful, we should pay attention to its e�ciency and generality. The
current de�nition is rather ine�cient because the second invocation of grind will repeat the
installation of automatic rewrite rules performed by the �rst. If we examine the de�nition
of grind (by clicking right on the M-x x-prover-commands display, or by the command
M-x help-pvs-prover-command grind), we will see that its inner loop is performed by the
command reduce, so we should use this in place of the second invocation of grind.

Also, our current de�nition of lazy-grind is lacking in generality|because it does not
provide a way to pass arguments to grind. We can rectify these de�ciencies in the following
improved de�nition.
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(""

(AUTO-REWRITE-DEFS :ALWAYS? T)

(ASSERT)

(SKOLEM-TYPEPRED)

(FLATTEN)

(ASSERT)

(BDDSIMP)

(("1"

(SKOLEM-TYPEPRED)

(FLATTEN)

(LIFT-IF)

(ASSERT)

(BDDSIMP)

(("1"

(REPLACE*)

(ASSERT)

(BDDSIMP)

(INST? :IF-MATCH T)

(REPLACE*)

(ASSERT)

(INST? :IF-MATCH T)

(REPLACE*)

(ASSERT)

(INST? :IF-MATCH T)

(REPLACE*)

(ASSERT))

("2"

(ASSERT)

(INST? :IF-MATCH T)

(REPLACE*)

(ASSERT)

(INST? :IF-MATCH T)

(REPLACE*)

(ASSERT)

(INST? :IF-MATCH T)

(REPLACE*)

(ASSERT))))

("2"

(SKOLEM-TYPEPRED)

(FLATTEN)

(LIFT-IF)

(ASSERT)

(BDDSIMP)

(("1" (REPLACE*) (ASSERT) (INST? :IF-MATCH T) (REPLACE*) (ASSERT))

("2" (ASSERT) (INST? :IF-MATCH T) (REPLACE*) (ASSERT))))))

Figure 2.1: Expanded Proof for Cancel assn inv
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(auto-rewrite-defs :always? t)

(assert)

(skolem-typepred)

(flatten)

(assert)

(bddsimp)

(skolem-typepred)

(flatten)

(lift-if)

(assert)

(bddsimp)

(replace*)

(assert)

(bddsimp)

(inst? :if-match t)

(replace*)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(skolem-typepred)

(flatten)

(lift-if)

(assert)

(bddsimp)

(replace*)

(assert)

(inst? :if-match t)

(replace*)

(assert)

(assert)

(inst? :if-match t)

(replace*)

(assert)

Figure 2.2: Proof Tree for Theorem Cancel assn inv
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(defstep lazy-grind (&optional (if-match t) (defs !)

rewrites theories exclude (updates? t))

(then

(grind$ :if-match nil :defs defs :rewrites rewrites :theories theories

:exclude exclude :updates? updates?)

(reduce$ :if-match if-match :updates? updates?))

"Equiv. to (grind) with instantiations postponed until after simplification."

"By skolemization, if-lifting, simplification and instantiation")

The identi�ers following the &optional in the formal argument list indicate the keyword
arguments to this command (with optional default values in parentheses|for example,
defs defaults to !, but rewrites has no default (or, rather, defaults to nil)). When the
lazy-grind proof command is invoked, the actual arguments supplied become the values
of these identi�ers. The two strings appearing at the end of the de�nition are, respectively,
the help string and the commentary printed whenever the command is invoked.

2.5.3 MAe

Whereas the previous proof showed grind being too eager in seeking instantiations, the
proof of the next theorem (MAe) shows the other aspect of its occasional overeagerness|
this time in rewriting. The theorem states that making a new seat assignment will retain
the property that all seat assignments on that 
ight are for seats that really do exist on
that type of aircraft.

MAe: THEOREM

existence(db) IMPLIES existence(Make assn(flt,pas,pref,db))

The proof begins by attacking the theorem with (grind). This gives us �ve much
reduced goals.

Rule? (grind)

: : : reporting of rewrites omitted
Trying repeated skolemization, instantiation, and if-lifting,

this yields 5 subgoals:

MAe.1 :

f-1g meets_pref(aircraft(flt!2), seat!1, pref!1)

f-2g flt!1 = flt!2

f-3g (# seat := Next_seat(db!1, flt!2, pref!1), pass := pas!1 #) = a!1

|-------

f1g db!1(flt!2)(a!1)

f2g seat_exists(aircraft(flt!2), seat(a!1))

Rule?
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We have several Next seat axioms relating to the seat exists function, but grind

has rewritten the sequent too far for us to see which axiom is needed. So, we go back to
the beginning (with (undo)), and try again, but only rewriting the two terms that occur
in the MAe theorem. The :defs nil argument tells grind not to install any de�nitions
as automatic rewrites, while the :rewrites keyword introduces a list of functions (or, in
general, conditional equations) that we do want to be rewritten automatically.

Rule? (grind :defs nil :rewrites ("existence" "Make assn"))

: : : reporting of rewrites omitted
Trying repeated skolemization, instantiation, and if-lifting,

this simplifies to:

MAe :

f-1g member(a!1, Make assn(flt!1, pas!1, pref!1, db!1)(flt!2))

|-------

f1g member(a!1, db!1(flt!2))

f2g seat exists(aircraft(flt!2), seat(a!1))

Note that although Make assn was in the rewrites list, it still appears in the resultant
sequent. This is because the de�nition of Make assn is a conditional rewrite (it has a top-
level if-then-else), whose condition cannot be immediately reduced to true or false.
Rewrites can be made unconditional by placing them in a nested list. For example, the
following makes Make assn an unconditional rewrite.

Rule? (grind :defs nil :rewrites ("existence" ("Make assn")))

In the present case, however, we can press on by expanding this function with (expand

"Make assn") (TAB e with the cursor on \Make assn"), then simplifying the resulting
if-then-else with (lift-if) and (prop) (the e�ect of the latter two can be obtained by
the more powerful command (smash)).

Rule? (then (expand "Make assn")(smash))

: : : reporting of rewrites omitted
Repeatedly simplifying with BDDs, decision procedures, rewriting,

and if-lifting,

this simplifies to

MAe :

f-1g flt!1 = flt!2

f-2g member(a!1,

add((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),

db!1(flt!1)))

|-------

[1] member(a!1, db!1(flt!2))

f2g pref_filled(db!1, flt!1, pref!1)

f3g pass_on_flight(pas!1, flt!1, db!1)

[4] seat_exists(aircraft(flt!2), seat(a!1))

Rule?
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At this point, it looks as though the axiom Next seat ax will supply the informa-
tion necessary to complete the proof. We introduce this axiom by the command (use

"Next seat ax") which extends the lemma command by attempting heuristic instantiation
of the formula concerned.

Rule? (use "Next seat ax")

Using lemma Next_seat_ax,,

this simplifies to:

MAe :

f-1g NOT pref_filled(db!1, flt!1, pref!1)

IMPLIES seat_exists(aircraft(flt!1), Next_seat(db!1, flt!1, pref!1))

[-2] flt!1 = flt!2

[-3] member(a!1,

add((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #),

db!1(flt!1)))

|-------

[1] member(a!1, db!1(flt!2))

[2] pref_filled(db!1, flt!1, pref!1)

[3] pass_on_flight(pas!1, flt!1, db!1)

[4] seat_exists(aircraft(flt!2), seat(a!1))

It looks like this should follow by trivial reasoning and expansion of de�nitions, so we hit
it with (grind) and, indeed, the proof completes.

Now that we have proved this theorem, it will be worth going back to see if we can �nd a
shorter, more automatic and potentially more robust proof. The proof basically came down
to straightforward grind-like steps, plus use of the axiom Next seat ax. Such examples
can often be proved by �rst adding the necessary axioms or lemmas to the sequent, and
then letting grind go to work. This is the case here: the following command proves the
theorem.

(then (lemma "Next seat ax")(grind))

As with our previous proof, it may be worth saving this strategy for future use. In fact,
it turns out that this strategy can usefully subsume the functionality of lazy-grind to yield
a strategy called stew (because it adds a set of lemmas to the pot and lets them simmer
with grind).
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(defstep stew (&optional lazy-match (if-match t) (defs !) rewrites theories

exclude (updates? t) &rest lemmas)

(then

(if lemmas

(let ((lemmata (if (listp lemmas) lemmas (list lemmas)))

(x `(then ,@(loop for lemma in lemmata append

`((skosimp*)(use ,lemma))))))

x)

(skip))

(if lazy-match

(then (grind$ :if-match nil :defs defs :rewrites rewrites

:theories theories :exclude exclude :updates? updates?)

(reduce$ :if-match if-match :updates? updates?))

(grind$ :if-match if-match :defs defs :rewrites rewrites

:theories theories :exclude exclude :updates? updates?)))

"Does a combination of (lemma) and (grind)."

"~%Grinding away with the supplied lemmas,")

The tricky part of this strategy is the let construct that builds a list x of skosimp* and
use commands from the supplied list of lemmas, and then executes it. Explanation of
this construct can be found in the PVS strategy manual (forthcoming). The lazy-grind

capability is achieved by the lazy-match argument to stew (i.e., (stew :lazy-match t)

is equivalent to (lazy-grind)). Thus, the previous proof can now be achieved by (stew

:lazy-match t) and the present one by (stew :lemmas "Next seat ax").

2.5.4 MAu

MAu: THEOREM

uniqueness(db) IMPLIES uniqueness(Make_assn(flt,pas,pref,db))

The theorem MAu asserts Make assn preserves the property that the same passenger is
not booked twice onto the same 
ight. Since the theorem looks pretty obvious, we start o�
with (grind).

Rule? (grind)

: : : reporting of rewrites omitted
Trying repeated skolemization, instantiation, and if-lifting,

this yields 2 subgoals:

MAu.1 :

f-1g meets_pref(aircraft(flt!1), seat!1, pref!1)

f-2g db!1(flt!2)(a!1)

f-3g db!1(flt!2)(b!1)

f-4g pass(a!1) = pass(b!1)

|-------

f1g db!1(flt!1)(b!1)

f2g flt!1 = flt!2

f3g a!1 = b!1
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Comparison of formulas -2 and -3 with 1 suggests that the strategy found the wrong instan-
tiations. We speculate that it will do better if we postpone these using (stew :lazy-match

t). And, indeed, this proves the theorem.

2.5.5 Make assn inv

Make_assn_inv: THEOREM

db_invariant(db) IMPLIES db_invariant(Make_assn(flt,pas,pref,db))

Trying (grind) immediately yields 6 subgoals, which doesn't seem very promising. We
undo this step and restrict rewriting to just the db invariant that appears in the statement
of the theorem.

Rule? (grind :defs nil :rewrites ("db_invariant"))

: : : reporting of rewrites omitted
Trying repeated skolemization, instantiation, and if-lifting,

this yields 2 subgoals:

Make_assn_inv.1 :

f-1g existence(db!1)

f-2g uniqueness(db!1)

|-------

f1g uniqueness(Make assn(flt!1, pas!1, pref!1, db!1))

This is clearly MAu, so we rewrite with that as a lemma.

Rule? (rewrite "MAu")

Rewriting using MAu,

This completes the proof of Make assn inv.1.

The other subgoal su�ers a similar fate when rewritten with MAe.

The proof can be reduced to a single step by including MAu and MAe among the
rewrites.

(GRIND :DEFS NIL :REWRITES ("db invariant" "MAu" "MAe"))

2.5.6 initial state inv

initial_state_inv: THEOREM

db_invariant(initial_state)

The proof of initial state inv is trivial and is disposed of by (grind).
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2.5.7 Cancel inv one per seat

Cancel inv one per seat asserts Cancel assn maintains the property that each seat on
an aircraft has no more than one occupant.

Cancel inv one per seat: THEOREM

one per seat(db) IMPLIES one per seat(Cancel assn(flt,pas,db))

The proof is very similar to the previous one and is dispatched by (grind).

2.5.8 Make inv one per seat

Make inv one per seat: THEOREM

one per seat(db) IMPLIES one per seat(Make assn(flt,pas,pref,db))

This theorem is very similar to MAe: whereas MAe ensures that only seats that exist are
assigned on a 
ight, this theorem ensures that a seat is not assigned twice on the same

ight.

We speculate that the proof of this theorem will be similar to that of MAe, except that the
axiom Next seat ax 2 (which says that Next seat does not assign already assigned seats)
will be needed instead of Next seat ax (which says that Next seat does not assign nonex-
istent seats). Accordingly, we try the proof command (stew :lemmas "Next seat ax 2")

and obtain the following result.

Rule? (stew :lemmas "Next_seat_ax_2")

: : : reporting of rewrites omitted
Grinding away with the supplied lemmas,,

this simplifies to:

Make_inv_one_per_seat :

f-1g meets_pref(aircraft(flt!1), seat!1, pref!1)

f-2g db!1(flt!2)(a!1)

f-3g db!1(flt!2)(b!1)

f-4g seat(a!1) = seat(b!1)

|-------

f1g db!1(flt!1)(a!1)

f2g flt!1 = flt!2

f3g a!1 = b!1

As in the proof of MAu, comparison of formulas -2 and -3 with 1 suggests that the strategy
has found the wrong instantiations. As before, we speculate that it will do better if we
postpone these using (stew :lemmas "Next seat ax 2" :lazy-match t). And, indeed,
this proves the theorem.
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2.5.9 Initial one per seat

initial_one_per_seat: THEOREM

one_per_seat(initial_state)

This is trivial and is discharged with (grind).

2.5.10 Make Cancel

This theorem asserts that Cancel assn undoes the operation of Make assn|i.e., making a
new reservation and then canceling it leaves the state unchanged.

Make Cancel: THEOREM

NOT pass on flight(pas,flt,db) IMPLIES

Cancel assn(flt,pas,Make assn(flt,pas,pref,db)) = db

Having noticed that the formulas in this speci�cation tend to allow over-rewriting, we
start the proof with grind restricted to the functions appearing in the statement of the
theorem.

Rule? (grind :defs nil :rewrites ("pass on flight" "Cancel assn" "Make assn"))

: : : reporting of rewrites omitted
Trying repeated skolemization, instantiation, and if-lifting,

this simplifies to:

Make_Cancel :

|-------

f1g EXISTS (a: [# pass: passenger, seat: [row, position] #]):

pass(a) = pas!1 AND member(a, db!1(flt!1))

f2g Make_assn(flt!1, pas!1, pref!1, db!1)

WITH [(flt!1) :=

a:

[# pass: passenger,

seat: [row, position] #]

|

member(a,

Make_assn(flt!1, pas!1,

pref!1, db!1)(flt!1))

AND pass(a) /= pas!1]

= db!1

Notice that Make assn has not been rewritten, as it would not simplify the sequent.

Now formula 2 requires demonstration that two flt dbs are equal. These databases are
functions, so to prove them equal we must appeal to the principle of extensionality|so that
it will then be enough to show that the values of the functions are equal for all arguments.
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Rule? (apply-extensionality :hide? t)

Applying extensionality,

this simplifies to:

Make_Cancel :

|-------

f1g Make_assn(flt!1, pas!1, pref!1, db!1)

WITH [(flt!1) :=

a:

[# pass: passenger,

seat: [row, position] #]

|

member(a,

Make_assn(flt!1, pas!1,

pref!1, db!1)(flt!1))

AND pass(a) /= pas!1](x!1)

= db!1(x!1)

[2] EXISTS (a: [# pass: passenger, seat: [row, position] #]):

pass(a) = pas!1 AND member(a, db!1(flt!1))

The hide? t argument simply hides the original form of formula 1, resulting in a less
cluttered sequent.

Now the values of a flt db are flight assignments, which are sets of
seat assignments. To show two sets are equal, we must again appeal to extensionality, so
that it will be enough to show that they have the same members.

rule? (apply-extensionality :hide? t)

Applying extensionality,

this simplifies to:

Make_Cancel :

|-------

f1g Make_assn(flt!1, pas!1, pref!1, db!1)

WITH [(flt!1) :=

a:

[# pass: passenger,

seat: [row, position] #]

|

member(a,

Make_assn(flt!1, pas!1,

pref!1, db!1)(flt!1))

AND pass(a) /= pas!1](x!1)(x!2)

= db!1(x!1)(x!2)

[2] EXISTS (a: [# pass: passenger, seat: [row, position] #]):

pass(a) = pas!1 AND member(a, db!1(flt!1))

(We could have done both these steps with (repeat (apply-extensionality

:hide? t)).) Optimistically, we try (grind) at this point.
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Rule? (grind)

: : : reporting of rewrites omitted
Make_Cancel :

f-1g flt!1 = x!1

f-2g (pass(x!2) = pas!1)

f-3g db!1(x!1)(x!2)

|-------

f1g db!1(x!1)((# seat := Next_seat(db!1, x!1, pref!1), pass := pas!1 #))

Comparison of formulas -3 and 1 suggest that an incorrect substitution has been found.
We undo this step and try postponing the substitutions with (stew :lazy-match t), and
this time the proof succeeds.

We use this proof as an example of the LaTEX facilities of PVS. The command M-x

latex-proof generates a LaTEX �le which produces the following output.8

Verbose proof for Make Cancel.

Make Cancel:

f1g (8 (db : 
t db; 
t : 
ight; pas : passenger; pref : preference) :
: pass on 
ight(pas; 
t; db)

� Cancel assn(
t; pas; Make assn(
t; pas; pref; db)) = db)

Trying repeated skolemization, instantiation, and if-lifting,

Make Cancel:

f1g 9 (a : [# pass : passenger; seat : [row; position] #]) :
pass(a) = pas!1 ^ a 2 db!1(
t!1)

f2g Make assn(
t!1; pas!1; pref!1; db!1)
with [(
t!1) :=

fa : [# pass : passenger; seat : [row; position] #]
j
a 2
Make assn(
t!1; pas!1;
pref!1; db!1)(
t!1)
^ pass(a) 6= pas!1g]

= db!1

Applying extensionality,

8Giving an argument to the command (i.e., pre�xing it with C-u) creates a terse proof, but as this proof
is so short, there is no di�erence in this case.



The Proofs: Cancel putative 41

Make Cancel:

f1g Make assn(
t!1; pas!1; pref!1; db!1)
with [(
t!1) :=

fa : [# pass : passenger; seat : [row; position] #]
j
a 2
Make assn(
t!1; pas!1;
pref!1; db!1)(
t!1)
^ pass(a) 6= pas!1g](x0)

= db!1(x0)

f2g 9 (a : [# pass : passenger; seat : [row; position] #]) :
pass(a) = pas!1 ^ a 2 db!1(
t!1)

Applying extensionality,

Make Cancel:

f1g Make assn(
t!1; pas!1; pref!1; db!1)
with [(
t!1) :=

fa : [# pass : passenger; seat : [row; position] #]
j
a 2
Make assn(
t!1; pas!1;
pref!1; db!1)(
t!1)
^ pass(a) 6= pas!1g](x0)(x00)

= db!1(x0)(x00)

f2g 9 (a : [# pass : passenger; seat : [row; position] #]) :
pass(a) = pas!1 ^ a 2 db!1(
t!1)

Grinding away with the supplied lemmas,,

This completes the proof of Make Cancel.

Q.E.D.

2.5.11 Cancel putative

Cancel_putative: THEOREM

NOT (EXISTS (a: seat_assignment):

member(a,Cancel_assn(flt,pas,db)(flt)) AND pass(a) = pas)

This is trivial and is discharged with (grind).

2.5.12 Make putative

Make_putative: THEOREM

NOT pref_filled(db, flt, pref) IMPLIES

(EXISTS (x: seat_assignment):

member(x, Make_assn(flt, pas, pref, db)(flt)) AND pass(x) = pas)

This is also trivial and is discharged with (grind).
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2.5.13 Lookup putative

Lookup putative: THEOREM

NOT (pref filled(db, flt, pref) OR pass on flight(pas,flt,db)) IMPLIES

meets pref(aircraft(flt),

Lookup(flt, pas, Make assn(flt,pas,pref,db)),

pref)

We begin this proof as usual with (grind), and are left with two subgoals to prove.
The �rst subgoal is the following.

Rule? (grind)

Trying repeated skolemization, instantiation, and if-lifting,

this yields 2 subgoals:

Lookup putative.1 :

f-1g meets pref(aircraft(flt!1), seat!1, pref!1)

f-2g meets pref(aircraft(flt!1), seat!2, pref!1)

|-------

f1g Next seat(db!1, flt!1, pref!1) = seat!1

f2g db!1(flt!1)((# seat := Next seat(db!1, flt!1, pref!1), pass := pas!1 #))

f3g meets pref(aircraft(flt!1),

seat(epsilon(fa: seat assignment |

((# seat :=

Next seat(db!1,

flt!1, pref!1),

pass := pas!1 #)

= a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g)),
pref!1)

Notice that this subgoal contains two Skolemized seat variables: seat!1 and seat!2. This
suggests that (grind) has been over-eager in instantiation, as we saw before in the proof
of Cancel asn inv, so we start again and tell grind not to perform heuristic instantiation.
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Rule? (grind :if-match nil)

: : : reporting of rewrites omitted
Trying repeated skolemization, instantiation, and if-lifting,

this yields 2 subgoals:

Lookup putative.1 :

f-1g meets pref(aircraft(flt!1), seat!1, pref!1)

f-2g FORALL (seat: [row, position]):

meets pref(aircraft(flt!1), seat, pref!1) IMPLIES

(EXISTS (a: seat assignment): db!1(flt!1)(a) AND seat(a) = seat)

|-------

f1g (EXISTS (a: seat assignment): db!1(flt!1)(a) AND seat(a) = seat!1)

f2g EXISTS (a: seat assignment): pass(a) = pas!1 AND db!1(flt!1)(a)

f3g meets pref(aircraft(flt!1),

seat(epsilon(fa: seat assignment |

db!1(flt!1)(a) AND pass(a) = pas!1g)),
pref!1)

Here, formula -2, with substitution seat!1 would relate -1 and 1. To perform the instan-
tiation, and simpli�cation we just issue another (grind) command which dispatches this
subgoal. We are now left with our second subgoal.

Rule? (grind)

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of Lookup_putative.1.

Lookup_putative.2 :

f-1g meets_pref(aircraft(flt!1), seat!1, pref!1)

f-2g meets_pref(aircraft(flt!1), seat!2, pref!1)

|-------

f1g (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)

f2g EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)

f3g (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)

f4g meets_pref(aircraft(flt!1),

seat(epsilon(fa: seat_assignment |

((# seat :=

Next_seat(db!1,

flt!1, pref!1),

pass := pas!1 #)

= a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g)),
pref!1)

Clearly here we need to relate either formula -1 or -2 with formula 4. As 4 involves
epsilon, we introduce the axiom epsilon ax from the prelude. As the epsilons prelude
theory is parameterized, we must supply the appropriate parameter here.



44 Chapter 2. Seat Reservation Problem

Rule? (use "epsilon_ax[seat_assignment]")

Using lemma epsilon_ax[seat_assignment],

this simplifies to:

Lookup_putative.2 :

f-1g (EXISTS (x: seat_assignment):

(fa: seat_assignment |

((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g)(x))
=>

(fa: seat_assignment |

((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #) = a

OR db!1(flt!1)(a))

AND pass(a)

= pas!1g)(epsilon(fa: seat_assignment |

((# seat :=

Next_seat(db!1,

flt!1, pref!1),

pass := pas!1 #)

= a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g))
[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)

[-3] meets_pref(aircraft(flt!1), seat!2, pref!1)

|-------

[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)

[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)

[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)

[4] meets_pref(aircraft(flt!1),

seat(epsilon(fa: seat_assignment |

((# seat :=

Next_seat(db!1,

flt!1, pref!1),

pass := pas!1 #)

= a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g)),
pref!1)

We use (ground) to simplify the expression in -1.
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Rule? (ground)

Applying propositional simplification and decision procedures,

this yields 2 subgoals:

Lookup_putative.2.1 :

f-1g ((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #)

=

epsilon(fa: seat_assignment |

((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #)

= a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g)
OR

db!1(flt!1)(epsilon(fa: seat_assignment |

((# seat :=

Next_seat(db!1,

flt!1, pref!1),

pass := pas!1 #)

= a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g)))
AND

pass(epsilon(fa: seat_assignment |

((# seat := Next_seat(db!1, flt!1, pref!1),

pass := pas!1 #)

= a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g))
= pas!1

[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)

[-3] meets_pref(aircraft(flt!1), seat!2, pref!1)

|-------

[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)

[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)

[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)

[4] meets_pref(aircraft(flt!1),

seat(epsilon(fa: seat_assignment |

((# seat :=

Next_seat(db!1,

flt!1, pref!1),

pass := pas!1 #)

= a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g)),
pref!1)

We are still left with a complex propositional expression in -1, as (ground) does not
re-apply propositional simpli�cation after the decision procedures. We thus apply (ground)

again (we could have done (repeat (ground)) to the same e�ect).
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Rule? (ground)

Applying propositional simplification and decision procedures,

this yields 2 subgoals:

Lookup_putative.2.1.1 :

f-1g (# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #)

=

epsilon(fa: seat_assignment |

((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #)

= a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g)
f-2g pass(epsilon(fa: seat_assignment |

((# seat := Next_seat(db!1, flt!1, pref!1),

pass := pas!1 #)

= a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g))
= pas!1

[-3] meets_pref(aircraft(flt!1), seat!1, pref!1)

[-4] meets_pref(aircraft(flt!1), seat!2, pref!1)

|-------

[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)

[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)

[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)

[4] meets_pref(aircraft(flt!1),

seat(epsilon(fa: seat_assignment |

((# seat :=

Next_seat(db!1,

flt!1, pref!1),

pass := pas!1 #)

= a

OR db!1(flt!1)(a))

AND pass(a) = pas!1g)),
pref!1)

Now we can see that formula -1, if used as a right-to-left replace will remove the occurrence
of epsilon in formulas -2 and 4.
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Rule? (replace -1 :dir rl :hide? t)

Replacing using formula -1,

this simplifies to:

Lookup_putative.2.1.1 :

f-1g pass((# seat := Next_seat(db!1, flt!1, pref!1), pass := pas!1 #)) = pas!1

[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)

[-3] meets_pref(aircraft(flt!1), seat!2, pref!1)

|-------

[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)

[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)

[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)

f4g meets_pref(aircraft(flt!1),

seat((# seat := Next_seat(db!1, flt!1, pref!1),

pass := pas!1 #)),

pref!1)

Notice, in formula 4, the application of the �eld selector seat, to a record whose �elds are
given explicitly. This can be simpli�ed via beta reduction.

Rule? (beta)

Applying beta-reduction,

this simplifies to:

Lookup_putative.2.1.1 :

f-1g pas!1 = pas!1

[-2] meets_pref(aircraft(flt!1), seat!1, pref!1)

[-3] meets_pref(aircraft(flt!1), seat!2, pref!1)

|-------

[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)

[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)

[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)

f4g meets_pref(aircraft(flt!1), Next_seat(db!1, flt!1, pref!1), pref!1)

Now we must appeal to the speci�cation again, to show equivalence between either formulas
-2 or -3 and formula 4. The appropriate axiom is Next seat ax 3, which we introduce with
a (use) command.
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Rule? (use "Next_seat_ax_3")

Using lemma Next_seat_ax_3,

this simplifies to:

Lookup_putative.2.1.1 :

f-1g NOT pref_filled(db!1, flt!1, pref!1)

IMPLIES

meets_pref(aircraft(flt!1), Next_seat(db!1, flt!1, pref!1), pref!1)

[-2] pas!1 = pas!1

[-3] meets_pref(aircraft(flt!1), seat!1, pref!1)

[-4] meets_pref(aircraft(flt!1), seat!2, pref!1)

|-------

[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)

[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)

[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)

[4] meets_pref(aircraft(flt!1), Next_seat(db!1, flt!1, pref!1), pref!1)

Applying (ground) again to simplify the sequent, we get the following.

Rule? (ground)

member rewrites member(a, db!1(flt!1))

to db!1(flt!1)(a)

pref_filled rewrites pref_filled(db!1, flt!1, pref!1)

to FORALL (seat: [row, position]):

meets_pref(aircraft(flt!1), seat, pref!1)

IMPLIES

(EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat)

Applying propositional simplification and decision procedures,

this simplifies to:

Lookup_putative.2.1.1 :

f-1g FORALL (seat: [row, position]):

meets_pref(aircraft(flt!1), seat, pref!1)

IMPLIES

(EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat)

[-2] pas!1 = pas!1

[-3] meets_pref(aircraft(flt!1), seat!1, pref!1)

[-4] meets_pref(aircraft(flt!1), seat!2, pref!1)

|-------

[1] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!1)

[2] EXISTS (a: seat_assignment): pass(a) = pas!1 AND db!1(flt!1)(a)

[3] (EXISTS (a: seat_assignment): db!1(flt!1)(a) AND seat(a) = seat!2)

[4] meets_pref(aircraft(flt!1), Next_seat(db!1, flt!1, pref!1), pref!1)

Now we can see that formula -1, instantiated with seat!1, taken together with -3 will
give us formula 1. Thus, (inst?) followed by (prop) completes this subgoal. The further
remaining two subgoals are trivial, and discharged easily with (grind). We thus have the
following proof for Lookup putative.
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(""

(GRIND :IF-MATCH NIL)

(("1" (GRIND))

("2"

(USE "epsilon_ax[seat assignment]")

(GROUND)

(("1"

(GROUND)

(("1"

(REPLACE -1 :DIR RL :HIDE? T)

(ASSERT)

(USE "Next seat ax 3")

(GROUND)

(INST?)

(PROP))

("2" (GRIND))))

("2" (GRIND))))))

Notice that this combines (grind), some of the common component steps of (grind),
and the (use) command. Earlier in this report we generated a strategy called (stew) that
performs these functions, and indeed the following command will discharge the proof in one
step.9

(stew :lemmas ("Next seat ax 3" "epsilon ax[seat assignment]"))

2.6 Summary

In this chapter we have presented one of the major proof tools in PVS 2|the powerful
strategy (grind)|and have demonstrated how its behavior may be controlled where re-
quired. We have also seen how to build a yet more powerful strategy stew on top of grind,
and have encountered the strategies use and apply-extensionality. We have also seen
examples of the LaTEX and PostScript generating facilities provided by PVS.

Here is the output of the PVS command M-x status-proof-theory for theory ops.

Proof summary for theory ops

Cancel_assn_inv........................................proved - complete

MAe....................................................proved - complete

MAu....................................................proved - complete

Make_assn_inv..........................................proved - complete

initial_state_inv......................................proved - complete

Cancel_inv_one_per_seat................................proved - complete

Make_inv_one_per_seat..................................proved - complete

initial_one_per_seat...................................proved - complete

9The version of this formula that uses the dependently-typed variant of Lookup (recall box 3 on page
14) is proved by the following command: (stew :lemmas ("Next seat ax 3" "choose member")).
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Make_Cancel............................................proved - complete

Cancel_putative........................................proved - complete

Make_putative..........................................proved - complete

Lookup_putative........................................proved - complete

Theory totals: 12 formulas, 12 attempted, 12 succeeded.

And here is the output of the PVS command M-x show-proofs-theory for theory ops.

Proof scripts for theory ops:

ops.Cancel_assn_inv: proved - complete

("" (STEW :LAZY-MATCH T))

ops.MAe: proved - complete

("" (STEW :LEMMAS "Next_seat_ax"))

ops.MAu: proved - complete

("" (STEW :LAZY-MATCH T))

ops.Make_assn_inv: proved - complete

("" (GRIND :DEFS NIL :REWRITES ("db_invariant" "MAu" "MAe")))

ops.initial_state_inv: proved - complete

("" (GRIND))

ops.Cancel_inv_one_per_seat: proved - complete

("" (GRIND))

ops.Make_inv_one_per_seat: proved - complete

("" (STEW :LEMMAS "Next_seat_ax_2" :LAZY-MATCH T))

ops.initial_one_per_seat: proved - complete

("" (GRIND))
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ops.Make_Cancel: proved - complete

(""

(GRIND :DEFS NIL :REWRITES

("Cancel_assn" "pass_on_flight" "Make_assn"))

(APPLY-EXTENSIONALITY :HIDE? T)

(APPLY-EXTENSIONALITY :HIDE? T)

(STEW :LAZY-MATCH T))

ops.Cancel_putative: proved - complete

("" (GRIND))

ops.Make_putative: proved - complete

("" (GRIND))

ops.Lookup_putative: proved - complete

("" (STEW :LEMMAS ("Next_seat_ax_3" "epsilon_ax[seat_assignment]")))
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Chapter 3

Noninterference and the

Unwinding Theorem

The example undertaken in this chapter is a veri�cation of the unwinding theorem for
noninterference security policies [GM84]. One purpose of this example is to demonstrate
use of PVS for a speci�cation involving recursive functions and a proof by induction, neither
of which were required for the previous example. A second purpose is to illustrate how the
facilities of the PVS language and prover can be used to follow an existing mathematical
development quite closely. A third purpose is to show how simple this example is: developers
and users of veri�cation systems are prone to describing how di�cult are the applications
they have performed|as if di�culty indicated the strength of their tool|whereas we believe
that a good tool is one that makes the task easy. Using automation to reduce labor, we are
able to verify this example with just seven user-supplied proof commands.

Noninterference was introduced by Goguen and Meseguer [GM82] to provide a formal
foundation for the speci�cation and analysis of security policies that are concerned with \in-
formation 
ow," rather than mere access control. The idea of noninterference is attractively
simple: a security domain u is noninterfering with domain v if no action performed by u

can in
uence subsequent outputs seen by v. The unwinding theorem reduces this property
of sequences of actions to conditions on individual actions.

The following sections develop noninterference and give a proof of the unwinding theo-
rem in the style of a conventional mathematical development. Each de�nition or proof is
followed by its corresponding treatment in PVS. Our derivation is not based on the original
presentation of Goguen and Meseguer, but rather follows that of Haigh and Young [HY87].

3.1 Machines

We model a computer system by a conventional �nite-state automaton.

De�nition 1 A system (or machine) M is composed of

53
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� a set S of states, with an initial state s0 2 S,

� a set A of actions, and

� a set O of outputs,

together with the functions step and output :

� step:S � A! S,

� output :S � A! O.

We generally use the letters : : : s; t; : : : to denote states, letters a; b; : : : from the front of the
alphabet to denote actions, and Greek letters �; �; : : : to denote sequences of actions.

Actions can be thought of as \inputs," or \commands," or \instructions" to be per-
formed by the machine; step(s; a) denotes the next state of the system when action a is
applied in state s, while output (s; a) denotes the result returned by the action.

We derive a function run

� run:S �A� ! S,

the natural extension of step to sequences of actions, by the equations

run(s;�) = s; and

run(s; a � �) = step(run(s; �); a);

where � denotes the empty sequence and � denotes concatenation.
Observe that this de�nition implies that the actions of a sequence are processed in order

from right to left.

Because we will frequently use expressions of the form output (run(s0; �); a), it is con-
venient to introduce the functions do and test to abbreviate these forms. We de�ne these
functions

� do:A� ! S

� test :A� �A! O

by the equations

do(�) = run(s0; �); and

test(�; a) = output(do(�); a):

2
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PVS Treatment

We model states , actions , and outputs by nonempty, uninterpreted types, and declare the
initial state as a constant s0 of type state and the variables s; t, and a; b as variables of
the appropriate types. The functions step and output and are modeled as uninterpreted
functions.

state, action, output: TYPE+

s0: state

s, t: VAR state

a, b: VAR action

step(s, a): state % equivalent to step: [state, action -> state]

output(s, a): output % equivalent to output: [state, action -> output]

Notice there is no confusion caused by overloading the identi�er output to be both a type
and a function.

The function run was de�ned to extend step to sequences of actions, so we need to �nd a
suitable PVS representation for the notion of sequence. This notion is not precisely de�ned
in semiformal mathematics, and in deciding how to represent it in PVS we need to look
at how it is actually used in the example concerned. Here, we see that we need an empty
sequence, and the operation of constructing a sequence by concatenating an individual
action to another sequence (as in a � �). These properties are provided by the PVS data
type list .1

Lists are de�ned in the PVS prelude as the following abstract data type.

list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

This PVS datatype de�nition says that the constructors for the list datatype are null and
cons, with null? and cons? as the predicate recognizers for the corresponding subtypes of
the list type, and that the accessors for a cons-type list are car and cdr. PVS datatypes
such as this are a convenient way to specify certain data structures that are \freely gener-
ated" by a collection of constructor operations [Sha93a]. Here, lists are freely generated by
the constructors null and cons. Similarly, the abstract datatype stacks is freely generated
by the constructors empty and push (in fact, stacks and lists are isomorphic). Set provides
an example of a data structure that is not freely generated (e.g., by emptyset and add),
because di�erent sequences of additions of elements can yield equivalent sets. The datatype
queues is freely generated by emptyqueue and enqueue, but it cannot be directly de�ned

1A di�erent representation, suitable for other interpretations of sequence, is a function whose domain is
(an initial segment of) the natural numbers. See the PVS prelude theories sequences and finite sequences

for these representations.
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by the PVS abstract datatype mechanism because it is not recursive: that is, the accessors
front and dequeue are not inverses of the constructors.

PVS datatype declarations expand into several theories containing axioms and def-
initions that specify the properties of the datatype concerned and also de�ne sev-
eral standard functions and predicates on it. See the prelude theories list adt,
list adt reduce and list adt map for those generated from list (use the PVS command
M-X view-prelude-theory, or M-X vpt for short). Datatypes also communicate informa-
tion to the PVS theorem prover, and their constructors may appear in the CASES construct
of the PVS speci�cation language.

Given the list datatype, we can specify a list of actions as the type list[action],
and can then de�ne the function run as a recursive function whose body uses the CASES

construct to provide pattern-matching selection over the constructors of the list datatype.

action_list: TYPE = list[action]

alpha, beta: VAR action_list

run(s, beta): RECURSIVE state =

CASES beta OF

null: s,

cons(a, alpha): step(run(s, alpha), a)

ENDCASES

MEASURE length(beta)

All recursive functions de�ned in PVS must be shown to terminate by exhibiting a mea-
sure of their arguments that decreases across recursive calls. The built-in length function
(from the prelude theory list props) provides a suitable measure here. PVS generates
the following TCC to ensure that the proposed measure does decrease in the manner re-
quired (if a measure function returns a natural number then, by default, the < relation
provides the notion of \decreases"). This TCC is proved automatically by the standard
(termination-tcc) strategy.

% Termination TCC generated (line 20) for run

run_TCC1: OBLIGATION

(FORALL (b: action, beta: list[action], s, alpha):

alpha = cons[action](b, beta)

IMPLIES length[action](beta) < length[action](alpha));

More complex termination arguments may require measures on to the ordinals (see the
prelude theory ordinals) or more elaborate notions of \decreases," such as those provided
by the subterm ordering predicates << generated from datatype de�nitions. Using this
approach, an alternative way to show that the run function terminates is with MEASURE

beta BY <<. This generates the following TCC, which is proved automatically by the
default strategy.
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% Termination TCC generated (line 27) for run

run_TCC2: OBLIGATION

(FORALL (hd: action, tl: list[action], beta, s):

beta = cons[action](a, alpha) IMPLIES alpha << beta);

However, it also generates the obligation to show that the << relation is well-founded. This
TCC requires the axiom list well founded to be cited from the list adt theory and is
not proved automatically.

% Well-founded TCC generated (line 29) for <<

run_TCC1: OBLIGATION

well_founded?[list[action]](LAMBDA (x: action_list, y: action_list): x << y)

One way to discover the existence of the list well founded axiom is to place the cursor
at that start of well founded? in the TCC bu�er and to type M-;. This will bring up a
bu�er of all declarations that mention this identi�er; the v key can then be used to view
each declaration (use the q key to leave this mode). After introducing this axiom with the
lemma command, we arrive at the following sequent.

Rule? (LEMMA "list_well_founded[action]")

Applying list_well_founded[action] where

this simplifies to:

run_TCC1 :

f-1g well_founded?[list[action]](<<)

|-------

[1] well_founded?(LAMBDA (x: action_list, y: action_list): x << y)

To complete the proof, we need to establish that << and LAMBDA (x: action list, y:

action list): x << y are equivalent. This is the �-rule of lambda calculus: f = �x:f(x).
PVS actually has several eta-rules (for functions, records, tuples, and abstract datatypes);
all are invoked by the proof commands (apply-eta) and replace-eta. In this example,
the following command �nishes the proof.

Rule? (REPLACE-ETA "list_adt[action].<<")

Applying eta axiom scheme to list_adt[action].<< and then replacing

Q.E.D.

For each datatype, it is usual to de�ne a recursive function that returns a natural number
(or an ordinal) representing its \length" or \size." The subterm ordering predicate is used to
prove termination of this function, but subsequent recursive de�nitions can then be shown
to terminate more simply using the length or size function, as in our original treatment of
the termination argument for run. See the prelude theory list props for the de�nition of
the length function used here.
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Although the list datatype gives us an adequate semantic treatment for the sequences
of actions used in the informal development, it does not reproduce its notation: instead
of the a � � of the ordinary mathematical presentation, we must write cons(a, alpha).
To help reproduce traditional notation, PVS provides a number of pre�x, in�x, and out�x
operators such as <> and [] (pre�x), |-, ^, and o (in�x), and [| |] and |[ ]| (out�x).
You can see the whole list with M-x pvs-help-language. In�x operators can also be used
in a pre�x function-application form, and must be used in this form when de�ning new
meanings for them. The in�x o operator is convenient for our purposes, so we overload any
existing meaning it may have with the following de�nition.

; o(a, alpha): action_list = cons(a, alpha)

(The semicolon at the beginning of this line serves to terminate the previous declaration;
because o is an in�x operator, the one-symbol lookahead of the PVS parser may otherwise
confuse the start of this declaration with a continuation of the previous one.) Given this
de�nition, we can write expressions such as a o alpha; during proof, we will expand or
rewrite with o to recover the underlying cons(a, alpha) form. Note, however, that we
cannot use a o alpha as a label in a datatype CASES expression, since PVS allows only
datatype constructors in this context.

The functions do and test are speci�ed in the obvious way.

5do(alpha): state = run(s0, alpha)

test(alpha, a): output = output(do(alpha), a)

2

3.2 Security

De�nition 2 In order to discuss security, we require some set of security \domains" and
a policy that restricts the allowable 
ow of information among those domains. Thus, we
assume

� a set D of security domains

and use letters : : : u; v; w; : : : to denote domains.

A security policy is then speci�ed by a re
exive relation ; on D. We use 6; to denote
the complement relation, that is

6;= (D �D)n;

where n denotes set di�erence. 2
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PVS Treatment

We introduce domain as another uninterpreted, nonempty type, then specify
security policy as an uninterpreted relation on domains and constrain it to be re
ex-
ive.

domain: TYPE+

u, v: VAR domain

security policy(u, v): bool

policy_refl: AXIOM reflexive?(security_policy)

2

The higher-order predicate reflexive? comes from the prelude theory relations (it
is higher-order because it is a predicate that takes another predicate|actually a relation,
which in PVS is just a predicate on a two-tuple|as its argument). Notice that by asserting,
in the axiom policy refl, that the uninterpreted relation security policy is re
exive,
we are implicitly assuming that the predicate reflexive? is satis�able on this class of
relations. This is obviously so, but what if we had required that the security policy

relation be both re
exive and asymmetric? No relation (on a nonempty type) can satisfy
both these properties, so by asserting them of the security policy relation, we would have
created an inconsistent speci�cation.

It is always possible to make mistakes when writing speci�cations, but some mistakes are
worse than others. Mistakes that create inconsistent speci�cations are particularly egregious
because we can prove absolutely anything from such speci�cations|they are, essentially,
meaningless. PVS is carefully designed so that the only way to introduce an inconsistency
into a PVS speci�cation (provided all its TCCs have been proved) is with an AXIOM. Hence,
we should always be very careful when using AXIOMs, and should generally avoid introducing
them gratuitously.

In this speci�cation, the AXIOM can be avoided as follows. Instead of �rst introducing
security policy as a relation on domain and then asserting, via an AXIOM, that it is
re
exive, we can introduce security policy as a constant of the re
exive subtype of the
type of relations on domain. In PVS, if p is a predicate on a type T, then (p) denotes
the predicate subtype of T satisfying p. Thus, (reflexive?[domain]) denotes the type of
re
exive relations on domain, and we can then introduce security policy as follows.

security_policy: (reflexive?[domain])

We saw in Chapter 2 that PVS allows constants to be declared only for those types that
are known to be nonempty. Here, declaration of the constant security policy requires
that its type (reflexive?[domain]) is nonempty, and PVS generates the following TCC
to ensure this fact.
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% Existence TCC generated (line 30) for security_policy: (reflexive?[domain])

security_policy_TCC1: OBLIGATION (EXISTS (x: (reflexive?[domain])): TRUE);

This can be proved by exhibiting the equality relation on domain as such a predicate using
the proof command (inst 1 "eq[domain]") and then �nishing o� the proof with (grind).

Alternatively, we could separate declaration of the constant security policy from that
of its type and provide a CONTAINING clause in the type declaration as a hint to the prover.

refl_rel: TYPE = (reflexive?[domain]) CONTAINING eq[domain]

security_policy: refl_rel

When the declarations are given in this form, PVS is able to discharge the TCC automati-
cally.

It turns out that the speci�cation we will construct for security only makes sense if the
security policy ; is transitive, in addition to re
exive. (This point is discussed at length
in [Rus92].) Thus, we really need to amend the declaration of security policy to read
something like the following.2

6refl_trans_rel: TYPE = (reflexive?[domain] AND transitive?[domain])

CONTAINING eq[domain]

security_policy: refl_trans_rel

Unfortunately, the speci�cation of refl trans rel is not type-correct: the AND con-
nective properly applies to booleans whereas here we have applied it to predicates of type
pred[pred[[domain,domain]]] (i.e., to predicates on relations on domain). We can correct
this using the following LAMBDA form

7refl_trans_rel: TYPE = (LAMBDA (r: pred[[domain,domain]]):

reflexive?(r) AND transitive?(r)) CONTAINING eq[domain]

but the result is ugly and not easy to read.

In fact, our original intuition was reasonable|we simply need to overload AND so that
it applies to predicates as well as to simple booleans. All in�x operators like AND are really
functions and also have a pre�x form (e.g., a AND b can also be written as AND(a, b))
and can be overloaded by de�ning additional types and interpretations for the pre�x form.
Thus, we could de�ne

; AND(x,y: pred[pred[[domain,domain]]])(r: pred[[domain, domain]]): bool =

x(r) AND y(r)

2A relation that is both re
exive and transitive is called a preorder . This is de�ned in the PVS prelude,
so that we could simply say security policy: (preorder?[domain]). However, the construction used here
allows us to demonstrate some additional aspects of PVS
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and then the treatment in box 6 becomes type-correct. However, this rede�nition of AND is
also rather ugly, and very speci�c to this single application. A better solution is to de�ne a
generic theory that overloads several of the propositional connectives by \lifting" them to
apply to predicates as follows.

lifted_predicates[T:type]: THEORY

BEGIN

t: VAR T

p,q: VAR pred[T]

; AND(p,q)(t): bool = p(t) AND q(t);

; OR(p,q)(t): bool = p(t) OR q(t);

; IMPLIES(p,q)(t): bool = p(t) IMPLIES q(t);

END lifted_predicates

Then our speci�cation can take the following form.

IMPORTING lifted_predicates

refl_trans_rel: TYPE = (reflexive?[domain] AND transitive?[domain])

CONTAINING eq[domain]

security_policy: refl_trans_rel

PVS's type-inference is capable of determining the correct instance of lifted predicates

(it is lifted predicates[pred[[domain,domain]]]) needed to provide a correct type for
the AND in refl trans rel.

Even this treatment is a little crude, because it only applies to the propositional connec-
tives explicitly mentioned in the lifted predicates theory. It is possible to give a totally
general treatment using PVS conversions . The simple kind of conversion is a function that
is applied automatically to convert a type-incorrect expression to a type correct one. If, for
example, we wished to omit explicit mention of the function do, so that an action sequence
and the state that it leads to are punned together, we could change the declarations of 5
to the following form.

do(alpha): state = run(s0, alpha)

CONVERSION do

test(alpha, a): output = output(alpha, a)

The function output requires a state as its �rst argument, not an action sequence; because
do is declared as a CONVERSION, the PVS typechecker is able to insert an application of do,
so that the action sequence alpha is replaced by the state do(alpha), thereby replacing
the expression output(alpha, a) by the type-correct form output(do(alpha), a). This
transformation is revealed by the Emacs command M-x ppe (prettyprint-expanded).
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Whereas this simple kind of conversion turns a type-incorrect term a into a type-correct
one by inserting a function f to produce f(a), a dual kind of conversion turns a type-
incorrect function f into a type-correct application by supplying an argument a to produce
f(a). This conversion is more complex because the a will be a variable and therefore needs to
occur in some binding construct (e.g., FORALL or LAMBDA). The circumstances in which PVS
will perform such a conversion are restricted to the case where a type incorrect application
f(x, y) can be made type-correct by transforming it to (LAMBDA (a): f(x(a), y(a))).
Now it may be that not all the parameters to such a function f need to be applied to an
argument a (e.g., (LAMBDA (a): f(x(a),y))may be type-correct), and we can provide for
this by causing the K combinator ,3 which has the de�nition K(p)(q) = p, to be available as
a conversion. The original f(x, y) can then be converted �rst to (LAMBDA (a): f(x(a),

y(a))), then to (LAMBDA (a): f(x(a), K(y)(a))), and �nally reduced (by application
of the de�nition of K) to the type-correct (LAMBDA (a): f(x(a), y)). To avoid invoking
it accidentally, the step that starts this sequence of conversions is performed only in contexts
where a function having the form of the K combinator has been declared as a conversion
(even if K is not needed in the sequence concerned).

In the present case, the desired (and type-correct) interpretation of refl trans rel in
6 is that shown in 7, which has exactly the form produced by the second kind of conversion.
We can cause this to be applied by importing the following theory.

K_conversion[T1, T2: TYPE]: THEORY

BEGIN

t1: VAR T1

t2: VAR T2

K(t1)(t2): T1 = t1

CONVERSION K

END K_conversion

The following text is then acceptable to PVS.

IMPORTING K_conversion

refl_trans_rel: TYPE = (reflexive?[domain] AND transitive?[domain])

CONTAINING eq[domain]

security_policy: refl_rel

M-x ppe reveals that the refl trans type declaration is converted to the following form
(which is identical to 7).

refl_rel: TYPE =

(LAMBDA (x: PRED[[domain, domain]]):

reflexive?[domain](x) AND transitive?[domain](x))

CONTAINING eq[domain]

3This terminology comes from Combinatory Logic.
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The following TCC (which is proved automatically) is generated to ensure that the type is
inhabited. (The same TCC is generated for both the lifted predicates and K conversion

treatments.)

% Subtype TCC generated (line 57) for eq[domain]

refl_rel_TCC1: OBLIGATION

reflexive?[domain](eq[domain]) AND transitive?[domain](eq[domain]);

Given the de�nition of ; as security policy, we can de�ne 6; as its negation. In
order to approximate the notation of the traditional mathematical development, we will
use an in�x operator for 6;; |> seems to be the nearest approximation available in PVS.

|>(u, v): bool = NOT security_policy(u, v)

2

3.3 Information Flow

We wish to de�ne security in terms of \interference" or information 
ow, so the next step
is to capture these ideas formally. The key observation is that information can be said to

ow from a domain u to a domain v exactly when actions submitted by domain u cause
the behavior of the system perceived by domain v to be di�erent from that perceived when
those actions are not present. We therefore de�ne a function that removes, or \purges,"
from an action sequence all those actions submitted by a given domain. We can then say
that information 
ows from domain u to domain v, or that u interferes with domain v if
the latter can distinguish between the state of the machine after it has processed a given
action sequence, and the state after processing the same action sequence purged of actions
from domain u. We formalize this idea as follows.

De�nition 3 We �rst assume that each action is associated with an agent (or \subject")
of a speci�c security domain and introduce the function dom(a) to identify the security
domain of action a.

Then, for u 2 D and � an action sequence in A�, we de�ne �=u (� \purged" by u) to
be the subsequence of � formed by deleting all actions associated with domain u. That is:

�=u = �

(a � �)=u =

(
�=u if dom(a) = u
a � (�=u) otherwise:

Domain u is said to interfere with domain v if there exists an action sequence � and an
action a with dom(a) = v such that

output (run(s0; �); a) 6= output(run(s0; �=u); a);
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that is,
test(�; a) 6= test(�=u; a):

We identify security with the requirement that u should be noninterfering with v when-
ever the policy speci�es u 6; v. That is, we say that a system is secure for the policy ;
if

u 6; dom(a) � test(�; a) = test(�=u; a):4

The intuition here is that the machine starts o� in the initial state s0 and is presented
with a sequence � 2 A� of actions. This causes the machine to produce a series of outputs
and to progress through a series of states, eventually reaching the state do(�). At that
point the action a is performed, and the corresponding output test(�; a) is observed. We
can think of presentation of the action a and observation of its output as an experiment
performed by dom(a) in order to learn something about the action sequence �. If dom(a)
can distinguish between the action sequences � and �=u by such experiments, then u has
\interfered" with dom(a) and the system is not secure with respect to policies that specify
u 6; dom(a).

As mentioned earlier, this de�nition of security (and in particular, the de�nition of the
purge function) only makes sense if the relation; is transitive. See [Rus92] for an extended
discussion of this topic and a formally veri�ed treatment of intransitive interference policies.
2

PVS Treatment

We introduce dom as an uninterpreted function, then de�ne a recursive function that per-
forms the \purge" operation; in order to reproduce the traditional notation, we overload
the in�x operator / to be the name of this function.

dom(a): domain % equivalent to dom: [action -> domain]

/(beta, u): RECURSIVE action_list =

CASES beta OF

null: null,

cons(a, alpha): IF dom(a) = u THEN alpha / u

ELSE a o (alpha / u) ENDIF

ENDCASES

MEASURE length(beta)

Security is speci�ed by the Boolean constant secure.

security: bool = FORALL a, u, alpha:

u |> dom(a) IMPLIES test(alpha, a) = test(alpha / u, a)

4Formulas such as these are to be read as universally quanti�ed over their free variables (here u, a, and
�); we use � to denote implication.
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There are several alternative ways to state the security requirement. Instead of a Boolean
constant, we could have used a formula, as follows.

security: FORMULA FORALL a, u, alpha:

u |> dom(a) IMPLIES test(alpha, a) = test(alpha / u, a)

The main di�erence between these two formulations is that a formula cannot be used as a
component in any other linguistic construction: it can only be proved, or cited in proofs.
We will eventually wish to state and prove an \unwinding" theorem that will have the form

some simpler conditions � security (3:1)

and this cannot be stated directly if security is given as a FORMULA.5 The Boolean constant
seems the better approach here, but we should examine this choice in a little more detail.

It is likely that proving a theorem of the form (3.1) will require induction on the length
of the action sequence appearing in the de�nition of security. As currently speci�ed,
security is a de�ned Boolean constant whose body is a closed formula. We will need to
expand the de�nition, therefore, to expose the induction variable alpha. This need for
�ne-grained manipulation will limit the likely e�ectiveness of automated proof strategies.
A possibly better treatment, therefore, is one that leaves the variables to which we are
likely to need access exposed as arguments. This can be done by changing from a Boolean
constant, security, to a Boolean function, secure, that takes the action sequence, �, as
an argument.

secure(alpha): bool = FORALL a, u:

u |> dom(a) IMPLIES test(alpha, a) = test(alpha / u, a)

We will use this form for the time being. 2

3.4 Unwinding

The noninterference de�nition of security is expressed in terms of sequences of actions and
state transitions; in order to obtain straightforward techniques for verifying the security of
systems, we would like to derive conditions on individual state transitions. The �rst step in
this development is to partition the states of the system into equivalence classes which all
\appear identical" to a given domain. The veri�cation technique will then be to prove that
each domain's view of the system is una�ected by the actions of domains that are required
to be noninterfering with it.

5We could prove the FORMULA security using \some simpler conditions" as lemmas; by the deduction
theorem, this is logically equivalent to the other form, but it is linguistically less direct and would not be
explicit in the speci�cation.
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De�nition 4 A system M is view-partitioned if, for each domain u 2 D, there is an equiv-
alence relation

u� on S. These equivalence relations are said to be output-consistent if

s
dom(a)� t � output (s; a) = output (t; a):

2

Output consistency is required in order to ensure that two states s and t that appear
identical to a given domain really are indistinguishable in terms of the outputs they produce
in response to actions from that domain.

The de�nition of security requires that the outputs seen by one domain are una�ected
by the actions of other domains that are speci�ed to be noninterfering with the �rst. The
next result shows that, for an output consistent system, security is achieved if \views" are
similarly una�ected.

Lemma 1 Let ; be a policy and M a view-partitioned, output-consistent system such that

u 6; v � do(�)
v� do(�=u):

Then M is secure for ;.

Proof: Let u 6; dom(a). The hypothesis to the lemma then provides

do(�)
dom(a)� do(�=u):

Output consistency then ensures

output(do(�); a) = output(do(�=u); a):

But this is simply
test(�; a) = test(�=u; a);

which is the de�nition of security for ; given by De�nition 3. 2

PVS Treatment

One way to specify in PVS that each domain induces an equivalence relation on states is
as follows.

view_equiv(u): (equivalence?[state])
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The trouble with this approach is that PVS does not provide highly automated reasoning
support for equivalence relations.6 Another way to specify this property is to hypothesize
a function view(s; u) that gives the abstract \view" of state s, as seen by domain u. Then
we can state that two states s and t are view equiv as far as u is concerned if view(s; u) =
view(t; u). Using this approach, the properties of view equiv will follow by equality reasoning
(which PVS automates very e�ectively). We specify this treatment in PVS as follows.

V : TYPE+

view(s, u): V

view_equiv(u)(s, t): bool = view(s, u) = view(t, u)

Next, we can specify output consistent and give a PVS rendition of Lemma 1. The main
condition of Lemma 1, namely

u 6; v � do(�)
v� do(�=u);

is likely to be needed again, so we name it view consistent and refer to it in the speci�cation
of Lemma 1. Output consistent is speci�ed as a Boolean constant, and view consistent as
a Boolean function. Recall the speci�cation of secure for discussion of these choices.

8output_consistent: bool = FORALL a, s, t:

view_equiv(dom(a))(s, t) IMPLIES output(s, a) = output(t, a)

view_consistent(alpha) : bool = FORALL u, v:

u |> v IMPLIES view_equiv(v)(do(alpha), do(alpha / u))

lemma1: LEMMA

output_consistent AND view_consistent(alpha) IMPLIES secure(alpha)

The lemma is proved by (grind).7 2

Continuing the ordinary mathematical development, we next de�ne constraints on in-
dividual state transitions.

De�nition 5 Let M be a view-partitioned system and ; a policy. We say that M locally
respects ; if

dom(a) 6; v � s
v� step(s; a)

and that M is step-consistent if

s
v� t � step(s; a)

v� step(t; a):

2

6It should, and a future version of PVS will do so.
7Experts may notice a potential problem in the way alpha is quanti�ed in this form of lemma1; we discuss

this point later.
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We now have the local conditions on individual state transitions that are su�cient
to guarantee security. This result is a version of the unwinding theorem of Goguen and
Meseguer[GM84].

Theorem 1 (Unwinding Theorem) Let ; be a policy and M a view-partitioned system
that is

1. output-consistent,

2. step-consistent, and

3. locally respects ;.

Then M is secure for ;.

Proof: We use proof by induction on the length of � to establish

u 6; v � do(�)
v� do(�=u): (3:2)

The result then follows by the previous lemma. The basis is the case � = � and is ele-
mentary. For the inductive step, we assume the inductive hypothesis for � of length n and
consider a � �. We now need to prove

u 6; v � do(a � �) v� do((a � �)=u): (3:3)

We assume u 6; v and consider two cases.

Case 1: dom(a) = u. In this case, the de�nition of = provides

do((a � �)=u) = do(�=u)

and the inductive hypothesis gives

do(�=u)
v� do(�):

The facts that dom(a) 6; v and that M locally respects ; ensure

do(�)
v� step(do(�); a)

and we also have, by de�nition,

step(do(�); a) = do(a � �): (3:4)

Since
v� is an equivalence relation, (3.3) follows and we conclude the inductive step in

this case.
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Case 2: dom(a) 6= u. In this case, the de�nition of = provides

do((a � �)=u) = do(a � (�=u)):

The inductive hypothesis gives

do(�=u)
v� do(�);

from which step consistency allows us to deduce

do(a � (�=u)) v� do(a � �)

and thereby (3.3), to conclude the inductive step in this case.

2

PVS Treatment

We de�ne local respect and step consistent as Boolean constants similar to the way
output consistent was de�ned.

local_respect: bool = FORALL v, s, a:

dom(a) |> v IMPLIES view_equiv(v)(s, step(s,a))

step_consistent : bool = FORALL u, s, t, a:

view_equiv(u)(s,t) IMPLIES view_equiv(u)(step(s,a), step(t,a))

The informal proof of the unwinding theorem used an implicit lemma to establish its equa-
tion 3.4, and the heart of the proof was an inductive argument that was used to establish
formula 3.2. For the PVS treatment, it is convenient to break these out as explicit LEMMAs
which we call lemma2 and lemma3, respectively. The Unwinding Theorem is then stated as
the THEOREM unwinding.

lemma2: LEMMA step(do(alpha),a) = do(a o alpha)

lemma3: LEMMA

local_respect AND step_consistent IMPLIES view_consistent(alpha)

unwinding: THEOREM

local_respect AND step_consistent AND output_consistent

IMPLIES secure(alpha)

Lemma2 is proved by (grind), but the proof of lemma3 is more involved.

As with the informal proof, we begin the proof of lemma3 by inducting on alpha.
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lemma3 :

|-------

f1g (FORALL (alpha: action_list):

local_respect AND step_consistent => view_consistent(alpha))

Rule? (INDUCT "alpha")

Inducting on alpha,

this yields 2 subgoals:

lemma3.1 :

|-------

f1g local_respect AND step_consistent => view_consistent(null)

The PVS induct strategy tries to infer the correct induction scheme to use from the type
of the given induction variable. Here the variable is alpha, whose type (action list) is
an instance of list; this causes PVS to invoke the structural induction scheme for lists.
Such structural induction schemes are generated automatically from the speci�cations for
abstract data types. The structural induction scheme for the list abstract data type is
the following.

list_induction: AXIOM

(FORALL (p: [list -> boolean]):

p(null)

AND

(FORALL (cons1_var: T, cons2_var: list):

p(cons2_var) IMPLIES p(cons(cons1_var, cons2_var)))

IMPLIES (FORALL (list_var: list): p(list_var)));

This says that to prove a property p true for all lists, it is su�cient to show that it is true of
the empty list null (the base case) and, assuming it is true of an arbitrary list cons2 var,
that it will also be true of this formed by consing an arbitrary element cons1 var on the
front (the inductive step). PVS has automatically instantiated this general scheme for the
predicate of lemma3 (using higher-order matching) and is inviting us to consider the base
case.

lemma3.1 :

|-------

f1g local_respect AND step_consistent => view_consistent(null)

This is easily discharged with (grind), and PVS then presents us with the inductive step.
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Rule? (GRIND)

� � � many rewrites omitted
This completes the proof of lemma3.1.

lemma3.2 :

|-------

f1g (FORALL (cons1_var: action, cons2_var: list[action]):

(local_respect AND step_consistent => view_consistent(cons2_var))

IMPLIES local_respect AND step_consistent

=> view_consistent(cons(cons1_var, cons2_var)))

The de�nitions view consistent and view equiv are artefacts of our speci�cation
and should always be expanded. We instruct the prover to do this by the com-
mand (AUTO-REWRITE "view consistent" "view equiv") and then give the command
(REDUCE). The latter invokes the core of the grind strategy, but without establishing ad-
ditional rewrites.8

Rule? (AUTO-REWRITE "view_consistent" "view_equiv")

� � �
Rule? (REDUCE)

� � � many rewrites omitted
Repeatedly simplifying with decision procedures, rewriting,

propositional reasoning, quantifier instantiation, skolemization,

if-lifting and equality replacement,

this simplifies to:

lemma3.2 :

f-1g view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))

f-2g local_respect

f-3g step_consistent

f-4g u!1 |> v!1

|-------

f1g view(v!1, do(cons(cons1_var!1, cons2_var!1)))

= view(v!1, do(cons(cons1_var!1, cons2_var!1) / u!1))

In the proof of an inductive step, the general approach is to expand some of the recursively
de�ned functions appearing below the line so that their components will match some of those
appearing above the line. Here the appropriate function to expand is the purge function /.
We specify that only the instance below the line should be expanded using the + quali�er
on the expand command.

8The single command (grind :defs nil :rewrites ("view consistent" "view equiv")) could re-
place both these commands.
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Rule? (EXPAND "/" +)

Expanding the definition of /,

this simplifies to:

lemma3.2 :

[-1] view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))

[-2] local_respect

[-3] step_consistent

[-4] u!1 |> v!1

|-------

f1g (view(v!1, do(cons(cons1_var!1, cons2_var!1)))

=

view(v!1,

IF dom(cons1_var!1) = u!1 THEN do(cons2_var!1 / u!1)

ELSE do(cons1_var!1 o (cons2_var!1 / u!1))

ENDIF))

This sequent contains both the functions cons and o, the former from the induction scheme,
and the latter from our own speci�cation. For things to match up, we need to ensure that
only one for is used. We could expand the in�x o to a cons with either the expand or
rewrite commands, but prefer to \contract" the cons to o by rewriting the de�nition of
o in the reverse (right to left) direction. We specify this with the command (REWRITE "o"

:DIR RL).

Rule? (REWRITE "o" :DIR RL)

Found matching substitution:

alpha gets cons2_var!1,

a gets cons1_var!1,

Rewriting using o,

this simplifies to:

lemma3.2 :

[-1] view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))

[-2] local_respect

[-3] step_consistent

[-4] u!1 |> v!1

|-------

f1g (view(v!1, do(cons1_var!1 o cons2_var!1))

=

view(v!1,

IF dom(cons1_var!1) = u!1 THEN do(cons2_var!1 / u!1)

ELSE do(cons1_var!1 o (cons2_var!1 / u!1))

ENDIF))

The condition to the IF expression below the line suggests the case split that needs to
be performed next. We could cause this to be done explicitly using lift-if and split,
but smash will do it automatically, and also apply the decision procedures to simplify the
resulting formulas.
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Rule? (SMASH)

Repeatedly simplifying with BDDs, decision procedures, rewriting,

and if-lifting,

this yields 2 subgoals:

lemma3.2.1 :

[-1] view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))

[-2] local_respect

[-3] step_consistent

[-4] u!1 |> v!1

f-5g dom(cons1_var!1) = u!1

|-------

f1g (view(v!1, do(cons1_var!1 o cons2_var!1))

= view(v!1, do(cons2_var!1 / u!1)))

The PVS proof is now at a point corresponding to the start of \Case 1" in the informal
proof, except that we have already performed the expansion of the purge function /. The
PVS proof proceeds in the same way as the informal proof by invoking the de�nition of
local respect. Since this de�nition expands to a quanti�ed formula, we immediately use
reduce to instantiate its variables and to simplify the result.

Rule? (EXPAND "local_respect")

Expanding the definition of local_respect,

� � �
Rule? (REDUCE)

� � � rewrites omitted
Repeatedly simplifying with decision procedures, rewriting,

propositional reasoning, quantifier instantiation, skolemization,

if-lifting and equality replacement,

this simplifies to:

lemma3.2.1 :

f-1g view(v!1, do(cons2_var!1))

= view(v!1, step(do(cons2_var!1), cons1_var!1))

f-2g view(v!1, do(cons2_var!1 / u!1))

= view(v!1, step(do(cons2_var!1), cons1_var!1))

[-3] step_consistent

[-4] u!1 |> v!1

[-5] dom(cons1_var!1) = u!1

|-------

f1g (view(v!1, do(cons1_var!1 o cons2_var!1))

= view(v!1, step(do(cons2_var!1), cons1_var!1)))

The instances of step(do(cons2 var!1), cons1 var!1) appearing in this sequent are
equal, by lemma2, to do(cons1 var!1 o cons2 var!1). Performing this rewrite causes
the two sides of the formula below the line to become identical, and �nishes this branch of
the proof.
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Rule? (REWRITE "lemma2")

Found matching substitution:

a gets cons1_var!1,

alpha gets cons2_var!1,

Rewriting using lemma2,

This completes the proof of lemma3.2.1.

We are now at a point corresponding to \Case 2" in the informal proof, following the
expansion of the purge function /.

lemma3.2.2 :

[-1] view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))

[-2] local_respect

[-3] step_consistent

[-4] u!1 |> v!1

|-------

f1g dom(cons1_var!1) = u!1

f2g (view(v!1, do(cons1_var!1 o cons2_var!1))

= view(v!1, do(cons1_var!1 o (cons2_var!1 / u!1))))

As in the informal proof, we apply the de�nition of step consistent and reduce the result.

Rule? (EXPAND "step_consistent")

Expanding the definition of step_consistent,

� � �
Rule? (REDUCE)

� � � rewrites omitted
Repeatedly simplifying with decision procedures, rewriting,

propositional reasoning, quantifier instantiation, skolemization,

if-lifting and equality replacement,

this simplifies to:

lemma3.2.2 :

[-1] view(v!1, do(cons2_var!1)) = view(v!1, do(cons2_var!1 / u!1))

[-2] local_respect

f-3g view(v!1, step(do(cons2_var!1), cons1_var!1))

= view(v!1, step(do(cons2_var!1 / u!1), cons1_var!1))

[-4] u!1 |> v!1

|-------

[1] dom(cons1_var!1) = u!1

[2] (view(v!1, do(cons1_var!1 o cons2_var!1))

= view(v!1, do(cons1_var!1 o (cons2_var!1 / u!1))))

Here, two applications of lemma2 will cause formula -3 to become identical to formula 2

and thereby �nish the proof.
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Rule? (REWRITE "lemma2")

Found matching substitution:

a gets cons1_var!1,

alpha gets cons2_var!1,

Rewriting using lemma2,

� � �
Rule? (REWRITE "lemma2")

Found matching substitution:

a gets cons1_var!1,

alpha gets cons2_var!1 / u!1,

Rewriting using lemma2,

This completes the proof of lemma3.2.2.

This completes the proof of lemma3.2.

Q.E.D.

We performed this proof in PVS in a manner that followed the informal proof quite
closely. Notice, however, that apart from the identi�cation of lemmas there was little \in-
telligence" required|the case split, in particular, arose naturally from the two cases in the
de�nition of the purge function /. Inductive proofs of this routine kind can be performed
automatically by the induct-and-simplify strategy. This takes arguments, similar to
those of grind, to control the formulas available for rewriting and the way instantiation is
performed. The control tactic that PVS uses for automated rewriting in this strategy is
usually able to expand the correct de�nitions in the inductive conclusion. The default selec-
tions are adequate for lemma3, and the simple command (induct-and-simplify "alpha")

proves the result. Notice that this does not refer to lemma2 (it is essentially proved in-line),
so that lemma can be deleted from the speci�cation.

The theorem unwinding is proved simply by using lemma1 and lemma3 as rewrites, with
the following command.

(grind :defs nil :rewrites ("lemma1" "lemma3"))

3.4.1 Implicit Quanti�cation

It might seem that we are done at this point, but we should revisit the choice that secure
and view consistent are speci�ed as functions on alpha, rather than as closed boolean
constants. Our motivation for specifying secure in this way was that it would leave the
likely induction variable exposed. We have now seen that induction is performed in the
proof of lemma3, whose conclusion is view consistent(alpha), rather than in the proof
of unwinding (where secure(alpha) is the conclusion), so our motivation was mistaken.
Accordingly, we change the speci�cation of secure to the following form

secure: bool = FORALL a, u, alpha:

u |> dom(a) => test(alpha, a) = test(alpha / u, a)
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and modify lemma1 and unwinding to correspond.

9lemma1: LEMMA

output_consistent AND view_consistent(alpha) => secure

unwinding: THEOREM

local_respect AND step_consistent AND output_consistent => secure

When we rerun the proofs of these formulas, we �nd that unwinding succeeds, but the proof
for lemma1 fails, leaving us to contemplate the following sequent.

lemma1 :

f-1g view(dom(a!1), run(s0, alpha!1)) = view(dom(a!1), run(s0, alpha!1 / u!1))

|-------

f1g view(dom(a!1), run(s0, alpha!2)) = view(dom(a!1), run(s0, alpha!2 / u!1))

f2g security_policy(u!1, dom(a!1))

f3g output(run(s0, alpha!2), a!1) = output(run(s0, alpha!2 / u!1), a!1)

Rule?

We notice there are two di�erent Skolem constants present for alpha: alpha!1 and alpha!2.
This usually indicates an incorrect instantiation, but here it is directing our attention to a
larger problem: the quanti�cation is incorrect in lemma1.

Free variables in PVS formulas|such as the alpha of lemma1 in 9|are interpreted as
universally quanti�ed at the outermost level. When such a variable appears|as here|only
in the antecedent to an implication, then it is within the scope of an implicit negation and
so an outermost universal quanti�er is equivalent to a local existential. This is seldom what
is intended. Thus, for example, the lemma1 of 9 is equivalent to the following, plainly
erroneous, speci�cation.

lemma1: LEMMA

output_consistent AND (EXISTS alpha: view_consistent(alpha)) => secure

In the original speci�cation of lemma1 in 8 (page 67), alpha appeared in the consequent
to the implication as well as the antecedent, so this problem did not arise. However, that
speci�cation binds the same alpha in both view consistent and secure and, on re
ection,
we recognize that this is probably not what we intended either; the following (stronger)
result more accurately re
ects the informal treatment.

10lemma1: LEMMA

output_consistent AND (FORALL alpha: view_consistent(alpha))

=> (FORALL alpha: secure(alpha))

In fact, this treatment is the same as would be obtained by quantifying alpha locally in the
de�nitions of both �view consistent and secure.
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11view_consistent : bool = FORALL u, v, alpha:

u |> v IMPLIES view_equiv(v)(do(alpha), do(alpha / u))

lemma1: LEMMA

output_consistent AND view_consistent => secure

lemma3: LEMMA

local_respect AND step_consistent IMPLIES view_consistent

These corrected forms of lemma1 are proved by (grind), and do not a�ect the proof of
unwinding. The version of lemma3 in 11 requires (expand "view consistent") and
(flatten) to expose alpha before induction can be applied. The speci�cations and proofs
presented below and in the appendix use the treatment of 11.

Since lemma1 has no external signi�cance and the weak form of 8 is adequate to prove
the theorem unwinding, the preference for 10 and 11 is simply that they better re
ect
our intent. In cases where the formula concerned forms part of the external speci�cation,
however, these issues concerning free variables and the scope and parity of quanti�cation
will vitally a�ect the signi�cance and utility of any results established. There is no foolproof
way to be sure these issues are handled correctly: careful introspection and the scrutiny of
knowledgeable reviewers are the best safeguards|as they are for other aspects of formal
speci�cation. As a general rule, the appearance of a free variable only in the antecedent to
an implication is almost certainly incorrect; and the appearance of the same free variable
on both sides of an implication should be viewed with suspicion. When in doubt, make the
quanti�cation explicit.

3.4.2 LATEX-printed Speci�cation

The appearance of LaTEX-printed PVS speci�cations can be adjusted by user-supplied
tables that describe how various identi�ers should be rendered in LaTEX. The following
noninterference.sub �le reproduces the notation used in the traditional mathematical
development.

|> 2 1 {#1 \not\leadsto #2}

security_policy 2 1 {#1 \leadsto #2}

view_equiv (1 2) 1 {#2 \stackrel{#1}{\sim} #3}

o 2 1 {#1 \circ #2}

null id 1 {\Lambda}

=> 2 1 {#1 \supset #2}

state id 1 {\cal S}

action id 1 {\cal A}

output id 1 {\cal O}

output 2 1 {\pvsid{output}(#1,#2)}

domain id 1 {\cal D}

V id 1 {\cal V}

action_list id 1 {{\cal A}^{*}}
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In this �le, the �rst column gives the PVS identi�er concerned, and the fourth its LaTEX
translation; the third column speci�es the number of character positions the translation will
occupy (the LaTEX-printer uses this information to calculate where to make line breaks).
Since PVS identi�ers may be overloaded, the second column helps identify the instances
concerned: id refers to a simple identi�er, a number to a function application with that
many arguments, and a list to a curried application (so view equiv is a function that takes
a single argument to yield a function that takes a further two arguments).

The results are shown below. Note that, owing to a bug in the current version of the
PVS LaTEX-printer, it is the post-conversion form of refl trans rel that is printed; owing
to another bug, constructors with arguments are not translated in CASES expressions (e.g.,
cons(a, alpha) does not become a � �).

noninterference : theory
begin

S;A;O : type+

s0 : S

s; t : var S

a; b : var A

step(s; a) : S

output(s; a) : O

A� : type = list[A]

�; � : var A�

a � � : A� = cons(a; �)

run(s; �) :
recursive S = cases � of � : s; cons(a; �) : step(run(s; �); a) endcases
measure � by �

D : type+

u; v : var D

importing K conversion

re
 trans rel :
type =
(� (x : PRED[[D;D]]) : re
exive?[D](x) ^ transitive?[D](x))
containing eq[D]

; : re
 trans rel

u 6; v : bool = :u; v
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dom(a) : D

=(�; u) :
recursive A� = cases � of

� : �;
cons(a; �) :

if dom(a) = u then � = u
else a � (� = u)
endif

endcases

measure length(�)

do(�) : S = run(s0; �)

test(�; a) : O = output(do(�); a)

secure : bool =
8 a; u; � : u 6; dom(a) � test(�; a) = test(� = u; a)

V : type+

view(u; s) : V

s
u

� t : bool = view(u; s) = view(u; t)

output consistent : bool =

8 a; s; t : s
dom(a)
� t � output(s; a) = output(t; a)

view consistent : bool =

8 u; v; � : u 6; v � do(�)
v

� do(� = u)

lemma1 : lemma output consistent ^ view consistent � secure

local respect : bool = 8 v; s; a : dom(a) 6; v � s
v

� step(s; a)

step consistent : bool =

8 u; s; t; a : s
u

� t � step(s; a)
u

� step(t; a)

lemma3 : lemma local respect ^ step consistent � view consistent

unwinding : theorem local respect ^ step consistent ^ output consistent � secure

end noninterference

3.5 Summary

In this chapter we have presented a formal speci�cation and veri�cation of the unwinding
theorem for noninterference security policies. We have shown a translation of the mathe-
matical speci�cation into the PVS speci�cation language, and demonstrated the power of
the induction strategies in PVS in discharging the required lemmas and theorems.
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Here is the output of the PVS command M-x status-proof-theory for theory
noninterference.

Proof summary for theory noninterference

run_TCC1...............................................proved - complete

run_TCC2...............................................proved - complete

refl_trans_rel_TCC1....................................proved - complete

divide_TCC1............................................proved - complete

divide_TCC2............................................proved - complete

lemma1.................................................proved - complete

lemma3.................................................proved - complete

unwinding..............................................proved - complete

Theory totals: 8 formulas, 8 attempted, 8 succeeded.

And here is the output of the PVS command M-x show-proofs-theory for theory
noninterference. Notice that it requires just seven user-supplied proof commands to
complete this example. The �rst two commands are needed only because we used beta

by << as the measure for the recursive function run. We did this for illustration; had we
used length(beta) as the measure, the well-founded TCC would not have been generated
and the termination TCC would have continued to be proved automatically by the default
strategy, thereby reducing the number of proof commands to �ve.

Proof scripts for theory noninterference:

noninterference.run_TCC1: proved - complete

("" (LEMMA "list_well_founded[action]") (REPLACE-ETA "list_adt[action].<<"))

noninterference.run_TCC2: proved - complete

("" (TERMINATION-TCC))

noninterference.refl_trans_rel_TCC1: proved - complete

("" (SUBTYPE-TCC))

noninterference.divide_TCC1: proved - complete

("" (TERMINATION-TCC))

noninterference.divide_TCC2: proved - complete

("" (TERMINATION-TCC))
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noninterference.lemma1: proved - complete

("" (GRIND))

noninterference.lemma3: proved - complete

("" (EXPAND "view_consistent") (FLATTEN) (INDUCT-AND-SIMPLIFY "alpha"))

noninterference.unwinding: proved - complete

("" (GRIND :DEFS NIL :REWRITES ("lemma1" "lemma3")))
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Appendix A

Ascii Listings of the Speci�cations

A.1 Ascii Listing of the Airline Reservation Speci�cations

These listings were produced by the PVS M-x alltt-importchain command.

A.1.1 Theory basic defs

basic_defs: THEORY

BEGIN

nrows: posnat % Max number of rows

nposits: posnat % Max number of positions per row

row: TYPE = fn: posnat | 1 <= n AND n <= nrowsg CONTAINING 1

position: TYPE = fn: posnat | 1 <= n AND n <= npositsg CONTAINING 1

flight: TYPE % Flight identifier

plane: NONEMPTY_TYPE % Aircraft type

preference: TYPE % Position preference

passenger: NONEMPTY_TYPE % Passenger identifier

seat_assignment: TYPE = [# seat: [row, position],

pass: passenger #]

flight_assignments: TYPE = set[seat_assignment]

flt_db: TYPE = [flight -> flight_assignments]

initial_state(flt : flight): flight_assignments =

emptyset[seat_assignment]
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% ====================================================================

% Definitions that define attributes of a particular airplane

% ====================================================================

seat_exists: pred[[plane, [row, position]]]

meets_pref: pred[[plane, [row, position], preference]]

aircraft: [flight -> plane]

END basic_defs

A.1.2 Theory ops

ops: THEORY

BEGIN

IMPORTING basic_defs

flt: VAR flight

pas: VAR passenger

db: VAR flt_db

a,b: VAR seat_assignment

pref: VAR preference

seat: VAR [row,position]

Cancel_assn(flt,pas,db): flt_db =

db WITH [(flt) := fa | member(a,db(flt)) AND pass(a) /= pasg]

pref_filled(db,flt,pref) : bool =

FORALL seat: meets_pref(aircraft(flt), seat, pref)

IMPLIES (EXISTS a: member(a, db(flt))

AND seat(a) = seat)

Next_seat: [flt_db, flight, preference -> [row,position]]

Next_seat_ax: AXIOM

NOT pref_filled(db, flt, pref) IMPLIES

seat_exists(aircraft(flt),Next_seat(db,flt,pref))

Next_seat_ax_2: AXIOM

(FORALL a: member(a,db(flt)) IMPLIES

seat(a) /= Next_seat(db,flt,pref))
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Next_seat_ax_3: AXIOM

NOT pref_filled(db, flt, pref) IMPLIES

meets_pref(aircraft(flt),Next_seat(db,flt,pref),pref)

pass_on_flight(pas,flt,db): bool =

EXISTS a: pass(a) = pas AND member(a,db(flt))

Make_assn(flt,pas,pref,db): flt_db =

IF pref_filled(db, flt, pref) OR pass_on_flight(pas,flt,db) THEN

db

ELSE LET a = (# seat := Next_seat(db,flt,pref), pass := pas #) IN

db WITH [(flt) := add(a, db(flt))]

ENDIF

Lookup(flt,pas,db): [row,position] =

seat(epsilon( fa | member(a,db(flt)) AND pass(a) = pasg))

% =======================================================================

% Invariants

% =======================================================================

existence(db): bool =

FORALL a,flt: member(a, db(flt)) IMPLIES

seat_exists(aircraft(flt), seat(a))

uniqueness(db): bool =

FORALL a,b,flt: member(a, db(flt)) AND member(b, db(flt))

AND pass(a) = pass(b) IMPLIES a = b

one_per_seat(db): bool =

FORALL a,b,flt: member(a, db(flt)) AND member(b, db(flt))

AND seat(a) = seat(b) IMPLIES a = b

db_invariant(db): bool =

existence(db) AND uniqueness(db)

Cancel_assn_inv: THEOREM

db_invariant(db) IMPLIES db_invariant(Cancel_assn(flt,pas,db))

MAe: THEOREM

existence(db) IMPLIES existence(Make_assn(flt,pas,pref,db))
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MAu: THEOREM

uniqueness(db) IMPLIES uniqueness(Make_assn(flt,pas,pref,db))

Make_assn_inv: THEOREM

db_invariant(db) IMPLIES db_invariant(Make_assn(flt,pas,pref,db))

initial_state_inv: THEOREM

db_invariant(initial_state)

% =======================================================================

% Invariants Left To Reader

% =======================================================================

Cancel_inv_one_per_seat: THEOREM

one_per_seat(db) IMPLIES one_per_seat(Cancel_assn(flt,pas,db))

Make_inv_one_per_seat: THEOREM

one_per_seat(db) IMPLIES one_per_seat(Make_assn(flt,pas,pref,db))

initial_one_per_seat: THEOREM

one_per_seat(initial_state)

% =======================================================================

% Putative Theorems

% =======================================================================

Make_Cancel: THEOREM

NOT pass_on_flight(pas,flt,db) IMPLIES

Cancel_assn(flt,pas,Make_assn(flt,pas,pref,db)) = db

% <<<<<< Following left to the reader >>>>>>

Cancel_putative: THEOREM

NOT (EXISTS (a: seat_assignment):

member(a,Cancel_assn(flt,pas,db)(flt)) AND pass(a) = pas)

Make_putative: THEOREM

NOT pref_filled(db, flt, pref) IMPLIES

(EXISTS (x: seat_assignment):

member(x, Make_assn(flt, pas, pref, db)(flt)) AND pass(x) = pas)

Lp2_lem: LEMMA
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NOT (pref_filled(db, flt, pref) OR pass_on_flight(pas,flt,db))

IMPLIES Next_seat(db, flt, pref) =

seat(epsilon(fa: seat_assignment |

Make_assn(flt, pas, pref, db)(flt)(a)

AND pass(a) = pasg))

Lookup_putative: THEOREM

NOT (pref_filled(db, flt, pref) OR

pass_on_flight(pas,flt,db)) IMPLIES

meets_pref(aircraft(flt),

Lookup(flt, pas, Make_assn(flt,pas,pref,db)),

pref)

END ops

A.2 Ascii Listing of the Noninterference Speci�cations

These listings were produced by the PVS M-x alltt-pvs-file command.

A.2.1 Theory K Conversion

K_conversion[T1, T2: TYPE]: THEORY

BEGIN

t1: VAR T1

t2: VAR T2

K(t1)(t2): T1 = t1

CONVERSION K

END K_conversion

A.2.2 Theory noninterference

noninterference: THEORY

BEGIN

state, action, output: TYPE+

s0: state

s, t: VAR state

a, b: VAR action
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step(s, a): state

output(s, a): output

action_list: type = list[action]

alpha, beta: VAR action_list

;o(a, alpha): action_list = cons(a, alpha)

run(s, beta): RECURSIVE state =

CASES beta OF

null: s,

cons(a, alpha): step(run(s, alpha), a)

ENDCASES

MEASURE beta by <<

domain: TYPE+

u, v: VAR domain

IMPORTING K_conversion

% IMPORTING more_preds

refl_trans_rel: TYPE = (reflexive?[domain] AND transitive?[domain]) CONTAINING eq[domain]

security_policy: refl_trans_rel

|>(u, v): bool = NOT security_policy(u, v)

dom(a): domain

/(beta, u): RECURSIVE action_list =

CASES beta OF

null: null,

cons(a, alpha): IF dom(a) = u THEN alpha / u

ELSE a o (alpha / u) ENDIF

ENDCASES

MEASURE length(beta)

do(alpha): state = run(s0, alpha)

test(alpha, a): output = output(do(alpha), a)

secure: bool = FORALL a, u, alpha:

u |> dom(a) => test(alpha, a) = test(alpha / u, a)
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V: TYPE+

view(u, s): V

view_equiv(u)(s, t): bool = view(u, s) = view(u, t)

output_consistent: bool = FORALL a, s, t:

view_equiv(dom(a))(s, t) => output(s, a) = output(t, a)

view_consistent: bool = FORALL u, v, alpha:

u |> v => view_equiv(v)(do(alpha), do(alpha / u))

lemma1: LEMMA

output_consistent AND view_consistent => secure

local_respect: bool = FORALL v, s, a:

dom(a) |> v => view_equiv(v)(s, step(s, a))

step_consistent: bool = FORALL u, s, t, a:

view_equiv(u)(s, t) => view_equiv(u)(step(s, a), step(t, a))

% lemma2: LEMMA step(do(alpha),a) = do(a o alpha)

lemma3: LEMMA

local_respect AND step_consistent => view_consistent

unwinding: THEOREM

local_respect AND step_consistent AND output_consistent => secure

END noninterference



Appendix B

A More Advanced Speci�cation

for the Seat Reservation Problem

Ricky Butler's Seat Reservation Problem is introduced in a report deliberately described as
an \elementary tutorial" for PVS [But93]. Chapter 2 of the present report shows how more
advanced theorem proving methods can be applied to that example; this appendix further
\upgrades" the example by reformulating its speci�cation using more advanced features of
the PVS language. The particular speci�cation presented here was stimulated by a version
developed by Piotr Rudnicki of the University of Alberta using the \Mizar" system.

Mizar is a very interesting system for mechanized mathematics developed in Poland
over a period of 20 years under the leadership of Andrzej Trybulec. The system provides a
language for formalized mathematics based on Tarski-Grothendieck set theory, and a proof
checker driven by very detailed, but quite readable, proof scripts. A remarkable amount
of mathematics has been formalized in Mizar and recorded in the Journal of Formalized
Mathematics. Information about this journal and about Mizar are available from aWeb page
maintained by Piotr Rudnicki at http://web.cs.ualberta.ca/~piotr/Mizar/. Rudnicki
notes that Mizar is \notorious for its lack of documentation"; we have found the most useful
and accessible sources to be [Har96] and [Rud92].

Piotr Rudnicki has developed three treatments of the Seat Reservation Problem in Mizar;
they are available from URL http://web.cs.ualberta.ca/~piotr/Mizar/FLT_DB/. The
�rst follows our rendition of Ricky Butler's original speci�cation (as presented in Chapter
2) quite closely; the second and third use some of the more elaborate types available in
Mizar to present a much more sophisticated treatment. Rudnicki asked whether PVS could
support a similar approach, and this appendix is our response. It uses the predicate subtypes
and dependent types of PVS to develop a speci�cation in which the invariants proposed
by Ricky Butler are enforced automatically by the PVS type system (this technique is
explained, using a simpler example, in another PVS tutorial [COR+95, pp. 20{24 (example
phone4)]).

To begin, we introduce seats, flights, planes, preferences, and passengers as
uninterpreted, nonempty types, and also introduce some variables of those types.
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seats, flights, planes, preferences, passengers: TYPE+

s: VAR seats

flt: VAR flights

p: VAR planes

pref: VAR preferences

pass: VAR passengers

Unlike Ricky Butler's treatment, where seat positions are characterized by pairs of the
form [row, position] and row and position are positive integers, our new treatment is
more abstract and uses the uninterpreted type seats for this purpose. The seat positions
that exist on a given plane will then be some set of seats that is particular to that kind of
plane. We could specify this by an uninterpreted function seats on plane as follows.

seats_on_plane: [plane -> setof[seats]]

An equivalent way to write this is the following.

12seats_on_plane(p): setof[seats]

You are probably familiar with interpreted functions being speci�ed in this \applicative"
form, with an = sign and a de�nition following the type speci�cation, but it can also be
used without these to introduce uninterpreted functions.

The speci�cation as given in 12 allows the seat positions on a given plane to be the
empty set. This causes di�culty later when we need to show that some of the function
types we construct are nonempty. (For example, Next seat will return a seat position; if
the plane concerned has none, then we have a contradiction; PVS excludes this possibility
by generating TCCs that can only be discharged if seats on plane(p) is nonempty.) We
therefore change the speci�cation to require that all planes have a nonempty set of seat
positions. (As well as being necessary, this is also reasonable|if a plane has no seats, why
is it present in a database for allocating seats?)

13seats_on_plane(p): (nonempty?[seats])

The predicate nonempty? is de�ned in the prelude theory sets. The full name of the
instance of this predicate that we need here is sets[seats].nonempty?, but PVS allows
predicate (or other) names from the theory to replace the theory name when no ambiguity
results. Now nonempty?[seats] is a predicate on seats; by enclosing it in parentheses, we
change it to a type: namely the subtype of seats satisfying the nonempty? predicate. Thus,
the declaration of 13 is equivalent to the following.

seats_on_plane(p): fss: setof[seats] | nonempty?(ss)g
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We will use this construction frequently in the rest of this speci�cation.

The requirement that seats on plane(p) be nonempty generates the following TCC to
show that such a function exists.

% Existence TCC generated (line 52) for seats_on_plane(p): (nonempty?[seats])

seats_on_plane_TCC1: OBLIGATION

(EXISTS (x: [planes -> (nonempty?[seats])]): TRUE)

It is discharged by the following proof, which in turn requires that seats be a nonempty
type.

(INST 1 "lambda (x:planes): fullset[seats]")

(GRIND)

(INST -1 "epsilon! (x:seats): true")

In this proof, the �rst (INST: : :) supplies the function that associates the set of all seats
(fullset[seats], de�ned in the prelude theory sets) with each plane. Then (GRIND)

expands de�nitions and simpli�es, leaving us to establish that fullset[seats] is not empty.
This requires that we exhibit a value of type seats, which is accomplished by the second
(INST: : :).

Next, we introduce an uninterpreted function called aircraft that gives the plane used
for a given 
ight, and then construct the nonempty set seats on flight(flt) that returns
the seat positions that exist on the plane used for 
ight flt.

aircraft(flt): planes

seats_on_flight(flt): (nonempty?[seats]) = seats_on_plane(aircraft(flt))

This de�nition does not generate a TCC because seats on plane is already known to have
the correct type.

We now declare the function meets pref that takes a plane p and a preference pref and
returns the (possibly empty) set of seat positions on the plane that meet the preference.

meets_pref(p, pref): setof[(seats_on_plane(p))]

This is an example of a dependent type: the return type of the function depends on the value
of its �rst argument. Notice how, unlike that of Chapter 2, this speci�cation guarantees
that only seat positions that exist on the plane concerned are valid members of the set
returned by meets pref. Notice, too, that this set may be empty|indicating that no seat
positions are acceptable on a given plane.

The database flight db is de�ned as a function that takes a 
ight and returns a partial
injection from seat positions on that 
ight to passengers.

flight_db:

TYPE = [flt: flights -> (part_inj[(seats_on_flight(flt)), passengers])]
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We will look at how the partial injections are de�ned in terms of the predicate part inj

shortly, but the crucial point is that a partial injection associates some of the seat positions
on the 
ight with some of the passengers in such a way that at most one passenger is booked
into any given seat (i.e., it is a partial function from seats on the plane to passengers), and
at most one seat is booked for any given passenger (i.e., it is an injection). This pushes the
invariants (existence, uniqueness, and one per seat) of Ricky Butler's speci�cation into
the type associated with the database. PVS will then enforce those invariants automatically
by generating appropriate TCCs for the functions that construct values of type flight db.

We now turn to the speci�cation of partial injections. PVS is a type theory in which total
functions are primitive. It is easy to de�ne the total injections as a predicate subtype of the
functions (this is done in the PVS prelude), but partial functions are slightly more di�cult.
One way to de�ne a partial function from A to B, say, is as the following dependently typed
record.

part_fun: TYPE = [# dom: setof[A], fun: [(dom) -> B] #]

Application of a part fun pf to an argument x is then written fun(pf)(x).1 This can be
made more attractive by using a conversion.

pf: VAR part_fun

pfun_appl(pf): [(dom(pf)) -> B] = LAMBDA (x:(dom(pf))): fun(pf)(x)

CONVERSION pfun_apply

With this construction, we can write simply pf(x).

It is perfectly feasible to extend this construction to specify the partial injections, but
for variety, and to be closer to the Mizar set-theoretic treatment, we will use an alterna-
tive approach here. This is speci�ed in the theory rel as fun shown in Figure B.1. In
set theory, (partial) functions are just special kinds of relations, so this theory begins by
identifying relations from A to B with predicates on the pair [A, B]. The domain and range
of a relation are de�ned in the obvious manner, and then the predicates functional and
injective are de�ned. These identify those relations that have the special property of be-
ing a function, or an injection, respectively. Those relations that have both these properties
are the partial injections, speci�ed by the predicate part inj, and its associated predicate
subtype (part inj).

We de�ne the empty partial injection null inj and then the functions reldel 1 and
reldel 2. The former takes a partial injection from A to B, and a value a of type A, and
returns a new partial injection from which all pairs of the form (a, x) (there can have been
at most one) have been removed; the latter is de�ned dually for values x of type B. These
three functions generate the following TCCs, which ensure that the values they construct
really are partial injections.

1PVS will generate a TCC to ensure member(x, dom(pf)).
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rel_as_fun[A: TYPE, B: TYPE]: THEORY

BEGIN

a, b: VAR A

x, y: VAR B

rel: TYPE = pred[[A, B]]

R: VAR rel

domain(R): setof[A] = fa | EXISTS x: R(a, x)g
range(R): setof[B] = fx | EXISTS a: R(a, x)g

functional(R): bool = FORALL a, x, y: R(a, x) & R(a, y) => x = y

injective(R): bool = FORALL a, b, x: R(a, x) & R(b, x) => a = b

part_inj(R): bool = functional(R) AND injective(R)

null_inj: (part_inj) = emptyset[[A, B]]

reldel_1((R: (part_inj)), a): (part_inj) = f(b, y) | R(b, y) AND a /= bg
reldel_2((R: (part_inj)), x): (part_inj) = f(b, y) | R(b, y) AND x /= yg

apply((R: (part_inj)), (a: (domain(R)))):

(range(R)) = choose! (x: (range(R))): R(a, x)

invapply((R: (part_inj)), (x: (range(R)))):

(domain(R)) = choose! (a: (domain(R))): R(a, x)

update_ok: LEMMA

LET newR = add((a, x), R) IN

part_inj(R) AND NOT member(a, domain(R)) AND NOT member(x, range(R))

IMPLIES part_inj(newR)

AND apply(newR, a) = x AND invapply(newR, x) = a

END rel_as_fun

Figure B.1: Partial Injections De�ned as a Subtype of Relations
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% Subtype TCC generated (line 17) for emptyset[[A, B]]

null_inj_TCC1: OBLIGATION part_inj(emptyset[[A, B]])

% Subtype TCC generated (line 19) for f(b, y) | R(b, y) AND a /= bg
reldel_1_TCC1: OBLIGATION

(FORALL (R: (part_inj), a): part_inj(f(b, y) | R(b, y) AND a /= bg))

% Subtype TCC generated (line 20) for f(b, y) | R(b, y) AND x /= yg
reldel_2_TCC1: OBLIGATION

(FORALL (R: (part_inj), x): part_inj(f(b, y) | R(b, y) AND x /= yg))

The �rst of these is proved automatically by the default (subtype-tcc) strategy. The
other two need a little guidance; a suitable proof for the second is the following.

(GRIND :IF-MATCH NIL)

(("1" (HIDE -1 1 2) (REDUCE))

("2" (HIDE -2 1) (REDUCE)))

The third is proved similarly. The (HIDE: : :) commands remove formulas that would oth-
erwise cause PVS's heuristic instantiation to pick the wrong match.

The function apply takes a partial injection and an element of its domain and returns
the corresponding element of its range; invapply works dually|given an element of the
range, it returns the corresponding element of the domain. These de�nitions generate the
following TCCs (which are proved automatically by the default (subtype-tcc) strategy)
to ensure that the values they return really are in the range and domain, respectively, of
the partial injection concerned.

% Subtype TCC generated for LAMBDA (x: (range(R))): R(a, x)

apply_TCC1: OBLIGATION

(FORALL (R: (part_inj), a: (domain(R))):

nonempty?[(range(R))](LAMBDA (x: (range(R))): R(a, x)))

% Subtype TCC generated for LAMBDA (a: (domain(R))): R(a, x)

invapply_TCC1: OBLIGATION

(FORALL (R: (part_inj), x: (range(R))):

nonempty?[(domain(R))](LAMBDA (a: (domain(R))): R(a, x)))

The lemma update ok says that if we take a partial injection R and values a of type A,
not in the domain of R, and x of type B, not in the range of R, and add the association (a,

x) to R, then we obtain a new relation newR that is a partial injection and, furthermore,
apply(newR,a) = x and invapply(newR, x) = a. (The function add is from the prelude
theory sets.) This lemma generates the following TCCs.
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% Subtype TCC generated (line 31) for a

update_ok_TCC1: OBLIGATION

(FORALL (R: rel, a: A, newR, x: B):

newR = add[[A, B]]((a, x), R)

AND

(part_inj(R)

AND NOT member[A](a, domain(R)) AND NOT member[B](x, range(R)))

AND part_inj(newR)

IMPLIES domain(newR)(a))

% Subtype TCC generated (line 31) for x

update_ok_TCC2: OBLIGATION

(FORALL (R: rel, a: A, newR, x: B):

newR = add[[A, B]]((a, x), R)

AND

(part_inj(R)

AND NOT member[A](a, domain(R)) AND NOT member[B](x, range(R)))

AND part_inj(newR) AND apply(newR, a) = x

IMPLIES range(newR)(x))

The �rst of these is discharged by

(SKOSIMP) (HIDE -2 -3 1 2) (GRIND)

and the second by a similar proof.

The lemma itself requires the following proof. The stew strategy disposes of the �rst
conjunct in the conclusion and generates a subgoal for each of the other two conjuncts;
these are proved by appeal to the epsilon ax axiom from the prelude.

(STEW :LAZY-MATCH T :IF-MATCH ALL)

(("1"

(USE "epsilon_ax[(domain(add((a!1, x!1), R!1)))]")

(("1" (REDUCE)) ("2" (INST 1 "a!1") (REDUCE))))

("2"

(HIDE -1 -2)

(USE "epsilon_ax[(range(add((a!1, x!1), R!1)))]")

(("1" (REDUCE :IF-MATCH ALL)) ("2" (INST 1 "x!1") (REDUCE)))))

Having de�ned the partial injections, we import the theory rel as fun and proceed
with the main speci�cation. We de�ne an initial database in which every 
ight has no
seats assigned and then de�ne the function pass on flight which tells us whether a given
passenger has a seat booked on a given 
ight in the database.
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IMPORTING rel_as_fun

initial_db(flt): (part_inj[(seats_on_flight(flt)), passengers]) = null_inj

db: VAR flight_db

pass_on_flight(pass, flt, db): bool = member(pass, range(db(flt)))

seat_filled_on_flight(flt, db, (s: (seats_on_flight(flt)))): bool =

member(s, domain(db(flt)))

pref_filled(db, flt, pref): bool =

FORALL (s: (seats_on_flight(flt))):

meets_pref(aircraft(flt), pref)(s) => seat_filled_on_flight(flt, db, s)

We also de�ne a dual function seat filled on flight that tells us whether a given seat has
been booked on a given 
ight in the database. Notice that because of the dependent typing,
the arguments to this function are given in a di�erent order than those for pass on flight.
(PVS typechecks from left to right, and therefore needs to encounter the argument flt be-
fore the dependently typed (s: (seats on flight(flt))).) We then de�ne the predicate
pref filled, which is true when all seats meeting a given preference have been �lled on a
given 
ight. This de�nition generates the following TCC, which is discharged automatically
by the default (subtype-tcc) strategy.

% Subtype TCC generated (line 85) for s

pref_filled_TCC1: OBLIGATION

(FORALL (db, flt, s: (seats_on_flight(flt))):

(seats_on_plane(aircraft(flt)))(s));

Now we can de�ne the �rst of the functions that update the database. Cancel assn

deletes any booking for a given passenger on a given 
ight from the database.

Cancel_assn(flt, pass, db): flight_db =

db WITH [(flt) := reldel_2(db(flt), pass)]

Since reldel 2 is known to return a partial injection, no TCC needs to be generated to
ensure that Cancel assn maintains the properties of the database.

To develop the function Make assn that creates a new booking in the database, we begin
with the function Next seat, which returns a vacant seat on a given 
ight matching a given
preference (if possible). In Chapter 2, we speci�ed this as an uninterpreted function and then
constrained its properties by means of axioms. The danger with axioms is that they may be
inconsistent|or, at least, not demonstrably consistent|as was the case in Chapter 2 before
we added the new ax axiom. If we were to give a de�nition to the Next seat function, then
we will be assured of its consistency (provided all its TCCs are proved), but may suggest
an implementation when we really only want to indicate constraints. De�nitions involving
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choose or epsilon su�er less than others from this disadvantage, but they complicate
theorem proving (it is generally necessary either to cite epsilon ax, or to prevent expansion
of the de�nition and to cite a lemma). Also, the fact that epsilon returns an arbitrary
member of its type when the predicate is unsatis�able is an obstacle to many readers.

Fortunately, the type system of PVS is su�ciently rich that it provides a way to escape
the horns of this dilemma: we indicate properties the function should possess in its type.
(In essence the return type will be a dependent predicate subtype equivalent to the conjunc-
tion of the axioms intended to constrain the function.) Like an axiomatic treatment, this
approach indicates constraints without suggesting an implementation; unlike an axiomatic
treatment, however, we are assured of soundness because PVS will generate a TCC that
forces us to exhibit a function of the required type (which is equivalent to demonstrating
consistency of the axioms). The TCC can be discharged by constructions involving choose

or epsilon|but unlike a de�nitional speci�cation, it is clear that these are removed from
the main line of the speci�cation and are not suggestive of an implementation. In addition
to these bene�ts, this approach assists automated theorem proving because the properties
of the function are recorded in its type, where the theorem prover can make productive use
of them.

In the case of Next seat, we write its speci�cation as follows.

14Next_seat(db, flt, (pref: fp:preferences | NOT pref_filled(db,flt,p)g)):
f (s: (seats_on_flight(flt))) |

meets_pref(aircraft(flt), pref)(s)

AND NOT seat_filled_on_flight(flt, db, s)g

This says that if not all the seats satisfying the given preference have been booked, then
Next seat returns a seat position that does exist on the plane concerned, that meets the
preference, and that is not already booked. Notice the dependent typing for the third
argument to Next seat; this is similar to that which we saw in Chapter 2 for the function
Lookup, and is needed for a similar reason: to ensure that the return type is not empty.
PVS generates the following two TCCs from this declaration.
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% Subtype TCC generated (line 89) for s

Next_seat_TCC1: OBLIGATION

(FORALL (flt, (s: (seats_on_flight(flt)))):

(seats_on_plane(aircraft(flt)))(s));

% Existence TCC generated (line 87) for

% Next_seat(db, flt,

% (pref: fp: preferences | NOT pref_filled(db, flt, p)g)):
% f((s: (seats_on_flight(flt)))) | meets_pref(aircraft(flt), pref)(s)

% AND NOT seat_filled_on_flight(flt, db, s)g
%

Next_seat_TCC2: OBLIGATION

(EXISTS (x: [d:

[db: flight_db, flt: flights, fp: preferences | NOT pref_filled(db, flt, p)g]
-> f((s: (seats_on_flight(PROJ_2(d)))))

| meets_pref(aircraft(PROJ_2(d)), PROJ_3(d))(s)

AND NOT seat_filled_on_flight(PROJ_2(d), PROJ_1(d), s)g]):
TRUE);

The �rst of these is discharged automatically by the default (subtype-tcc) strategy. The
second, which requires us to demonstrate that the function type speci�ed for Next seat is
inhabited, is discharged by the following proof.

(INST 1 "LAMBDA

(db, flt, (pref: p:preferences| not pref_filled(db,flt,p))):

choose! (s: (seats_on_flight(flt))):

meets_pref(aircraft(flt), pref)(s)

AND NOT seat_filled_on_flight(flt, db, s)")

(("1" (GRIND)) ("2" (GRIND)))

The (INST: : :) command constructs a suitable function using choose; notice that the sub-
stitution can be developed by a simple transformation on the type given for Next seat.
The two (GRIND) commands discharge TCC subgoals generated by the instantiation.

Our speci�cation departs from Piotr Rudnicki's with this treatment of Next seat. His
speci�cation can be approximately rendered as follows,

Next_seat_variant(db, flt, pref): (seats_on_flight(flt)) =

epsilon! (s: (seats_on_flight(flt))):

meets_pref(aircraft(flt), pref)(s)

AND NOT seat_filled_on_flight(flt, db, s)

although he uses an auxiliary predicate flight pref that returns the seat positions on the
aircraft satisfying the given preference; his version of Next seat then removes the seats
already booked and chooses one of the remainder. Next seat variant does it slightly
di�erent order by restricting the initial choice to those seats that are not already �lled.

The type given for Next seat in 14 ensures that the axioms required in the treatment
of Chapter 2 are provable as lemmas here. They can be stated as follows.
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Next_seat_ax: LEMMA

NOT pref_filled(db, flt, pref)

IMPLIES member(Next_seat(db, flt, pref), seats_on_flight(flt))

Next_seat_ax_2: LEMMA

NOT pref_filled(db, flt, pref)

IMPLIES NOT seat_filled_on_flight(flt, db, Next_seat(db, flt, pref))

Next_seat_ax_3: LEMMA

NOT pref_filled(db, flt, pref)

IMPLIES meets_pref(aircraft(flt), pref)(Next_seat(db, flt, pref))

All of these are proved by (grind), though this is something of a sledgehammer given the
richness of the type information that PVS has available. More surgical proofs are (expand
"member") for the �rst and (skosimp)(assert) for the other two.

Next seat ax 3 generates the following TCC.

% Subtype TCC generated (line 90) for Next_seat(db, flt, pref)

Next_seat_ax_3_TCC1: OBLIGATION

(FORALL (db: flight_db, flt: flights, pref: preferences):

NOT pref_filled(db, flt, pref)

IMPLIES

(seats_on_plane(aircraft(flt)))(Next_seat(db, flt, pref)))

This is very similar to Next seat ax and can be discharged by the following proof.

(USE "Next_seat_ax") (EXPAND "seats_on_flight") (EXPAND "member")

Finally, we can de�ne the function that adds a seat booking to the database.

Make_assn(flt, pass, pref, db): flight_db =

IF pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db)

THEN db

ELSE db WITH [(flt) := add((Next_seat(db, flt, pref), pass), db(flt))]

ENDIF

If the preference is �lled or the passenger is already on the 
ight, the database is left
unchanged, otherwise the seat returned by Next seat is booked for the passenger on the

ight concerned. A TCC is generated to ensure that the type constraints on the application
of Next seat are satis�ed.

% Subtype TCC generated (line 107) for pref

Make_assn_TCC1: OBLIGATION

(FORALL (db, flt, pass, pref):

NOT (pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db))

IMPLIES NOT pref_filled(db, flt, pref));
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This is discharged automatically by the default (subtype-tcc) strategy.

Because the database for each 
ight is speci�ed to be a partial injection, a second TCC
is generated to ensure that this construction preserves the required properties (namely, that
each passenger has at most one seat and each seat at most one passenger).

% Subtype TCC generated (line 107) for

add((Next_seat(db, flt, pref), pass), db(flt))

Make_assn_TCC2: OBLIGATION

(FORALL (db, flt, pass, pref):

NOT (pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db))

IMPLIES

part_inj[(seats_on_flight(flt)),passengers]

(add[[((seats_on_flight(flt))), passengers]]

((Next_seat(db, flt, pref), pass),db(flt))));

This TCC is equivalent to Make assn inv in the treatment of Chapter 2. Unlike that
treatment, however, where we had to realize for ourselves that we ought to check that our
speci�cation preserves such an invariant, the present treatment generates it automatically
as a proof obligation needed to ensure type-correctness. The proof is a straightforward
expansion of de�nitions followed by appeal to the lemmas update ok and Next seat ax 2.

(SKOSIMP)

(TYPEPRED "db!1(flt!1)")

(STEW :EXCLUDE ("domain" "range" "apply" "invapply" "part_inj")

:LEMMAS ("update_ok[(seats_on_flight(flt!1)), passengers]" "Next_seat_ax_2"))

The :EXCLUDE: : : simply speeds up the proof by preventing rewriting of de�nitions from
the theory rel as fun.

The \challenge" theorems are essentially identical to those of Chapter 2, except that
Cancel putative is stated more neatly.
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Make_Cancel: THEOREM

NOT pass_on_flight(pass, flt, db)

IMPLIES Cancel_assn(flt, pass, Make_assn(flt, pass, pref, db)) = db

Cancel_putative: THEOREM

NOT pass_on_flight(pass, flt, Cancel_assn(flt, pass, db))

Make_putative: THEOREM

NOT pref_filled(db, flt, pref)

IMPLIES pass_on_flight(pass, flt, Make_assn(flt, pass, pref, db))

Lookup(flt, pass, (db: d: flight_db | pass_on_flight(pass, flt, d))):

(seats_on_flight(flt)) = invapply(db(flt), pass)

Lookup_putative: THEOREM

NOT((pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db)))

IMPLIES

meets_pref(aircraft(flt),

pref)(Lookup(flt, pass, Make_assn(flt, pass, pref, db)))

The function Lookup and the challenge theorem Lookup putative generate the following
TCCs. The �rst ensures that the passenger really is on the 
ight concerned (which follows
by the dependent typing in the de�nition of Lookup); the second ensures that the database
update performed by Make assn in Lookup putative satis�es the dependent type restriction
in Lookup; the third ensures that the seat returned by Lookup really does exist on the plane
concerned.
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% Subtype TCC generated (line 122) for pass

Lookup_TCC1: OBLIGATION

(FORALL (flt, pass, db: d: flight_db | pass_on_flight(pass, flt, d)):

range[((seats_on_flight(flt))), passengers](db(flt))(pass));

% Subtype TCC generated (line 128) for Make_assn(flt, pass, pref, db)

Lookup_putative_TCC1: OBLIGATION

(FORALL (db: flight_db, flt: flights,

pass: passengers, pref: preferences):

NOT(((pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db))))

IMPLIES

pass_on_flight(pass, flt, Make_assn(flt, pass, pref, db)));

% Subtype TCC generated (line 128) for

Lookup(flt, pass, Make_assn(flt, pass, pref, db))

Lookup_putative_TCC2: OBLIGATION

(FORALL (db: flight_db, flt: flights,

pass: passengers, pref: preferences):

NOT(((pref_filled(db, flt, pref) OR pass_on_flight(pass, flt, db))))

IMPLIES

(seats_on_plane(aircraft(flt)))(Lookup(flt,

pass,

Make_assn(flt,

pass, pref, db))));

The �rst of these is proved by the default (subtype-tcc) strategy; the second appeals to
the theorem Make putative.

(SKOSIMP) (USE "Make_putative") (ASSERT)

The third follows by the type predicate associated with the return type of Lookup.

(SKOSIMP)

(TYPEPRED "Lookup(flt!1, pass!1, Make_assn(flt!1, pass!1,pref!1, db!1))")

(("1" (EXPAND "seats_on_flight"))

("2" (USE "Make_putative") (ASSERT)))

The challenge theorems themselves are proved in the following manner.
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new_flight_db.Make_Cancel:

(SKOSIMP)

(APPLY-EXTENSIONALITY :HIDE? T)

(APPLY-EXTENSIONALITY :HIDE? T)

(TYPEPRED "x!2")

(GRIND)

new_flight_db.Cancel_putative:

(GRIND)

new_flight_db.Make_putative:

(GRIND) (INST? 3 :WHERE 3) (ASSERT) (REDUCE)

new_flight_db.Lookup_putative:

(SKOSIMP)

(TYPEPRED "db!1(flt!1)")

(TYPEPRED "Next_seat(db!1, flt!1, pref!1)")

(("1"

(STEW :EXCLUDE ("domain" "range" "apply" "invapply" "part_inj")

:LEMMAS ("update_ok[(seats_on_flight(flt!1)),passengers]")))

("2" (SKOSIMP) (TYPEPRED "s!1") (EXPAND "seats_on_flight")))

Some of these proofs are slightly more complicated than the corresponding ones in
Chapter 2; the additional complexity is generally due to the need to expand a few de�nitions
in order to expose a term whose type predicate is required, or to discharge a TCC side-
condition. In other examples, however, the presence of rich type information often simpli�es
proofs, and increases their automation. This approach has been exploited to very good e�ect
in PVS libraries developed at NASA Langley by Ricky Butler and Paul Miner.

In general, the style of speci�cation illustrated here is worth mastering. De�nitions and
lemmas can often be stated more simply when a lot of information is provided implicitly in
the types, and the whole process of speci�cation is made less error-prone because the PVS
typechecker can provide powerful assistance in the form of TCCs.


