
Invited paper presented to joint session of CAV and CADE '96. Appears in
proceedings of CAV '96, Springer Verlag LNCS 1102, pp. 169{183, July 1996

Automated Deduction and Formal Methods
?

John Rushby

Computer Science Laboratory, SRI International,
Menlo Park, CA 94025, USA

Abstract. The automated deduction and model checking communities
have developed techniques that are impressively e�ective when applied
to suitable problems. However, these problems seldom coincide exactly
with those that arise in formal methods. Using small but realistic ex-
amples for illustration, I will argue that e�ective deductive support for
formal methods requires cooperation among di�erent techniques and an
integrated approach to language, deduction, and supporting capabilities
such as simulation and the construction of invariants and abstractions.
Successful application of automated deduction to formal methods will
enrich both �elds, providing new opportunities for research and use of
automated deduction, and making formal methods a truly useful and
practical tool.

1 Introduction

Formal methods are a natural application area for automated deduction|yet,
with few exceptions, tools for mainstream formal methods provide little more
than rudimentary support for deduction, and few theorem provers �nd appli-
cation in formal methods. Model checking and related techniques are gaining
acceptance in important specialized areas, but have yet to penetrate the larger
�eld. This disconnect between formal methods and the very technologies that
could help increase its utility and appeal is unfortunate, and deserves explana-
tion and remedy.

My opinion is that many techniques for automated deduction (and for sim-
plicity I include model checking under this heading) provide excellent solutions
to individual problems, but that formal methods require more integrated ap-
proaches to provide solutions that are e�ective across a broad range of problems.
In the following sections, I outline some prototypical applications of formal meth-
ods and suggest some of the capabilities required of automated deduction if it is
to achieve more widespread use in this area. I discuss these topics under three
headings: language, theories, and interaction in the sections that follow. Brief
conclusions are presented in Section 5.

? This work was supported by the Air Force O�ce of Scienti�c Research under contract
F49620-95-C0044 and by the National Science Foundation under contract CCR-
9509931. The applications described were undertaken for NASA Langley Research
Center under contracts NAS1-18969 and NAS1-20334 and for ARPA through NASA
Ames Research Center under contract NASA-NAG-2-891.

1

2 Language

By formal methods I mean the use of techniques derived from mathematical
logic for the speci�cation and analysis of computational systems. There are two
elements here: speci�cation, by which I mean a descriptive activity in which
logical notation is valued for its contributions to both the intellectual process
of design and the communication of designs, and analysis , by which I mean
systematic and repeatable methods for deducing properties of speci�cations and
of the designs that they represent. Automated deduction has obvious relevance
in the mechanization of analysis, but formal methods practitioners attach great
importance to speci�cation and are unwilling to compromise on the convenience
of expression provided by a full speci�cation language. To achieve acceptance,
it therefore seems necessary that automated deduction should be harnessed to
rather rich notations.

To suggest some of the capabilities desired, I outline a typical \requirements
speci�cation" for a function in the Space Shuttle's control system called \Jet-
Select" [6]. This function is responsible for selecting which of the Shuttle's Reac-
tion Control System (RCS) jets (or thrusters) should be �red in order to accom-
plish a given translational or rotational acceleration. I will concentrate on the
\Vernier/Alt" component for rotation, which can operate in one of two modes:
in Vernier mode, only the small \vernier" jets are considered for selection; in
Alt (alternative) mode, only the larger \primary" jets are considered. The basic
Jet-Select calculations are the same whether in Vernier or Alt mode, except that
the six vernier jets are treated singly, while the 38 primary jets are treated in
groups. (The primary jets are arranged in 14 groups, each consisting of two,
three, or four jets located adjacent to each other and �ring in the same direc-
tion; only 11 of the 14 groups are useful for rotational maneuvers.) In Vernier
mode, Jet-Select chooses up to three individual vernier jets to �re, whereas in
Alt mode it selects up to three groups of primary jets, and then selects exactly
one jet from each of the chosen groups. (The jets within each group are ranked in
a priority order and it is the available jet of highest priority that is �red when its
group is selected in Alt mode.) Various vernier jets and groups of primary jets
are excluded from consideration in certain submodes (e.g., jets whose plumes
extend into the area above the cargo bay are excluded in \low +z" mode) and
individual jets may be marked \unavailable" due to failure or by crew selection.

The selection of vernier jets or primary groups is performed by an algorithm
known as \max dot-product" (this particular exercise in formalization was un-
dertaken in preparation for introduction of a new algorithm called \min angle").
For each vernier jet and primary group, a table records the rotational velocity
vector imparted by �ring that jet (or a member of that group) for a standard
period. (Actually, there are several tables, parameterized by whether there is a
payload attached to the Shuttle's robotic arm, and where the arm is positioned.)
The algorithm proceeds by �rst selecting the vernier jet or primary group whose
acceleration has the largest scalar (dot) product with the rotational acceleration
vector actually desired; the second and third jets (if required) are similarly se-
lected as those with the second and third largest scalar products, provided the

2

dot-product of the second exceeds some fraction t1 of the �rst, and that of the
third exceeds some fraction t2 of the second.

The major goal here is to use formal methods to specify the desired function-
ality as clearly as possible. The role of automated deduction in this example is to
contribute to validation of the speci�cation by examining putative \challenge"
theorems such as \a failed jet will never be selected."

A good speci�cation for this component of Jet-Select should make clear that
the max dot-product algorithm is essentially the same in both Vernier and Alt
modes, except that in the former it operates over individual vernier jets, while
in the latter it operates over groups of primary jets. This argues for a speci�-
cation notation that provides parameterized theories so that speci�cation of the
same algorithm can be instantiated over these di�erent domains. Although not
exempli�ed by Jet-Select, many applications of formal methods also require pa-
rameterized representations for standard computer science data structures such
as lists, trees, and arrays.

Next, we can observe that the output of Jet-Select is most naturally consid-
ered as a set of jets, and the groups of primary jets are also naturally considered
as sets. Thus, our speci�cation notation should incorporate a representation for
sets. Most practitioners of formal methods prefer their speci�cation notation to
be strongly typed, and this particular application seems to call for subtyping:
surely the vernier and primary jets are naturally considered as subtypes of the
type of all jets. But then the output of the algorithm will be either a set of
vernier jets or a set of primary groups (the latter is then converted to a set of
primary jets), whereas the output of Jet-Select as a whole must be a set of jets.
Hence, our speci�cation notation must somehow extend the subtyping relation
between (for example) vernier jets and all jets to a compatible subtyping relation
between the sets of such jets.

There are (at least) two ways to specify that the (intermediate) result of
Jet-Select should be the set of vernier jets or primary groups satisfying the max
dot-product criterion. One way would simply axiomatize the desired property,
the other would attempt to represent the algorithm suggested by the informal de-
scription (i.e., the iterative selection of the three best jets or groups from among
those available). The latter approach might require the speci�cation language to
incorporate a treatment of imperative programs. It would also require a way to
identify the jet or group in a given set that has the maximum dot-product. For
generality, we might like to provide a library axiom de�ning the maximum of a
set to be its largest member with respect to some given ordering. This is most
directly accomplished by quanti�cation, but we must ensure that the ordering
relation has the appropriate algebraic properties and must take proper care of
the case where the set is empty, or risk unsoundness. A speci�cation language
should help ensure that these obligations are not overlooked.2

Most theorem provers support raw logics that lack the notational conve-
niences mentioned above. In my experience, it quite hopeless to persuade users

2 For example, the PVS declaration

max (s : setof[T]) : ft : T jt 2 s ^ 8(x : T) : x 2 s � (t > x _ x = t)g

3

of formal methods (let alone those who are not yet users) to adopt such impover-
ished notations. To observe that it is perfectly feasible to provide a speci�cation
for Jet-Select in quite primitive logics (e.g., those without quanti�cation) misses
the point|this simply is not what users of formal methods want to do.

Left to their own devices, users of formal methods develop or adopt notations
such as B, VDM, RAISE, or Z. These make few concessions to the needs of
e�cient automated deduction and the tools that have been developed for them
provide little more than interactive proof checking unsupported by signi�cant
automation (e.g., [8, 10]). I have argued elsewhere [14] that choices made in the
designs of these languages (e.g., in the case of Z, set theory with partial functions,
and no notion of de�nition) are inimical to automated deduction, and that really
e�cient deductive support is therefore unlikely to be forthcoming for them.

One of the challenges to those who would provide automated deduction for
formal methods is therefore to contribute to the design of speci�cation languages
that combine the felicity of expression desired for formal methods with the pos-
sibility of powerfully automated support. Rather than being a limitation on
speci�cation language design, I believe that closer integration of language and
automated deduction can have a liberating e�ect|because it makes it possible
to contemplate design choices that require theorem proving in typechecking. We
have exploited this opportunity to some extent in PVS [12] (where subtyping, for
example, can generate proof obligations) but many further opportunities remain.

It is not necessary that the logic supported by a theorem prover should be a
full speci�cation language, but there must be some translation from the latter to
the former. Furthermore, the translation must be maintained during interaction
with the prover: it is unlikely to be acceptable if proof of a conjecture expressed
in the speci�cation language must be conducted in terms of its translation into
the primitives of the underlying logic.

3 Theories

Automated deduction must not only support the rich linguistic capabilities de-
sired in formal methods, but must also provide very e�ective automation for
theories that are commonly encountered.

For illustration, I will use a veri�cation of the Interactive Convergence Algo-
rithm for Byzantine fault-tolerant clock synchronization [9] that Friedrich von
Henke and I performed some years ago [15]. The goal is to keep the clocks of
distributed processors approximately synchronized, given that good clocks have
some bounded drift rate, good processors can read the clocks of other good pro-
cessors with some small error, and faulty processors and clocks are unconstrained
(in particular, they can present con
icting information to di�erent good proces-
sors). The clock of processor p is represented by an uninterpreted function cp(T)

generates a proof obligation (to show that the type assigned to the value of max

is inhabited) that can be discharged only if the set s is nonempty and > is a well-
ordering.

4

from \clock time" to \real time" (both interpreted as real numbers).3 Clocks are
adjusted every R clock time units (this duration is called a \frame" and the start
time of the i'th frame is denoted T (i) = T (0) + iR), during a \synchronization
period" of duration S clock time units occurring at the end of the frame. (The
interval of the i'th frame is denoted R(i) = [T (i); T (i+1)], and the i'th synchro-
nization period is denoted S(i) = [T (i+1) � S; T (i+1)].) The adjustment to clock

p for period i is C
(i)
p clock time units and the adjusted clock for that period is

denoted c
(i)
p (T), where c

(i)
p (T) = cp(T + C

(i)
p).

In the i'th synchronizing period, each processor p obtains an estimate �
(i)
q p

of the skew between its clock and that of processor q. A parameter � bounds the
error in this estimate as follows.

Assumption A2. If the clock synchronization conditions (de�ned below) hold
for the i'th period, and processors p and q are nonfaulty through period i, then

j�(i)
q pj � S

and
jc(i)p (T 0 +�(i)

q p)� c(i)q (T 0)j < �

for some time T 0 in S(i).

The algorithm is de�ned as follows.

Algorithm ICA. For all processors p:

C(i+1)
p = C(i)

p +�(i)
p ;

where

C(0)
p is arbitrary,

�(i)
p =

�
1

n

� nX
r=1

��(i)
r p; and

��(i)
r p = if j�(i)

r pj < � then �(i)
r p else 0

and � is a clock time quantity that is a parameter to the algorithm.

The goal is to achieve the following clock synchronization conditions , pro-
vided that at most m processors (out of n) are faulty through period i, for real
time constant � and clock time constant � that are parameters to the algorithm.

Bounded skew: If p and q are nonfaulty through period i, then

jc(i)p (T)� c(i)q (T)j < �

for all T in R(i).

3 A speci�cation language with the ability to distinguish clock time and real time as
di�erent \dimensions" of the same type provides valuable additional error checking
in these constructions.

5

Bounded adjustment: If processor p is nonfaulty through period i, then

jC(i+1)
p � C(i)

p j < �:

These conditions can be achieved, provided several assumptions (concerning,
for example, the drift rate � of good clocks) are satis�ed, together with several
constraints on the parameters to the algorithm, such as the following.

Constraint C6. � � 2(�+ �S) +
2m�

n�m
+

n�R

n�m
+

n��

n�m
+ ��

The proof depends on several lemmas, of which the following are among the
most important.

Lemma 4. If the clock synchronization conditions hold for i, processors p; q,
and r are nonfaulty through period i+ 1, and T 2 S(i), then

jc(i)p (T) + ��(i)
r p � [c(i)q (T) + ��(i)

r q]j < 2(�+ �S) + ��:

Lemma 5. If the bounded skew clock synchronization condition holds for i, pro-
cessors p and q are nonfaulty through period i+ 1, and T 2 S(i), then

jc(i)p (T) + ��(i)
r p � [c(i)q (T) + ��(i)

r q]j < � + 2�:

The items of interest here are the theories involved: we have arithmetic ex-
pressions and relations involving both real and natural numbers, and both inter-
preted and uninterpreted function symbols. The ubiquity and complexity of the
arithmetic used here are such that it would be intolerable to attempt veri�cation
of this algorithm without e�cient deductive support for arithmetic. A library
of lemmas and rewrite rules will not be adequate to the task: decision proce-
dures are needed. The question then is: decision procedures for which theories?
The importance of integer arithmetic is such that some tools for formal meth-
ods include decision procedures for Presburger arithmetic|that is the quanti�ed
theory of integer linear arithmetic. Since we have real numbers as well, a decision
procedure for real closed �elds might also seem appropriate. The problem with
these choices is that we also have uninterpreted function symbols, which takes
us outside these decidable theories. Inspection of various formulas appearing in
the presentation of the algorithm shows that only Assumption A2 involves a
nested quanti�er (for T 0), everything else is (implicitly) universally quanti�ed
at the outermost level. We can conclude that the quanti�er reasoning here is
likely to be easy, and we may therefore be prepared to deal with it outside the
arithmetic decision procedures (either heuristically, or with user guidance). This
will allow us to restrict the arithmetic decision procedures to just the ground
case|where the combination of linear arithmetic with uninterpreted function
symbols is decidable [4].

My experience with formal methods applications is that this tradeo� in favor
of deciding ground theories is always worthwhile, since it allows the di�erent deci-
sion procedures to be combined. Some theories, such as arithmetic, equality with

6

uninterpreted function symbols, and arrays4 are so ubiquitous that decision pro-
cedures for their ground cases are essential for all productive work. Decision pro-
cedures for additional theories may be highly advantageous for particular classes
of applications. For example, our experience with processor veri�cation [17] has
shown that the (large) library of rewrite rules used for the theory of bitvectors is
the main impediment to e�ective automation, and we conjecture that a decision
procedure for bitvectors would have a dramatic bene�t. The development of new
decision procedures for theories arising in formal methods is a valuable topic for
research.

Important requirements for such decision procedures are the following.

{ They must work cooperatively to decide the combination of their theories.
{ They must deal gracefully with terms outside the decided theory. For ex-
ample, the theory decided by the SUP-INF [16] and similar procedures is
ground linear arithmetic, but several of the formulas used in clock synchro-
nization contain nonlinear terms (and division). Although the full nonlinear
case cannot be decided, it is important to deal with special properties (e.g.,
commutativity, and \a minus times a minus is a plus") without losing those
properties that follow simply by treating nonlinear multiplication as unin-
terpreted. A similarly e�ective extension to division is also required. (Notice
also that some treatment for the partiality of division by zero is needed; this
may require coordination between the speci�cation language and its deduc-
tive support|in PVS, for example, division by zero is excluded through type
rules that generate proof obligations to show the divisor is nonzero.)

{ Their behavior must be predictable. One of the strengths of decision proce-
dures over heuristics is that the user should not have to puzzle over whether
the failure to prove a conjecture is due to its falsehood, or an inadequate
heuristic. This bene�t is lost if the decided theory is not clearly characterized.
And although performance is hard to guarantee given the super-exponential
complexity of most decision procedures, \black holes" (where a small and
apparently simple problem takes an inordinate amount of time) are to be
avoided. Because they will form the inner loop of larger procedures, even lin-
ear speedups in the performance of decision procedures can have a dramatic
impact on overall e�ciency; more needs to be known about the relative prac-
tical performance of various decision procedures for the same problem, which
anecdotal evidence indicates can di�er by an order of magnitude or more [4].
Conjectures in formal methods applications often give rise to very large for-
mulas, so it is crucial that decision procedures should be implemented in
ways that scale reasonably well (using, for example, structure-sharing tech-
niques similar to those in BDDs5).

4 That is (in PVS notation) f [(x) := y](z) = if z = x then y else f(z). This is also
known as function updating or overriding.

5 It goes without saying that propositional reasoning must be implemented very ef-
�ciently. Ordered binary decision diagrams (OBDDs) are the natural choice, but
the Davis-Putnam procedure and the patented algorithm of St�almarck [18] may be
superior in some applications.

7

{ Expressions that cannot be decided should be simpli�ed. Especially in an
interactive environment, it is important that the information presented to
the user should be as brief and as simple as possible. But it should also be
familiar|that is to say, expressions should retain, to the extent possible, the
form they were originally given by the user, and should not be arbitrarily
normalized. Simpli�cation should merely eliminate redundancy, so that, for
example, (a+1)� 1, if true then a else b, and if B then a else a all be-
come a; it should generally refrain from transformations such as that from
x�(a+b) to x�a+x�b. One of the great advantages of decision procedures
over heuristics is that they are sensitive only to the content and not to the
form of expressions, so that syntactic representations can be chosen for the
convenience of the user rather than the prover.

With standard theories handled by ground decision procedures, the next
candidate for automation is quanti�er reasoning. Traditional methods for �rst-
order reasoning, such as resolution, do not extend well to the presence of de-
cided ground theories, and therefore �nd little application in formal methods.
(Also, formal methods often use higher-order quanti�cation.) Fortunately, as
noted above, there is generally little nesting or alternation of quanti�ers in these
applications, so that a combination of specialized and heuristic methods work
quite well for the majority of cases (di�cult cases then require user guidance).
Specialized methods include those for conditional rewriting in the presence of
decided theories|the close integration of rewriting with linear arithmetic is the
source for much of the e�ectiveness of Boyer and Moore's provers [3], and simi-
lar capabilities are required in any system intended to support formal methods.
Matching techniques similar to those used in rewriting can also provide heuris-
tic instantiation for general formulas. However, my experience with PVS is that
while its conditional rewriter is almost completely e�ective (i.e., it rarely fails
to �nd a match if one exists), its heuristic instantiation of lemmas and general
quanti�er reasoning fails (usually by �nding an unproductive match) more of-
ten than I would like. More e�ective methods for quanti�er reasoning in these
contexts (and for restricted instances of the higher-order case) would be a good
topic for research.

Inspection of the formulas for clock synchronization shown earlier suggests
that, in addition to arithmetic, propositional, and quanti�er reasoning, we will
also need induction. Proof that the algorithm maintains the clock synchroniza-
tion conditions is accomplished using simple induction on the frame index i.
Several results on �nite summations are also used (a key step in the proof is to

split the summation in the de�nition of �
(i)
p intom terms constrained by Lemma

5, and n � m constrained by Lemma 4), and these require bounded induction
(i.e., induction over a subrange of the natural numbers) on the recursive function
that is used to de�ne summation. Given the need for induction, it might seem
that powerful automation for inductive proofs, as provided in several systems,
would be bene�cial. Unfortunately, these methods have generally been devel-
oped for rather restricted (e.g., equational or unquanti�ed) logics, and not for
the richer context found here. In the absence of suitable automation, the user

8

may be expected to indicate when induction should be used, and to identify the
induction variable or expression (PVS, for example, requires this). It is then rela-
tively straightforward to automate selection and instantiation of the appropriate
induction scheme; simple tactics can �nish the proof of straightforward lemmas
(e.g., those needed here for properties of summations), while more explicit user
guidance is be needed in more complex cases (e.g., the main induction here).
Many formal methods applications require only a couple of inductions and these
simple methods are adequate in these cases. Nonetheless, more automated meth-
ods (including those for generalization) would be welcome, and the development
of suitable techniques is a good research topic.

3.1 Model Checking

Compared to theorem proving methods, model checking and related techniques
(such as state exploration and language inclusion) are becoming rather widely
used in formal methods. However, I believe that these techniques currently tend
to be used standalone in application domains (such as hardware and protocols)
to which they are particularly well-suited, rather than being incorporated into
traditional formal methods, or integrated with theorem proving.

For my next example, I describe an experiment undertaken by my colleagues
Klaus Havelund and Shankar [7], who applied a combination of �nite state explo-
ration, theorem proving, and model checking approaches to a simple protocol.
Many larger and more signi�cant problems than this have been examined by
�nite state enumeration and model checking techniques; what is interesting in
this exercise is that it points towards an integration of these techniques with
theorem proving, and also highlights some of the areas where further research is
needed.

Havelund and Shankar began by reducing the protocol to �nite state (by
manually assigning explicit small integers as the upper bound on the size of
certain data structures) and checking certain safety properties with the Mur�
explicit state exploration system [5]. They next veri�ed these properties for the
full protocol by theorem proving in PVS using a traditional invariance argument,
but found in the process that the desired invariant had to be strengthened by
the addition of many additional conjuncts. These were discovered incrementally
during the proof attempt; each new proposed conjunct was checked with Mur�,
added to the invariant, and the evolving proof attempted once more. The whole
process was iterated until a su�ciently strong invariant was developed; this
eventually comprised 57 conjuncts. Seeking a better approach, they developed
a �nite-state abstraction of the original protocol, veri�ed (by theorem proving)
that it was indeed an abstraction, and then veri�ed properties of the abstraction
by model checking.

First, notice that the initial \reduction" to �nite state in preparation for
examination with Mur� was a manual and ad-hoc process. This seems typical of
�nite-state analyses: the original problem is transformed by hand into a form that
is acceptable to the available tool. The transformation is usually an aggressive
simpli�cation that is adequate for refutation but not for veri�cation|meaning

9

that bugs found in the transformed description are likely to correspond to bugs in
the original, but the failure to detect bugs in the former cannot be interpreted as
veri�cation of the latter. In the case of the protocol studied in these experiments,
the maximum number of messages in a �le was arbitrarily set to three: bugs that
are manifest only with larger �le sizes will not be found by this method.

Next, the direct veri�cation of the full protocol was extremely tedious, as the
desired safety property had to be strengthened iteratively until it became an in-
variant. This process took many weeks, which is clearly unacceptable for general
practice. Methods for the systematic|and preferably automated|development
of invariants therefore constitute a very worthwhile research topic. Of course,
one of the advantages of model checking is that it is largely automatic and does
not require the development of such invariants. However, when model checking
is used for veri�cation rather than refutation, it is necessary to prove that the
�nite-state description is a true abstraction of the original speci�cation, and this
abstraction proof may itself require invariants. Havelund and Shankar in fact
reused 45 of the 57 invariants developed for their protocol in their abstraction
proof, so the overall saving in e�ort was not great in this case. This experi-
ence highlights another very fruitful area for research: systematic and automated
methods for developing �nite-state abstractions. Good results are already known
for some special cases [2] and I speculate that integration of these methods with
model checking will eventually provide an e�cient way to verify properties of
in�nite-state systems.

There were interesting di�erences between the \reduced" �nite-state descrip-
tion checked with Mur� and the \abstracted" version that was model checked.
In the reduced Mur� description, a �le could comprise 1, 2, or 3 messages; in
the abstracted description, the size of the untransmitted portion of the �le is
chosen from the uninterpreted enumeration NONE, ONE, and MANY. The relation
between these di�erent approaches|�xing the size vs. introducing abstraction
(and additional nondeterminism)|is worthy of investigation.

Although these experiments indicate several areas where additional research
is needed, they also demonstrate some promising directions. First, use of Mur�
to check the plausibility of proposed new invariants is representative of a useful
general technique: testing conjectures using some lightweight technique before
undertaking a full proof. In formal methods applications, many conjectures are
false when �rst proposed and it is best to discover these falsehoods as early
and as cheaply as possible, reserving the investment in a full proof until some
con�dence has been developed that it is likely to be successful. Lightweight
methods generally apply to speci�c, or reduced, cases of the full speci�cation,
and automated assistance for creating these reduced cases is a useful addition
to any support environment for formal methods. Apart from �nite state enu-
meration, other lightweight techniques include direct evaluation (for executable
speci�cations), and interactive simulation (for speci�cations that are not directly
executable). The latter methods are usually based on specialized and optimized
techniques for automated deduction (e.g., rewriting and enumeration over �nite
quanti�ers).

10

Second, the combination of theorem proving and model checking in the last
of the exercises reported above is representative of a promising direction for
integrating powerful, but narrow, techniques into a larger system. For example,
model checking in PVS is accomplished using an external decision procedure for
Park's �-calculus. This is extended to a decision procedure for �-calculus on the
hereditarily �nite fragment of PVS's type system6 by encoding their values in
propositional variables. The branching time temporal logic CTL is then de�ned
in PVS and its model checking problem is cast as a decision problem in �-
calculus. This allows CTL model checking to be smoothly integrated as a proof
procedure in PVS. A bene�t of this integration is that model checking is available
for any conjecture that has the appropriate semantic attributes, independently
of its linguistic representation. For example, a tabular speci�cation construct
was recently added to PVS; this was then used to formalize a requirements
methodology known as SCR, and model checking was then immediately available
for SCR speci�cations [11].

Interesting challenges for the future are to integrate other highly e�cient but
narrow procedures into a general purpose framework. Examples include model
checking methods for hybrid systems and binary moment diagrams.

4 Interaction with the User

I believe that formal methods can deliver most value when applied to problems
where traditional methods are inadequate. All the evidence points two princi-
pal sources of failure in complex systems: inadequate understanding of potential
interactions, and the intrinsically hard parts of a design. Examples of the for-
mer often arise in requirements speci�cation, where it is particularly di�cult
to anticipate all the interactions among the components of a system and be-
tween a system and its environment, particularly when operating in the pres-
ence of faults. In the case of Jet-Select, for example, our formalization revealed
that certain interactions between error reporting and optimization allowed the
possibility of �ring a failed jet [6]. Examples of the latter often concern algo-
rithms for concurrent, real time, or fault-tolerant behavior (e.g., cache-coherence
or clock-synchronization)|where, again, it is di�cult to anticipate all possible
interactions|or highly optimized calculations whose correctness rests on a long
or complex argument (e.g., SRT division and other e�cient
oating point algo-
rithms).

A consequence of this observation is that automated deduction in support of
formal methods will often be applied to very hard problems. It is, in my view,
quite unrealistic to expect that such di�cult problems can be solved automati-
cally. The issue, then, is how should the user guide and interact with the process
of automated deduction? This raises a dual issue: what information and services
can automated deduction provide to the user that will assist in the analysis of
very di�cult problems?

6 That is, types built recursively from the Booleans, enumerations, explicit �nite sub-
ranges of the integers, and records, tuples, predicates, and functions of these.

11

All interaction between the user and tools for automated deduction can be
considered an iteration of the following basic steps. What di�ers from tool to
tool is the relative e�ort devoted to each step, and the rate of iteration.

1. Decide the procedure to be used at the next step. This can range from
coarse decisions of overall strategy (\I'll use SMV") to �ne issues of tactics
(\instantiate the third variable of formula 3 with the following expression").

2. Transform the current representation of the problem into one that is appro-
priate for the procedure chosen in the previous step. This may be a major
undertaking with pencil and paper (e.g., to reduce an in�nite-state protocol
speci�cation to a �nite-state description in the language of SMV), or it may
involve mechanized transformations (including recursive application of this
whole activity).

3. Set appropriate switches and dials to tune the selected procedure (e.g.,
choose a variable ordering for BDDs, a weighting strategy for resolution,
or an ordering and orientation of lemmas for Nqthm).

4. Invoke the chosen procedure, contemplate the result returned, and iterate
the whole process (sometimes, iterate locally over step 3).

My opinion is that the ability to direct this activity in an e�cient and pro-
ductive manner is largely determined by the predictability of the consequences
selected by steps 1 and 3, the quality of information returned in step 4, and
the e�ciency and repeatability of step 2. The user should be able to select a
procedure in step 1 on the basis of a description of what it does, not how it
works. Deterministic proof procedures (e.g., elementary transformations such as
a case split, or quanti�er instantiation) and decision procedures are attractive
from this point of view, whereas heuristic procedures are not. By the same to-
ken, the switches and dials of step 3 should be minimized, since they generally
concern how a proof procedure works, rather than the substance of the conjec-
ture under examination. Few users whose interest is formal methods are willing
to learn enough about the workings of a proof procedure that they can master
many choices here.

The information returned in step 4 should include the result of applying the
proof procedure if it was successful (e.g., \proved," or a list of transformed or
new subgoals), and an explanation if it was unsuccessful. Decision procedures
and model checkers have a special value in the latter case, because they can often
return a counterexample that pinpoints the source of di�culty. The ability to
return useful information from failure is particularly important in applications
of automated deduction to formal methods because it is to be expected that
many conjectures will be false|indeed, the e�cient discovery and correction of
errors is one of the primary reasons for undertaking formal analysis. For this
reason, techniques for automated deduction used in formal methods should not
be biased towards successful outcomes|for example, they should not be set
up to terminate quickly on success at the expense of taking inordinate time to
discover failure.

The whole process of formal analysis will be repeated several times as errors
are discovered and the design or its speci�cation are adjusted. But the process

12

is not over once we successfully get to \proved" for the �rst time. Mechaniza-
tion allows formal methods to be used to explore and re�ne designs|just as
computational
uid dynamics is used to re�ne aerofoils. Our veri�cation of clock
synchronization, for example, has been modi�ed many times: to improve the
proof, to eliminate assumptions, to change the speci�cation so that it connects
better with the formalization of another part of the overall fault tolerant archi-
tecture, to tighten the bound on synchronization achieved, and to change from
a Byzantine fault model to a more complex \hybrid" model [13].

The fact that formal analysis will be repeated many times as a speci�cation
is �rst debugged and then re�ned has consequences for automated deduction.
First, it makes it essential, in my view, that step 2 of the interaction loop de-
scribed above be automated: as the design and its speci�cation evolve, we should
recalculate the \reduced" form required for a particular proof procedure, rather
than tinker with the existing one. In particular, for reliability as well as e�ciency,
I believe that reductions and abstractions from in�nite-state to �nite-state mod-
els should be formalized and mechanized, rather than left as an ad-hoc manual
process. Second, the \script" of a proof needs to be recorded in manner that
is reasonably robust to small changes in the speci�cation. This argues against
conducting and recording proofs in low-level and highly speci�c terms (e.g., \in-
stantiate formula 3 with x!1" where x!1 is the name of a Skolem constant), since
the details may change with the speci�cation. It will be more robust to indicate
a procedure (e.g., \use uni�cation to �nd an instantiation"), or to invoke truly
automated deduction (e.g., \�nish o� the proof using resolution"). Finally, it is
important to record dependencies among proofs and speci�cations, so that the
user can speedily answer questions such as \what assumptions does this proof
depend on?" and \what proofs may be a�ected if I change this lemma?"

5 Conclusion: The Need for Integration

The �eld of automated deduction has developed many powerful techniques that
could be applied to formal methods. However, the special character of formal
methods applications means that some techniques may need to be adapted to the
needs of those applications, (e.g., to return more useful information on failure)
and that priorities may be di�erent than in other areas (e.g., decision proce-
dures become more important and �rst order methods such as resolution may
become less so). More importantly, most techniques in automated deduction,
and also those related to model checking, tend to be rather brittle \point so-
lutions" that are e�ective against speci�c classes of problems, whereas formal
methods requires an integrated capability that is e�ective across a wide range
of applications. The research challenge in this area is therefore broadly that of
integration: di�erent techniques must work together, di�erent theories must be
decided in combination, theorem proving and model checking must cooperate,
and the needs and capabilities of e�cient automated deduction must in
uence,
and be in
uenced by, the design of expressive speci�cation languages. Success in
this endeavor will enrich both �elds, providing a new and exciting application for

13

automated deduction, and making formal methods a truly useful and practical
tool for the analysis of interesting real systems.

Acknowledgments

My opinions have formed through many stimulating discussions with my col-
leagues Judy Crow, David Cyrluk, Klaus Havelund, Friedrich von Henke, Patrick
Lincoln, Sam Owre, N. Shankar, and M.K. Srivas, and by experiences using PVS
(primarily built by Sam Owre and Shankar) and its predecessors.

References

Papers by SRI authors can generally be retrieved from http://www.csl.sri.
com/fm.html.

[1] Rajeev Alur and Thomas A. Henzinger, editors. Computer-Aided Veri�cation,

CAV '96, number 1102 in Lecture Notes in Computer Science, New Brunswick,
NJ, July/August 1996. Springer-Verlag.

[2] Saddek Bensalem, Yassine Lakhnech, and Hassen Sa��di. Powerful techniques for
the automatic generation of invariants. In Alur and Henzinger [1], pages 323{335.

[3] R. S. Boyer and J S. Moore. Integrating decision procedures into heuristic theorem
provers: A case study with linear arithmetic. In Machine Intelligence, volume 11.
Oxford University Press, 1986.

[4] David Cyrluk, Patrick Lincoln, and N. Shankar. On Shostak's decision procedure
for combinations of theories. In M. A. McRobbie and J. K. Slaney, editors, Auto-
mated Deduction|CADE-13, number 1104 in Lecture Notes in Arti�cial Intelli-
gence, pages 463{477, New Brunswick, NJ, July/August 1996. Springer-Verlag.

[5] David L. Dill. The Mur� veri�cation system. In Alur and Henzinger [1], pages
390{393.

[6] David Hamilton, Rick Covington, and John Kelly. Experiences in applying formal
methods to the analysis of software and system requirements. In WIFT '95:

Workshop on Industrial-Strength Formal Speci�cation Techniques, pages 30{43,
Boca Raton, FL, 1995. IEEE Computer Society.

[7] Klaus Havelund and N. Shankar. Experiments in theorem proving and model
checking for protocol veri�cation. In Formal Methods Europe FME '96, number
1051 in Lecture Notes in Computer Science, pages 662{681, Oxford, UK, March
1996. Springer-Verlag.

[8] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A formal Devel-

opment Support System. Springer-Verlag, London, UK, 1991.
[9] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of

faults. Journal of the ACM, 32(1):52{78, January 1985.
[10] Mogens Nielsen, Klaus Havelund, Kim Ritter Wagner, and Chris George. The

RAISE language, method and tools. Formal Aspects of Computing, 1(1):85{114,
January{March 1989.

[11] Sam Owre, John Rushby, and Natarajan Shankar. Analyzing tabular and state-
transition speci�cations in PVS. Technical Report SRI-CSL-95-12, Computer Sci-
ence Laboratory, SRI International, Menlo Park, CA, July 1995. Available, with
speci�cation �les, from http://www.csl.sri.com/csl-95-12.html.

14

[12] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
veri�cation for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107{125, February 1995.

[13] John Rushby. A formally veri�ed algorithm for clock synchronization under a
hybrid fault model. In Thirteenth ACM Symposium on Principles of Distributed

Computing, pages 304{313, Los Angeles, CA, August 1994. Association for Com-
puting Machinery.

[14] John Rushby. Mechanizing formal methods: Opportunities and challenges. In
Jonathan P. Bowen and Michael G. Hinchey, editors, ZUM '95: The Z Formal

Speci�cation Notation; 9th International Conference of Z Users, volume 967 of
Lecture Notes in Computer Science, pages 105{113, Limerick, Ireland, September
1995. Springer-Verlag.

[15] John Rushby and Friedrich von Henke. Formal veri�cation of algorithms for critical
systems. IEEE Transactions on Software Engineering, 19(1):13{23, January 1993.

[16] Robert E. Shostak. On the SUP-INF method for proving Presburger formulas.
Journal of the ACM, 24(4):529{543, October 1977.

[17] Mandayam K. Srivas and Steven P. Miller. Formal veri�cation of the AAMP5
microprocessor. In Michael G. Hinchey and Jonathan P. Bowen, editors, Applica-
tions of Formal Methods, Prentice Hall International Series in Computer Science,
chapter 7, pages 125{180. Prentice Hall, Hemel Hempstead, UK, 1995.

[18] Gunnar M. N. St�almarck. System for determining propositional logic theorems
by applying values and rules to triplets that are generated from Boolean formula.
United States Patent 5,276,897, January 4, 1994.

This article was processed using the LaTEX macro package with LLNCS style

15

