
From An Invitation to Formal Methods, a collection of short papers edited by Hossein

Saiedian, IEEE Computer, April 1996, Vol. 29, No. 4, pp. 16{30.

Acceptance of Formal Methods:

Lessons from Hardware Design�

David L. Dill John Rushby

Computer Science Department Computer Science Laboratory

Stanford University SRI International

Stanford CA 94305 Menlo Park CA 94025

Dill@cs.stanford.edu Rushby@csl.sri.com

Despite years of research, the overall impact of formal methods on mainstream
software design has been disappointing. By contrast, formal methods are beginning
to make real inroads in commercial hardware design. This penetration is the result
of sustained progress in automated hardware veri�cation methods, an increasing ac-
cumulation of success stories from using formal techniques, and a growing consensus
among hardware designers that traditional validation techniques are not keeping up
with the increasing complexity of designs. For example, validation of a new micro-
processor design typically requires as much manpower as the design itself, and the
size of validation teams continues to grow. This manpower is employed in writing
test cases for simulations that run for months on acres of high-powered workstations.

In particular, the notorious FDIV bug in the Intel Pentium processor [13], has
galvanized veri�cation e�orts, not because it was the �rst or most serious bug in
a processor design, but because it was easily repeatable and because the cost was
quanti�ed (at over $400 million).

Hence, hardware design companies are increasingly looking to new techniques,
including formal veri�cation, to supplement and sometimes replace conventional vali-
dation methods. Indeed, many companies, including industry leaders such as AT&T,
Cadence, Hewlett-Packard, IBM, Intel, LSI Logic, Motorola, Rockwell, Texas Instru-
ments, and Silicon Graphics have created formal veri�cation groups to help with
ongoing designs.1 In many cases, these groups began by demonstrating the e�ec-
tiveness of formal veri�cation by �nding subtle design errors that were overlooked
by months of simulation.

�This work was partially sponsored by DARPA through NASA Ames Research Center Contract
NASA-NAG-2-891.

1See the attendance list for FMCAD [15] at http://www.csl.sri.com/FMCAD96/attend.html:
there were 190 attendees, with more than half coming from industry.

1

Why have formal methods been more successful for hardware than for software?
We believe that the overriding reason is that applications of formal methods to
hardware have become cost-e�ective.

The decision to use a new methodology is driven by economics : do the bene�ts
of the new method exceed the costs of converting to it and using it by a su�cient
margin to justify the risks of doing so? The bene�ts may include an improved prod-
uct (e.g., fewer errors), but those most keenly desired are reduced validation costs
and reduced time-to-market (for the same product quality). The chief impediments
to applying traditional formal methods are that the costs are thought to be high
(e.g., large amounts of highly skilled labor) or even unacceptable (a potential in-
crease in time-to-market), while the bene�ts are uncertain (a possible increase in
product quality). Formal hardware veri�cation has become attractive because it has
focussed on reducing the cost and time required for validation rather than pursuit
of perfection.

Of course, hardware has some intrinsic advantages over software as a target for
formal methods. In general, hardware has no pointers, no potentially unbounded
loops or recursion, and no dynamically created processes, so its veri�cation problem
is more tractable. Furthermore, hardware is based on a relatively small number of
major design elements, so that investment in mastering the formal treatment of,
say, pipelining or cache coherence can pay o� over many applications. And the cost
of fabricating hardware is much greater than software, so the �nancial incentive to
reduce design errors is much greater.

However, we believe there are some lessons and principles from hardware ver-
i�cation that can be transferred to the software world. Some of these are listed
below.

Provide Powerful Tools

Technology is the primary source of increased productivity in most areas, and es-
pecially this one. In particular, tools that use formal speci�cations as the starting
point for mechanized formal calculations are the primary source of cost-e�ective ap-
plications of formal methods. This is exactly analogous to the use of mathematical
modeling and calculation in other engineering disciplines. Without tools to deliver
tangible bene�ts, formal speci�cations are just documentation, and there is little
incentive for engineers to construct them, or to keep them up to date as the design
evolves.

For hardware, a spectrum of tools has evolved to perform formal calculations at
di�erent levels of the design hierarchy and with di�erent bene�ts and costs. At the
lowest level are tools that check Boolean equivalence of combinational circuits (this
is useful for checking manual circuit optimizations). Techniques based on Ordered
Binary Decision Diagrams (BDDs) are able to check large circuits quite e�ciently,

2

and are now incorporated in commercial CAD tools [3]. At a higher level, designs
can often be represented as interacting �nite state machines, and tools that system-
atically explore the combined state space can check that certain desired properties
always hold, or that undesired circumstances never arise. Tools based on explicit
state enumeration can explore many millions of states in a few hours; tools that rep-
resent the state space symbolically (using BDDs) can sometimes explore vast num-
bers of states (e.g., 10100) in the same time, and can check richer properties (e.g.,
those that can be speci�ed in a temporal logic, in which case the technique is called
\temporal logic model checking") [10]. At the highest levels, or when very complex
properties or very large (or in�nite) state spaces are involved, highly automated the-
orem proving methods can be used to compare implementations with speci�cations.
These theorem proving methods include decision procedures for propositional calcu-
lus, equality, and linear arithmetic, combined with rewriting, and induction [7, 8, 2].
In all cases, the tools concerned are highly engineered so that they can deal with
very large formulas, and require little or no user interaction when applied in familiar
domains.

Use Veri�cation to Find Bugs

A tool that simply blesses a design at the end of a laborious process is not nearly as
impressive to engineers as a tool that �nds a bug. Finding bugs is computationally
easier than proving correctness, and a potential cost can be attached to every bug
that is found, making it easy to see the payo� from formal veri�cation. Traditional
validation methods already are used primarily as bug-�nders, so formal methods are
very attractive if they �nd di�erent bugs from those traditional methods|a much
more achievable goal than trying to guarantee correctness.

Shortcuts can be taken when formal veri�cation is used for �nding bugs rather
than proving correctness. For example, a system can be \down-scaled"|the number
or sizes of components can be drastically reduced. For example, a directory-based
cache-coherence protocol can be checked with just four processors, one cache line,
and two data values|such a down-scaled description will still have many millions
of states, but will be within reach of state exploration and model checking methods.
These methods can check the reduced system completely ; in contrast, simulation
checks the full system very incompletely. Both techniques �nd some bugs and miss
others, but the formal methods often detect bugs that simulation does not. For
example, cache-coherence bugs have been found in the IEEE standard FutureBus+
[6] and Scalable Coherent Interface (SCI) protocols [17] in just this way. Some
researchers are now applying these techniques to software.

3

Formal Techniques Must Be Targeted

In hardware, experience shows that control-dominated circuits are much harder to
debug than data paths. So e�ort has gone into developing formal veri�cation tech-
niques for protocols and controllers rather than for data paths. Targeting maximizes
the potential payo� of formal methods by solving problems that are not handled by
other means. Notice that the targeted problems often concern the hardest challenges
in design: cache coherence, pipeline (and now superscalar) correctness, and oating
point arithmetic. For software, correspondingly di�cult and worthwhile challenges
include those where local design decisions have complex global consequences, such
as the fault-tolerance and real-time properties of concurrent distributed systems.

Researchers Should Apply Their Work To Real Problems

Our research priorities are completely di�erent from what they would have been,
had we not exercised our ideas on realistic problems. Such e�orts have frequently
raised interesting new theoretical problems, as well as highlighting the need for
improvements in tools.

Of course, applying veri�cation strategies to real problems is also crucial for
building credibility. There is now a long string of success stories from academia and
industry where �nite-state veri�cation techniques have been applied to hardware and
protocols. A few documented examples include the protocol bugs mentioned above
in FutureBus+ (found using symbolic model checking with a version of CMU's SMV
system [10]) and SCI (found using explicit state enumeration with Stanford's Murphi
veri�er [9]), and formal veri�cation of the microarchitecture and microcode of the
Collins AAMP5 [16] and AAMP-FV avionics processors (using theorem proving
with SRI's PVS system [12]). Several groups have also demonstrated the ability to
detect bugs in the quotient-prediction tables of SRT division algorithms (similar to
the Pentium FDIV bug), and some have been able to verify speci�c SRT circuits
and tables [5, 14, 4, 11]. There have also been many unpublicized examples of
problems found by industrial formal veri�cation groups, which have helped them
build credibility among designers and managers in their companies.

Conclusion

We attribute the growing acceptance of formal methods in commercial hardware
design to the power and e�ectiveness of the tools that have been developed, to the
pragmatic character of the ways in which those tools have been applied, and to
the overall cost-e�ectiveness and utility that has been demonstrated. We believe
that formal methods can achieve similar success in selected software applications by
following the same principles.

4

References

[1] Rajeev Alur and Thomas A. Henzinger, editors. Computer-Aided Veri�cation,
CAV '96, volume 1102 of Lecture Notes in Computer Science, New Brunswick,
NJ, July/August 1996. Springer-Verlag.

[2] Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combina-
tions of theories with equality. In Srivas and Camilleri [15], pages 187{201.

[3] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293{318, September 1992.

[4] Randal E. Bryant. Bit-level analysis of an SRT divider circuit. In Proceedings of
the 33rd Design Automation Conference, pages 661{665, Las Vegas, NV, June
1996.

[5] E. M. Clarke, S. M. German, and X. Zhao. Verifying the SRT division algorithm
using theorem proving techniques. In Alur and Henzinger [1], pages 111{122.

[6] Edmund M. Clarke, Orna Grumberg, Hiromi Haraishi, Somesh Jha, David E.
Long, Kenneth L. McMillan, and Linda A. Ness. Veri�cation of the Futurebus+
cache coherence protocol. Formal Methods in System Design, 6(2):217{232,
March 1995.

[7] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. E�ective theorem proving
for hardware veri�cation. In Ramayya Kumar and Thomas Kropf, editors,
Theorem Provers in Circuit Design (TPCD '94), volume 910 of Lecture Notes in
Computer Science, pages 203{222, Bad Herrenalb, Germany, September 1994.
Springer-Verlag.

[8] David Cyrluk, Patrick Lincoln, and N. Shankar. On Shostak's decision proce-
dure for combinations of theories. In M. A. McRobbie and J. K. Slaney, editors,
Automated Deduction|CADE-13, volume 1104 of Lecture Notes in Arti�cial
Intelligence, pages 463{477, New Brunswick, NJ, July/August 1996. Springer-
Verlag.

[9] David L. Dill. The Mur� veri�cation system. In Alur and Henzinger [1], pages
390{393.

[10] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Boston, MA, 1993.

[11] Paul S. Miner and James F. Leathrum, Jr. Veri�cation of IEEE compliant
subtractive division algorithms. In Srivas and Camilleri [15], pages 64{78.

5

[12] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
veri�cation for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107{125, February 1995.

[13] Vaughan Pratt. Anatomy of the Pentium bug. In TAPSOFT '95: Theory and
Practice of Software Development, volume 915 of Lecture Notes in Computer
Science, pages 97{107, Aarhus, Denmark, May 1995. Springer-Verlag.

[14] H. Rue�, N. Shankar, and M. K. Srivas. Modular veri�cation of SRT division.
In Alur and Henzinger [1], pages 123{134.

[15] Mandayam Srivas and Albert Camilleri, editors. Formal Methods in Computer-
Aided Design (FMCAD '96), volume 1166 of Lecture Notes in Computer Sci-
ence, Palo Alto, CA, November 1996. Springer-Verlag.

[16] Mandayam K. Srivas and Steven P. Miller. Formal veri�cation of the AAMP5
microprocessor. In Michael G. Hinchey and Jonathan P. Bowen, editors, Ap-
plications of Formal Methods, Prentice Hall International Series in Computer
Science, chapter 7, pages 125{180. Prentice Hall, Hemel Hempstead, UK, 1995.

[17] Ulrich Stern and David L. Dill. Automatic veri�cation of the SCI cache coher-
ence protocol. In Advanced Research Working Conference on Correct Hardware
Design and Veri�cation Methods, pages 21{34. IFIP WG10.5, 1995.

6

