Larch: Languages and Tools for Formal
Specification

JV. Guttag and J.J. Horning, with
S.J. Garland, K.D. Jones, A. Modet, and JM. Wing

January 19, 1993

Preface

Building software often seems harder than it ought to be. It takes longer
than expected, the software’s functionality and performance are not as
wonderful as hoped, and the software is not particularly malleable or easy
to maintain. It does not have to be that way.

Thisbook isabout programming, and therole that formal specifications
can play in making programming easier and programs better. Theintended
audienceis practicing programmers and studentsin undergraduate or basic
graduate courses in software engineering or forma methods. To make
the book accessible to such an audience, we have not presumed that the
reader has formal training in mathematics or computer science. We have,
however, presumed some programming experience.

Theroles of formal specifications

Designing software is largely a matter of combining, inventing, and
planning the implementation of abstractions. The goa of design is to
describe a set of modules that interact with one another in simple, well-
defined ways. If thisisachieved, peoplewill be ableto work independently
on different modules, and yet the modules will fit together to accomplish
the larger purpose. In addition, during program maintenance it will be
possible to modify a module without affecting many others.

Abstractions are intangible. But they must somehow be captured and
communicated. That is what specifications are for. Specification gives
us a way to say what an abstraction is, independent of any of its
implementations.

The specifications in this book are written in formal specification
languages. We use formal languages because we know of no other way to
make specifications simultaneously as precise, clear, and concise. Anyone
who has attempted to write documentation for asubroutine library, drafted

vi Preface

contracts, or studied the tax code, knows how difficult it isto achieve even
precision in anatural language—Iet alone clarity and brevity.

Mistakes from many sources will crop up in specifications, just as they
doin programs. A great advantage of formal specification isthat tools can
be used to help detect and isolate many of these mistakes.

Some programmers are intimidated by the mere idea of formal
specifications, which they fear may be too “mathematical” for them to
understand and use. Such fears are groundless. Anyone who can learn
to use a programming language can learn to use a formal specification
language. After al, programs themselves are formal texts. Programmers
cannot escape from formality and mathematical precision, even if they
want to.

Overview of the book

Chapter 1 discusses the use of formal specificationsin program develop-
ment, providing acontext for the technical materia that follows. Chapter 2
contains a very short introduction to the notation of mathematical logic.
The chapter is aimed at those with no background in logic, and provides
all thelogic background needed to understand the remainder of the book.

The rest of the book is an in-depth look at Larch, our approach to the
formal specification of program components.

Chapter 3 gives an overview of the Larch two-tiered approach to
specification. Each Larch specification has components written in two
languages. one that is designed for a specific programming language
(a Larch interface language) and another that is independent of any
progranming language (LSL, the Larch Shared Language). It aso
introduces L P, atool used to reason about specifications. The descriptions
aredll brief; details are reserved for later chapters.

The remaining chapters are relatively independent, and can be read in
any order. Chapter 4isatutorial on LSL. It isnot areference manual, but it
doescover al features of thelanguage. Chapter 5isanintroductiontoLCL,
alLarch interface language for Standard C. It describes the basic structure
and semanticsof thelanguage, and it presents an extended example—al ong
with hints about how to use LCL to support astyle of C programming that
emphasizes abstraction. Chapter 6 is an introduction to LM3, a Larch
interface language for Modula-3. Chapter 7 discusses how L P can be used
to analyze and help debug specifications written in LSL. It contains a
short review of LP's major features, but is not comprehensive. Chapter 8

Preface Vi

presents a brief summary of what we believe to be the essence of Larch.

The book concludes with severa appendices. Appendix A contains a
handbook of L SL specifications. Appendix B contains C implementations
of the abstractions specified in Chapter 5. Appendix C deals with Larch’'s
customization of lexical conventions. Appendix D contains a bibliography
on Larch, and tells how to get more information about Larch, including
how to get some of the Larch tools.

Some history

This book has been a long time in the growing. The seed was planted
by Steve Zilles on October 3, 1973. During a programming language
workshop organized by Barbara Liskov, he presented three simple
equations relating operations on sets, and argued that anything that could
reasonably be called aset would satisfy these axioms, and that anything that
satisfied these axioms could reasonably be called a set. We devel oped this
idea, and showed that all computable functions over an abstract type could
be defined a gebraically using equations of asimpleform, and considered
the question of when such a specification constituted an adequate definition
[40].

As early as 1974, we redlized that a purely algebraic approach to
specification was unlikely to be practical. At that time, we proposed a
combination of algebraic and operational specifications which wereferred
to as “dyadic specification” [39].

By 1980 we had evolved the essence of the two-tiered style of
specification used in thisbook [43], although that term was not introduced
until 1983 [86]. An early version of the Larch Shared Language was
described in 1983 [44]. The first reasonably comprehensive description
of Larch was published in 1985 [50]. Many readers complained that the
contemporaneous Larch in Five Easy Pieces [51] should have been called
Larch in Five Pieces of Varying Difficulty. They were not wrong.

By 1990 some software tools supporting Larch were available, and
we began using them to check and reason about specifications. There
is now a substantial and growing collection of support tools. We used
them extensively in preparing this book. All of the forma proofs
presented have been checked using LP. With the exception of parts of the
LM3 specifications, all specifications have been subjected to mechanical
checking. This process did not guarantee that the specifications accurately
capture our intent; it did serve to help usfind and eliminate severa errors.

viii Preface

In the spring of 1990, we decided that it was time to make information
on Larch more widely available. We originally thought of an anthology.
The editors we contacted encouraged us to prepare a book, but urged us
to provide a more coherent and integrated presentation of the material. We
decided to take their advice. Had our families known how much of our
time this would take, they would surely have tried to talk us out of it. In
any event, we apologize to Andrea, David, Jane, Mark, Michael, and Olga
for al the attention that “ The Book” stole from them.

Acknowledgments

An important role in the development of Larch has been played by the
organizationsthat provided the funding necessary to keep the project aive
for so long. DARPA, NSF, the Digital Equipment Corporation, and Xerox
were all valued patrons. A specia debt of gratitudeis owed to Bob Taylor,
who as Director of the Computer Science Laboratory at the Xerox Palo
Alto Research Center and then as Director of Digital’s Systems Research
Center has been a consistent supporter and friend. He encouraged people
in hislaboratories to work on Larch, he encouraged and funded efforts to
transfer Larch to other parts of Digital, and he made possible the close
collaboration between us by facilitating numerous visits by John Guttag,
first to PARC and then to SRC, and by Jim Horning to MIT.

During the almost two decades we have been working on formal
specification, we have accumulated a large number of intellectua debts.
To list everyone who contributed an idea or an apt criticism would be
impractical.

Over the years, Larch and related topics have been discussed at many
meetings of |FIPWorking Group 2.3. Thesediscussionshel ped usto clarify
our thinking in a number of aress.

Our early work on formal specification was influenced by a variety
of people in the Department of Computer Science and the Computer
Systems Research Group at the University of Toronto. The high degree
of interaction between the theory and systems groups there provided a
conducive atmosphere for thiskind of work.

In the mid-seventies, John Guttag went to work at USC (and USC-ISl)
and Jim Horning at Xerox PARC. Co-workers and visitorsat both of these
places played a significant role in the development of the Larch Shared
Language and in hel ping us to understand the importance of support tools.

Preface iX

The most influential set of people have been our colleagues at
Digital (particularly SRC) and a MIT’'s Laboratory for Computer
Science (particularly members of the Systematic Program Devel opment
Group). They have encouraged our research and provided valuable
technical feedback. Without their help, Larch would not exist. A few
of these colleagues made particularly notable contributions. Jim Saxe's
relentless criticism and creative suggestions contributed enormously to the
development of both LSL and LP. Gary Feldman, Bill McKeeman, Yang
Meng Tan, and Joe Wild contributed greatly to the design of LCL, aswell
as building and maintaining the LCL Checker. Greg Nelson provided the
formal underpinnings on which the design of LM 3 rests.

Our four co-authors played vita rolesin the development of this book.
They have worked with us on so many versions of the materia in this
book that we have not tried to record which words were whose. Steve
Garland was a principal author of Chapters 2 and 7 and avital contributor
tothedesign of LSL, LCL, and LP. He aso devel oped the magjority of the
software used to check and reason about the specifications appearing in
this book. But for Steve, Larch would be a paper tiger. Kevin Joneswas a
principal designer of LM 3 and provided much of the material in Chapter 6.
Andrés Modet played amajor rolein the design and documentation of LSL.
Jeannette Wing designed the first Larch interface language (Larch/CLU)
and has been avita contributor to ailmost al aspects of Larch ever since.

Many other people have helped in the preparation of this book. William
Ang helped with the design of the artwork on the cover. Leslie Lamport
provided a Larch stylefor LaTeX that made our lifeimmeasurably easier.
Manfred Broy, Daniel Jackson, Eric Muller, Sue Owicki, Fred Schneider,
Mark Vandevoorde, and several anonymous reviewers provided extensive
and helpful comments on various drafts. Cynthia Hibbard carefully edited
the series of technical reportsthat led to this book. Judith Blount helped us
to assembleand check thelist of references. Jane Horning and Mary-Claire
Van Leunen helped organize the index.

Finally, we wish to thank the Palo Alto Police Department for providing
perspective. In August, a draft of this book was in a car that was stolen.
Severd days later the police recovered the car. When asked if any of the
contents of the car had been recovered, they replied “Nothing of value.”
The thieves had removed everything from the car, except the manuscript.

J.V. Guttag and J.J. Horning
October 1992

Contents

Preface

1 Specificationsin Program Development

11
12
13
14
15

Programming with abstractions
Findingabstractions
The many roles of specification
Stylesof specification
Forma specifications.

2 A LittleBit of Logic

21
22

Basiclogical concepts
Proof and consequences L.

3 AnIntroduction to Larch

31
3.2
3.3
3.4
3.5
3.6

4 LSL:
41
42
4.3
4.4
45
4.6
47
4.8
49

Two-tiered specifications
LSL, theLarch Shared Language
Interface specifications
Relating implementationsto specifications
LB theLarchproof assistant
Lexical and typographic conventions

The Larch Shared Language

Equational specifications,
Strongertheories Lo
Combiningtraits
Renaming
Stating intended consequences L L L
Recording assumptions.
Built-in operatorsand overloading
Shorthands
Furtherexamples.,

xii

Contents

LCL: A Larch Interface Languagefor C

51 TherelationbetweenLCLandC.
5.2 Function specifications
5.3 A guided tour through an LCL specification

LM3: A Larch Interface Language for Modula-3

6.1 Therelation between LM3and Modula3
6.2 TheLM3semanticmodd
6.3 A guided tour through an LM 3 specification

Using LP to Debug L SL Specifications

7.1 SemanticchecksinLSL
7.2 Proof obligationsfor LSL specifications
7.3 TrandatingLSL traitsintoLP
74 Proof mechanismsinLP
75 Checkingtheory containment
76 Checkingconsistency
7.7 Extendedexample
7.8 Perspective.

Conclusion

An LSL Handbook

A.l Introduction L.
A2 Foundations
A3 Integers oL
A4 Enumerations
A5 Contaners
A.6 Branchingstructures
A7 Maps.
A8 Rdations. o
A9 Graphtheory o
A.10 Propertiesof singleoperators
A.11 Propertiesof relational operators
Al120rderingso
A.13 Latticetheory oo
A.l14 Grouptheory
A.15 Numbertheory L oL
A.16 Foating point arithmetic

56
56
61
62

102
102
103
105

121
122
125
129
133
137
145
146
152

154

o O W

m

Implementations of Example LCL Interfaces
Lexical Formsand Initialization Files
Further Information and Tools

Classified Bibliography

References

I ndex

Contents

Xiii

211

222

225

228

230

239

Chapter 1

Specificationsin Program
Development

This book is about formal specification of programs and components of
programs. Weareinterested i n using specificationsto hel pinthe production
and maintenance of high quality software.

We begin this chapter with a few remarks about programming and the
role of abstraction. We then move on to discuss how specifications fit into
the picture.

1.1 Programming with abstractions

Building a software system is dmost entirely a design activity. Unfor-
tunately, software is usually designed badly or barely designed at al. A
symptom of negligence during design is the number of software projects
that are seriously behind schedule, despite having had design phases that
were“completed” right on schedule[10]. In practice, designisthe phase of
a software project that isdeclared “ complete” when circumstances require
it. Part of the problem isthat there are few objective criteriafor evaluating
the quality and completeness of designs. Another part is the elapsed time
between producing adesign and getting feedback from theimplementation
process.

This book describes how formal specifications can be used effectively
to structure and control the design process and to document the results.

The key to structuring and controlling the design process is, as
Machiavelli said, “Divide et impera.” Regrettably, he was not clear about
how to apply this stratagem to software development.

Two primary tools for dividing a problem are decomposition and
abstraction. A good decomposition factors a problem into subproblems
that:

e areadl at the samelevel of detail,
e can be solved independently, and

e have solutionsthat can be combined to solve the original problem.

2 1.1. Programming with abstractions

int sgrt(int x) {
requires x > 0;
nodi fi es not hi ng;
ensures V i: int
(abs(x - (result*result)) < abs(x - (i*i)));

FIGURE 1.1. A specification of aninteger square Root procedure

The last criterion is the hardest to satisfy. This is where abstraction
comes in. Abstraction involves ignoring details that are irrelevant for
some purpose. It facilitates decomposition by making it possible to focus
temporarily on simpler problems.

Consider, for example, the problem of designing a program to compile
asource language, say Modula-3, to atarget language, say Alphamachine
code. Much of the compiler can be designed without paying attention to
many of the detail sof either Modula-3 or the Alphaarchitecture. One might
well begin by abstracting to the problem of compiling a source language
with a deterministic context-free grammar to a reduced instruction (RISC)
set target language. One might then choose to model the compiler’s design
on the design of other compilers that solve the same abstract problem,
e.g., to decompose the problem into the separate problems of writing a
scanner, a parser, a static semantic checker, and several code generation
and optimization phases.

This paradigm of abstracting and then decomposing is typical of the
program design process. Two important abstraction mechanisms are used:
abstraction by parameterization and abstraction by specification.

Abstraction by parameterization alows a single program text to
represent a potentialy infinite set of computations or types. For example,
the C code

int twice(int x) {return x + Xx;}

denotes a procedure that can be used to double any integer.
Abstractionby specification allowsasingletext to represent apotentialy
infinite set of programs. For example, the specification in Figure 1.1
describes any procedure that, given an appropriate argument, computes
an integer approximation to its square root. Notice that it specifies the
required result, not any particular algorithm for achieving it. Notice aso
that it does not describe the result completely. For example, it does not

1. Specificationsin Program Development 3

constrain the result to be positive.

For the most part, software design is the process of inventing and
combining abstractions and planning their implementation.

There are severa reasons why it is better to think about combining
abstractions than to think about combining their implementations:

e Abstractions are easier to understand than implementations, so
combining abstractionsis less work.

e Relying only on properties of the abstractions makes software easier
to maintain, because it is clear what properties must be preserved
when an implementation is changed.

e Because an abstraction can have several implementations with
different performance properties, it can be used in various contexts
with different performance reguirements. Any implementation can
be replaced by another during performance tuning without affecting
correctness.

The key to good software design is inventing appropriate abstractions
around which to structure the software. Bad programmers typically don’t
even try to invent abstractions. M ediocre programmersinvent abstractions
sufficient to solve the current problem. Great programmers invent elegant
abstractions that get used again and again.

1.2 Finding abstractions

Structure is sometimesidentified with hierarchy; hierarchical decomposi-
tion is sometimes preached as the only “structured” programming method.
The problem with hierarchical decompositionisthat, asthe hierarchy gets
deeper, it leads to highly speciaized components that assume a great deal
of context. This decreases the likelihood that components will be useful
elsewhere—either in the current system or in software that isbuilt later. A
relatively flat structure usually encourages more reuse.

Important boundaries in the software should correspond to stable
boundaries in the problem domain. Such correspondence makes it more
likely that when customersask for asmall change in the observed behavior
of the software, the change can be accomplished by a small change to
the implementation. Stable boundaries in the problem domain frequently
involve data types, rather than individual operations, because the kinds of

4 1.2. Finding abstractions

objects that long-lived software manipulates tend to change more slowly
than the operations performed on those objects. This leads to a style of
programming in which data abstraction plays a prominent role.

A data type (data abstraction) is best thought of as a collection of
related operations that manipulate a collection of related values [68]. For
example, one should think of thetypei nt eger as providing operations,
such as 0 and +, rather than as an array of 32 (or perhaps 64) bits, whose
high-order bit is interpreted as its sign. Similarly, one should think of the
typebond asacollection of operationssuch asget _coupon_r at e and
get _current _yi el d rather than as arecord containing variousfields,

An abstract type is a type that is presented to a client in terms
of its specification, rather than its implementation. To implement an
abstract type, one selects a representation (i.e., a storage structure and
an interpretation that says how vaues of the type are represented) and
implements the type's operations in terms of that representation. Clients
of an abstract type invoke its operations, rather than directly accessing its
representation. When the representation is changed, programs that use the
type may have to be recompiled, but they needn’t be rewritten.

Even inlanguages, such as C, that provide no direct support for abstract
types, there is a style of programming in which abstract types play
a prominent role. Programmers rely on conventions to ensure that the
implementation of an abstract type can be changed without affecting the
correctness of software that uses the abstract type. The key restriction is
that programs never directly access the representation of an abstract value.
All access is through the operations (procedures and functions) provided
initsinterface.

1.3 Themany roles of specification

Abstractions are intangible. But they must somehow be captured and
communicated. Specification gives us a way to say what an abstraction
is, independent of any of its implementations. Writing specifications can
serve to clarify and deepen designers’ understanding of whatever they are
specifying, by focusing attention on possibleinconsi stencies, lacunae, and
ambiguities.

Once written, specifications are helpful to implementors, testers, and

For amore comprehensive discussion of the role of data abstraction in programming,
see[63].

1. Specificationsin Program Development 5

maintainers. Specifications provide “logical firewals’ by documenting
mutual obligations. Implementors are to write software that meets its
specification. Clients, i.e., writers of programs that use the software
interface, areto rely only on properties of the software that are guaranteed
by its specification.

During module testing and quality assurance, specifications provide
information that can be used to generate test data, build stubs, and
analyze information flow. During system integration, specifications reduce
the number and severity of interface problems by reducing the number
of implicit assumptions. Finally, specifications aid in maintenance by
recording the properties that must be preserved and by delimiting the
changes that might affect clients.

All of these virtues can be attributed to the information hiding provided
by specifications. Specification makes it possible to completely hide the
implementation of an abstraction from its clients, and to completely hide
the uses made by clients from the implementor [70].

1.4 Stylesof specification

A good specification should be tight enough to rule out implementations
that are not acceptable. It should also be loose enough to alow the most
desirable (i.e., efficient and elegant) implementations. A specification that
fails to rule out undesired “solutions’ is not sufficiently constraining;
one that places unnecessary constraints on implementations is guilty of
implementation bias.

A definitional specification explicitly lists properties that implemen-
tations must exhibit. The specification in Figure 1.1 is definitional. An
operational specification gives one recipe that has the required properties,
instead of describing them directly. Figure 1.2 contains an operational
specification of a sguare root procedure. It looks suspicioudy like a
program—it defines a function by showing how to compute it. In fact,
every program can be viewed as a specification. The converse is not true:
many specifications are not programs. Programs have to be executable,
but specifications don’t. This freedom can often be exploited to make
specifications simpler and clearer.

There are strong arguments in favor of both the operational and
definitional stylesof specification. The strength of operational specification
lies in its similarity to programming. This reduces the time required for
programmersto learn to use specifications. Someoperational specifications

6 1.4. Styles of specification

int sgrt(int x)
requires x > 0

effects

i = 0;

while i*i < x
i =i + 1 end

if abs(i*i - x) > abs((i - 1) * (i - 1) - Xx)
then returni - 1

el se return i

FIGURE 1.2. An Operational Specification of Integer Square Root

are directly executable. By executing specifications as“rapid prototypes,”
specifiersandtheir clientscan get quick feedback about the softwaresystem
being specified.

On the other hand, definitional specifications are not bound by the
constraint of constructivity. They are often shorter and clearer than
operational specifications. They are also easier to modularize, because
properties can be stated separatel y and then combined. Because definitional
specifications are so different from programs, they provide a distinct
viewpoint on systemsthat is frequently helpful.

It is often difficult to determine from an operational specification which
properties are necessary parts of the thing being specified and which are
unimportant. The specification in Figure 1.2, for example, alows fewer
implementationsthan the specificationin Figure 1.1. Animplementationis
certainly not obliged to usethesimple, but horribly inefficient, specification
algorithm, but it must compute the same result, and therefore must not
return a negative number. This constraint might be essential in some
contexts and insignificant in others. Figure 1.2 does not say, and cannot
easily be modified to say, whether the sign of the result matters. Figure 1.1,
on the other hand, can easily be strengthened to specify the sign if that is
important.

1.5 Formal specifications

The specifications in this book are written in formal specification
languages. A formal specification language provides:

1. Specificationsin Program Development 7

¢ a syntactic domain—the notation in which the specifications are
written,

¢ asemantic domain—auniverse of thingsthat may be specified, and

¢ asatisfaction relation saying which things in the semantic domain
satisfy (implement) which specificationsin the syntactic domain.

We use formal languages because it seemsto be the easiest way to write
specifications that are simultaneously precise, clear, and concise. Thisis
hardly surprising. It isno accident that such diverse activitiesas chemistry,
chess, knitting, and music all have their own formal notations.

Mistakes from many sources will crop up in specifications, just as they
doin programs. A great advantage of formal specification isthat tools can
be used to hel p detect and isolate many of these mistakes. Anyonewho has
used a strongly typed programming language knows that even something
assimpleasasyntax and type checker isinval uable. Comparable checking
and diagnosis of formal specificationsis easy and worthwhile, but we can
do even better. Variouskinds of formal specifications can be checked more
thoroughly by tool sthat hel p explore the consequences of design decisions,
detect logical inconsistencies, simulate execution, execute symbolically,
prove the correctness of implementation steps (refinements), etc.

Are formal specifications too “mathematical” to be used by typical
programmers? No. Anyone who can learn to read and write programs can
learn to read and write formal specifications. After all, each programming
languageis aformal language.

Chapter 2
A LittleBit of Logic

Thischapter contains al thelogic one needs to know to understand Larch.

The mathematical formalism underlying the Larch family of languages
is multisorted first-order logic with equality. We use a few notations and
basic concepts from this logic quite freely in the rest of the book. If you
are aready familiar with logic, you should scan this chapter quickly to
see which of the many “standard” logical notations we have adopted. If
you have no acquaintance with logic, don’t worry. Thisis a brief chapter,
and the parts of logic that we present are realy quite simple—almost as
simple as basic arithmetic and much simpler than common programming
languages. If you want afuller treatment of logic, you should consult one
of the many textbooks available, but there is no reason to do so before
continuing in this book.

To help the your intuition, we point out programming anal ogs of some
of the logical concepts. However, these analogies should not be pushed
too far; logic is not a programming language. We use logic to describe
properties that objects might or might not have (e.g., to describe what it
means to be the shortest path between two pointsin a graph), whereas we
use programming languages to describe how to produce certain objects
(e.g., to describe how to find a shortest path).

2.1 Basiclogical concepts

A logical language consists of a set of sorts and operators (function
symbols). Sorts are much like programming language types. An operator
(e.g., +) stands for a map from tuples of values to values; its signature
(eg., I nt, I nt—lnt)isatupleof sorts for its arguments (its domain
sorts, eg., | nt, I nt) and a sort for its result (its range sort, e.g., | nt).
A relational operator is a binary operator with range sort Bool (eg.,
<: E, E—~Bool). Operators are much like identifiers for value-returning
procedures in programming languages.

An application consists of an operator and a tuple of terms, each of
which has the same sort as the corresponding domain sort for the operator.
The sort of an application is the same as that of the operator’s range sort.

2. A Little Bit of Logic 9

Applications are much like procedure calls in programming languages.

Animportant special caseisan operator whose signature has no domain
sorts. We will write such applications without parentheses (e.g., enpt y
rather thanenpt y()). We refer to both the operator and its application as
aconstant.

The application of an infix operator may be written with the operator
between thetwo operands (e.g., x+y rather than+(x, v)). For operators
that are associative, such as +, we also alow more than two operands (e.g.,
X+y+z isequivalentto (x+y) +z andto+(+(x, y), 2z)).

A variable is an identifier standing for an arbitrary value of some
sort. Logical variables are different from programming language variables
because the value of alogica variable does not change over time.

A termisavariable, an application, or a parenthesized term.

An equation is a term of sort Bool , written as a pair of terms of the
same sort, joined by the the equality operator, =.

A predicate (also called aformula) is aterm of sort Bool . In order to
determine whether a given predicate is true or false, we must know how
to interpret the sorts and operators in the logical language. For example,
sqrt(5) = 2 isfaseifsqrt isinterpreted asthe square-root function
over thereal numbers and the constant operators 5 and 2 areinterpreted as
the real numbersfive and two. Alternatively, the predicate istrueif sqgrt
isinterpreted as the greatest-integer-less-than-or-equal -to-the-square-root
function. So it only makes sense to talk about whether a predicate is true
or falseif we are given a structure (interpretation) that assigns

e anonempty set of values to each sort, and

e atota function (that maps tuples of values of its domain sorts to
values of its range sort) to each operator.

Most logics come with a set of operators whose meanings are fixed
a priori, for example, the equality operator for each sort. Others are the
propositional connectives <> (if and only if), = (not), A (and), v (or), and
= (implies).

First-order logic provides severa waysto form predicates. We describe
these, as well as what it means for each kind of predicate to be truein a
given structure under a given assignment of valuesto its variables.

¢ Asmentioned above, an equation is a predicate consisting of a pair
of terms of the same sort, joined by the equality operator, =. Itistrue
if itstwo operands have the same value in the given structure under

10

2.1. Basiclogical concepts

the given assignment of values to variables. The predicate x =y
may be read as “x equals y.” The propositional connective < has
the same meaning as the equality operator for the sort Bool . The
predicate P < Qmay beread as“P if and only if Q"

A negation is a predicate preceded by the negation operator, —. Itis
true if the operand of - is false. The predicate —P may be read as
“not P.”

A conjunction is a pair of predicates joined by the conjunction
connective, A. A conjunction is true if both its operands are true.
Thepredicate P A Qmay be read as“both P and Q”

A disjunction is a pair of predicates joined by the digunction
connective, V. A digunctionistrueif at least one of its operandsis
true. The predicate P v Qmay be read as “either P or Qor both.”

An implication is a pair of predicates joined by the implication
connective, =-. An implication is true if its left operand is false or
itsright operand is true. Therefore, P = Q has the same meaning
as—-P v Q Thepredicate P = Qmay beread as“P implies Q’
or“if Pthen Q”

A binding is a predicate preceded by a variable and its sort. All
occurrences of the variable in the predicate are said to be bound
(and to have that sort). The binding is said to have captured the
variable it binds. A variable is free in a predicate if there are any
instances of it anywhere in the predicate that are not bound.

A quantified predicateisabinding preceded by either the existential
quantifier, 3, or theuniversal quantifier, V. Bindingsareonly alowed
immediately following quantifiers. The binding ¥x: S may be read
as“for al x of sort S.”

— A witness for a bound variable is a value that makes the
predicate in its binding true, in a structure under a given
assignment, when the assignment is modified to assign the
witnessto the bound variable.

— An existentially quantified predicate is true if thereis at |east
one witness for its bound variable. The predicate 9x: S (P)
may beread as “there existsan x of sort S such that P.”

2. A Little Bit of Logic 11

— A universally quantified predicate istrueif the predicate in its
binding istruefor all valuesof itsbound variable. Thepredicate
¥x: S (P) may beread as“for all x of sort S, P.”

If a predicate is true in al structures under al assignments to its free
variables, itissaid to bevalid or atautology. If there existsa structure and
an assignment to its free variables under which it istrue, it is said to be
satisfiable.

A sentence is a predicate with no free variables. By convention, we
consider a free-standing predicate with free variables as standing for
the sentence obtained by universally quantifying its free variables at the
outermost level. Since the truth of a predicate in a structure depends only
on the values assigned to its free variables, and since a sentence contains
no free variables, we talk about a sentence being true in a structure, rather
than in a structure under an assignment.

When asentenceistruein astructure, we say that the structureisamodel
of that sentence. Similarly, when each member of a set of sentencesistrue
in astructure, we say that the structure isamode of that set. Consider, for
example, a language with a single non-Bool sort, E, with one operator,
the binary relation <, and with three variables x, y, and z of sort E. Any
structure that isamodel of the two sentences

V X:E =(Xx < X)

VXEVY EVZE((X <Yy AYy < 2Z) =X < 2)

is commonly known as a strict partial order, and we call these sentences
axioms for strict partia orders.

A sentence S isalogical consequence of aset T of sentences if every
model of T isalso amaode of S. For example, the sentence

VX EVYE (X <y A Y < X)

is a consequence of the axioms for strict partial orders, because it is true
inall strict partial orders.

A set of sentencesis closed under logical consequenceiif it containsal
itslogical consequences. A theory isaset of sentences closed under logical
consequence. For example, the theory of strict partial orders is the set of
all consequences of the axioms for strict partial orders; equivaently, it is
the set of sentencestruein al strict partial orders.

A theory is complete if for every sentence S, either S or =S is in
the theory. Most of the time, we find ourselves dealing with incomplete
theories. For example, there is no computable set of sentences whose

12 2.2. Proof and consequences

logical consequences are exactly the sentences true about the natural
numbers under the usual operations of addition and multiplication.

A set of sentences is consistent if it has a model. It is easy to show
that a sentence S is a consegquence of aset T of sentences if and only if
T U {-S} isinconsistent. Likewise, atheory is consistent if and only if
it doesnot contain acontradiction, that is, the sentencet rue = fal se.

2.2 Proof and consequences

In the preceding section, we provided a semantic description of what it
means for a sentence S to be alogica consequence of a set of sentences
T, namely that every model of T aso be a model of S. Unfortunately,
this definition does not provide a practical means for determiningwhen S
isalogical consequence of T. For example, T may have infinitely many
models, some of its models may have infinitely many elements, etc.

Fortunately, there is a syntactic characterization of what it meansfor S
to be alogica consequence of T. A formal deduction system consists of
a set of sentences (called logical axioms) together with a set of functions
(called deduction rules) that map finite sets of sentences (the premises of a
deduction) to asinglesentence (itsconclusion). For example, the deduction
rule

states that Q can be deduced from the premisesPand P = Q

A proof based on aset T of sentences is afinite sequence of sentences
each of which is either alogica axiom, a member of T, or the conclusion
of a deduction rule applied to a set of sentences occurring earlier in the
proof. A sentence S isatheoremof T if it occursin some proof based on
T.

There arethree propertiesthat agood formal system of deduction should
POSSESS:

e It should not allow any spurious proofs. A system is sound if, for
any T, every theorem of T isreally alogical consequence of T.

e |t should provide enough proofs. A systemiscompleteif, forany T,
every logical consequence of T isaso atheorem of T.

2. A Little Bit of Logic 13

¢ It should be possibleto recognize what is aproof and what is not. A
systemis effectiveif, for any computable set T of sentences, the set
of proofsbased on T is a so computable.

There are several sound, complete, and effective formal systems of
deduction for first-order logic. For most of this book, the mere existence
of good formal systems of deduction is &l that counts. The choice of
a particular system, or the details of that system (which we refer to as
“the usua rules of first-order logic”), do not realy matter. What matters
is that the system is sound (because we do not want to prove anything
that isn't true) and effective (because we want to know when we have a
proof). Completeness of a deductive system matters less, since we often
find ourselves dealing with incomplete theories. Of course, the system of
deduction used in LP, Chapter 7, is sound and effective.

This concludes our whirlwind introduction to the vocabulary and
notation of mathematical logic used in the remainder of this book. We
rely primarily on the predicate-forming operators described on pages 9—
11.

Chapter 3

An Introductionto Larch

We begin thischapter by describing the L arch approach to specification and
illustrating it with afew small examples. Our intent isto give you ataste
of Larch. Details are reserved for later chapters. We then discuss LP, the
Larch proof assistant, a tool that supports all the Larch languages. Again,
we give only a taste. Finally, we discuss the lexical and typographical
conventions used for preparing and presenting the Larch specificationsin
this book.

3.1 Two-tiered specifications

The Larch family of languages supports a two-tiered, definitiona style of
specification. Each specification has componentswrittenintwo languages:
one language that is designed for a specific programming language and
another language that is independent of any programming language. The
former kind are Larch interface languages, and the latter is the Larch
Shared Language (LSL).

Interface languages are used to specify the interfaces between program
components. Each specification provides the information needed to
use an interface. A critical part of each interface is how components
communi cateacrosstheinterface. Communi cation mechanismsdiffer from
programming language to programming language. For example, some
languages have mechanisms for signalling exceptiona conditions, others
do not. More subtle differences arise from the various parameter passing
and storage all ocation mechanisms used by different languages.

It is easier to be precise about communication when the interface
specification language reflects the programming language. Specifications
written in such interface languages are generaly shorter than those written
ina“universal” interface language. They are also clearer to programmers
who use components and to programmers who implement them.

Each interface language deals with what can be observed by client
programs written in a particular programming language. It provides away
to write assertions about program states, and it incorporates programming-
language-specific notations for features such as side effects, exception

3. AnIntroduction to Larch 15

uses TaskQueue;
nmut abl e type queue;
i mut abl e type task;

task *get Task(queue q) {
nodi fies q;

ensures
if isEmpty(qg”)
then result = NIL A unchanged(q)
else (*result)’ = first(q") A q =tail(q");

FIGURE 3.1. An LCL interface specification

handling, iterators, and concurrency. Its simplicity or complexity depends
largely on the simplicity or complexity of its programming language.

Larch interface languages have been designed for a variety of
programming languages. The two that are discussed in this book are for
C and for Modula-3. Other interface languages have been designed for
Ada[15, 37], CLU [86], C++ [60, 90, 92], ML [93], and Smalltalk [17].
Thereare dso “generic’ Larch interface languages that can be specialized
for particular programming languagesor used to specify interfacesbetween
programs in different languages[16, 53, 61, 88].

Larch interface languages encourage a style of programming that
emphasizes the use of abstractions, and each provides a mechanism
for specifying abstract types. If its programming language provides
direct support for abstract types (as Modula-3 does), the interface
language facility is modeled on that of the programming language; if
its programming language does not (as C does not), thefacility isdesigned
to be compatible with other aspects of the programming language.

Figure 3.1 contains a sampl einterface specification for asmall fragment
of ascheduler for an operating system. The specification iswrittenin LCL
(aLarch interface language for C, described in Chapter 5). This fragment
introduces two abstract types and a procedure for selecting a task from a
task queue. Briefly, * means pointer to (asin C), resul t refers to the
value returned by the procedure, the symbol ~ is used to refer to the value
in alocation when the procedure is called, and the symbol * to refer to its
value when the procedure returns.

The specification of get Task is not self-contained. For example,
looking only at this specification there is no way to know which task

16 3.1. Two-tiered specifications

TaskQueue: trait

i ncl udes Nat
task tuple of id: Nat, inportant: Bool
i ntroduces
new. — queue
4 . task, queue — queue

i SEnpty, haslnportant: queue — Bool
first: queue — task
tail: queue — queue
asserts
gueue generated by new, -
V t: task, g: queue
i SEmpty(new) ;
—i sEmpty(t - q);
—hasl nportant (new) ;
hasl mportant(t 4 q) ==
t.inportant v haslnmportant(q);
first(t 4 q) ==
if t.inmportant v —haslnportant(q)
then t else first(q);
tail(t 4 q) ==
if first(t 4 q) =t then qgelset 4tail(q)

FIGURE 3.2. LSL specification used by getTask

3. AnIntroduction to Larch 17

get Task selects. Isit the one that has been in q the longest? Isit isthe
onein q with the highest priority?

Interface specifications rely on definitions from auxiliary specifications,
written in LSL, to provide semantics for the primitive terms they use.
Specifiers are not limited to a fixed set of notations, but can use
LSL to define specialized vocabularies suitable for particular interface
specifications or classes of specifications.

Figure 3.2 contains a portion of an LSL specification that specifies the
operators used in the interface specification of get Task. Based on the
information inthisLSL specification, one can deduce that the task pointed
to by the result of get Task is the most recently inserted i nmport ant
task, if such atask exists. Otherwiseit isthe most recently inserted task.

Many informal specifications have a structure similar to this. They
implicitly rely on auxiliary specifications by describing an interface in
terms of concepts with which readers are assumed to be familiar, such as
sets, lists, coordinates, and windows. But they don’t define these auxiliary
concepts. Readers can misunderstand such specifications, unless their
intuitive understanding exactly matches the specifier’s. And there is no
way to be sure that such intuitions do match. LSL specifications provide
unambiguous mathematical definitionsof thetermsthat appear ininterface
specifications.

Larch encourages a separation of concerns, with basic constructsin the
LSL tier and programming details in the interface tier. We suggest that
specifiers keep most of the complexity of specificationsinthe LSL tier for
several reasons:

e LSL specifications are likely to be more reusable than interface
specifications.

e LSL has a smpler underlying semantics than most programming
languages (and hence than most interface languages), so specifiers
arelesslikely to make mistakes, and any mistakesthey do make are
more easily found.

¢ Itiseasier to makeand to check assertionsabout semantic properties
of LSL specifications than about semantic properties of interface
specifications.

Many programming errors are easily detected by running the program,
that is, by testing it. While some Larch specifications can be executed,
most of them cannot. The Larch style of specification emphasizes brevity

18 3.2. LSL, the Larch Shared Language

and clarity rather than executability. To make it possible to validate
specifications before implementing or executing them, Larch permits
specifiers to make assertions about specifications that are intended to
be redundant. These assertions can be checked mechanically. Severa
tools that assist specifiers in checking these assertions as they debug
specifications are already in use, and others are under development.t

3.2 LSL, the Larch Shared Language

LSL specifications define two kinds of symbols, operators and sorts.
The concepts of operator and sort are the same as those used in
Chapter 2. They are similar to the programming language concepts of
procedure and type, but it is important not to confuse these two sets of
concepts. When discussing L SL specifications, wewill consistently usethe
words “operator” and “sort.” When talking about programming language
constructs, wewill usethewords“procedure” (or “function,” “routine,” or
“method,” asappropriate) and “type.” Asdiscussed in Chapter 2, operators
stand for total functions from tuples of values to values. Sorts stand for
disjoint non-empty sets of values, and are used to indicate the domainsand
ranges of operators. In each interface language, “procedure” and “type’
must mean what they mean in that programming language.

The trait is the basic unit of specification in LSL. A trait introduces
some operators and specifies some of their properties. Sometimesthe trait
defines an abstract type. However, it is frequently useful to define a set of
properties that does not fully characterize atype.

Figure 3.3 shows atrait that specifies a class of tables that store values
in indexed places. It is similar to specifications in many “algebraic’
specification languages.

The specification begins by including another trait, | nt eger. This
specification, which can be found in the LSL handbook in Appendix A,
page 163, suppliesinformation about the operators +, 0, and 1, which are
used in defining the operators introduced in Tabl e.

Theintroduces clause declares aset of operators, each with itssignature
(the sorts of its domain and range). Signatures are used to sort-check terms
in much the sameway as procedure callsare type-checked in programming
languages.

The body of the specification contains, following the reserved word

1See Appendix D for alist.

3. AnIntroduction to Larch

Table: trait

i ncl udes I nteger

i ntroduces
new. — Tab
add: Tab, Ind, Val — Tab
€ __: Ind, Tab — Boo
| ookup: Tab, Ind — Va
size: Tab — Int

asserts Vi, il: Ind, v: Val, t: Tab
-(i € new;
i € add(t, il, v) ==i =il v i €t;
| ookup(add(t, i, v), il) ==
if i =il then v else |ookup(t, il);
size(new) == 0;
size(add(t, i, v)) ==

if i €t then size(t) else size(t) + 1

FIGURE 3.3. Tabl e. | sl

19

20 3.3. Interface specifications

assert s, equations between terms containing operators and variables.?
The third equation resembles a recursive function definition, since the
operator | ookup appears on both the left and right sides. However, it
merely states a relation that must hold among | ookup, add, and the
built-in operator i f __t hen__el se__; it does not fully define | ookup.
For example, it doesn't say anything about the value of the term
| ookup(new, i).

Thetheory of atraitistheset of al logical consequences of itsassertions.
It is an infinite set of formulas in multisorted first-order logic with
equality. It contains everything that logicaly follows from its assertions,
but nothing else. The theory associated with Tabl e contains equalities
and disequalities that can be proved by substitution of equals for equals.
LSL also providestwo constructsfor non-equational assertionsthat can be
used to generate stronger (larger) theories. These important constructs are
discussed in Chapter 4.

It isinstructive to note some of thethingsthat Tabl e does not specify:

1. It does not say how tables are to be represented.
2. It does not give algorithms to manipul ate tables.

3. It does not say what procedures are to be implemented to operate on
tables.

4. It does not say what happensif onelooksup an| nd that isnotina
Tab.

Thefirst two decisionsarein the province of theimplementation. Thethird
and fourth are recorded in interface specifications.

3.3 Interface specifications

An interface specification defines an interface between program compo-
nents, and is written in a programming-language-specific Larch interface
language. Each specification must providetheinformation needed tousean
interface and to write programsthat implement it. At the core of each Larch
interface language is a model of the state manipulated by the associated
programming language.

2The equation connectivein LSL, ==, has the same semantics as the equality symbol,
=. It is used only to introduce another level of precedenceinto the language.

3. AnIntroduction to Larch 21

PROGRAM STATES

Sates are mappings from locs (abstract storage locations, also known as
objects) to values. Each variableidentifier has atype and isassociated with
aloc of that type. The major kinds of valuesthat can be stored in locs are:

e basic values. These are mathematical constants, like the integer 3
and the letter A. Such values are independent of the state of any
computation.

e exposed types. These are data structures that are fully described
by the type constructors of the programming language (e.g., C's
int * or Modula-3's ARRAY [1..10] OF I NTEGER). The
representation is visible to, and may berelied on by, clients.

¢ abstract types. Asmentionedin Chapter 1, datatypesarebest thought
of ascollectionsof rel ated operationson collections of rel ated val ues.
Abstract types are used to hide representation information from
clients.

Each interface language provides operators (e.g., ~ and ') that can be
applied to locs to extract their values in the relevant states (usually the
pre-state and the post-state of a procedure).

Each loc’s type defines the kind of valuesit can map to in any state. Just
as each loc has auniquetype, each LSL term has a unique sort. To connect
the two tiers in a Larch specification, there is a mapping from interface
language types (including abstract types) to LSL sorts. Each type of basic
value, exposed type, and abstract type is based on an LSL sort. Interface
specificationsare written using types and val ues. Properties of theseval ues
are defined in LSL, using operators on the corresponding sorts.

For each interface language, a standard LSL trait defines operators that
can be applied to values of the sorts that the programming language’s
basic types and other exposed types are based on. Users familiar with
the programming language will already have an intuitive understanding of
these operators. Abstract typesare typically based on sortsdefined in traits
supplied by specifiers.

PROCEDURE SPECIFICATIONS

The specification of each procedure in an interface can be studied,
understood, and used without reference to the specifications of other

22 3.3. Interface specifications

procedures. A specification consists of a procedure header (declaring the
types of its arguments and results) followed by abody of the form:
requires regP
nodi fi es nodLi st
ensures ensP

A specification places constrai ntson both clientsand i mplementati onsof
the procedure. The requires clauseis used to state restrictions on the state,
includingthevaluesof any parameters, at thetimeof any call. Themodifies
and ensures clauses place constraints on the procedure’s behavior when it
is called properly. They relate two states, the state when the procedure is
called, the pre-state, and the state when it terminates, the post-state.

A requiresclauserefersonly tovaluesin the pre-state. An ensures clause
may also refer to values in the post-state.

A modifies clause says what locs a procedure is alowed to change (its
target list). It says that the procedure must not change the value of any
locs visible to the client except for those in the target list. Any other loc
must have the same value in the pre and post-states. If thereis no modifies
clause, then nothing may be changed.

For each call, it is the responsibility of the client to make the requires
clausetruein the pre-state. Having done that, the client may assumethat:

¢ the procedure will terminate,
e changeswill belimited to thelocsin the target list, and
¢ the postcondition will be true on termination.

The client need not be concerned with how this happens.

The implementor of a procedure is entitled to assume that the
precondition holds on entry, and is only responsible for the procedure’'s
behavior if it is. A procedure's behavior is totally unconstrained if its
precondition isn't satisfied, so it is good style to keep the requires clause
weak. An omitted requires clauseisequivalenttor equi res true (the
weakest possible requirement).

TWO INTERFACE LANGUAGE EXAMPLES

Figure 3.4 contains a fragment of a specification writtenin LCL (aLarch
interface language for Standard C). Figure 3.5 contains a fragment of
a similar specification written in LM3 (a Larch interface language for
Modula3). They use the same Tabl e trait of Figure 3.3. We present

3. AnIntroduction to Larch 23

nmut abl e type tabl e;

uses Tabl e(table for Tab, char for Ind,
char for Val, int for Int);

constant int naxTabSi ze;

table table create(void) {

ensures result’ = new A fresh(result);
bool table_add(table t, char i, char c) {
nodifies t;
ensures result = (size(t”) < maxTabSize v i € t"7)
A (if result then t' = add(t”, i, c)
elset’ =1t7);

char table_read(table t, char i) {
requires i €t”7;
ensures result = lookup(t”, i);

}

FIGURE 3.4. A Sample LCL Interface Specification

24 3.3. Interface specifications

| NTERFACE Tabl e;
<* TRAITS Tabl e(CHAR FOR I nd, CHAR FOR Val ,
I NTEGER FOR Int) * >
TYPE T <: OBJECT
METHODS
Add(i: CHAR c: CHAR) RAI SES {Full};
Read(i: CHAR): CHAR
END;
PROCEDURE Create(): T,
CONST MaxTabSi ze: | NTEGER = 100;
EXCEPTI ON Ful | ;

< FIELDS OF T
val : Tab;
METHOD T. Add(i, c)
MODI FI ES SELF. val
ENSURES SELF.val’ = add(SELF.val, i, c)
EXCEPT si ze(SELF.val) > MuxTabSi ze
A —(i € SELF.val)
=> RAISEVAL = Full A UNCHANGED(ALL)
METHOD T. Read(i)
REQUI RES i ¢ SELF. val
ENSURES RESULT = | ookup(SELF.val, i)
PROCEDURE Cr eat e
ENSURES RESULT.val = new A FRESH(RESULT)

*

END Tabl e.

FIGURE 3.5. A Sample LM3 Interface Specification

3. AnIntroduction to Larch 25

voi d choose(int x, int y) int z; {
nodi fies z;
ensures z’ = Xx V z' =Y,

}

FIGURE 3.6. A specification of choose

these exampl es here simply to convey an impression of how programming
language dependencies influence Larch interface languages. At this point,
you should not be concerned with their exact meaning; the notations used
are described in detail in Chapters 5 and 6.

3.4 Relating implementations to specifications

In this book we emphasize using specifications as a communication
medium. Programmers are encouraged to become clients of well-specified
abstractions that have been implemented by others. This book does not
discuss the process of implementing specifications; there is dready a
copious literature on the subject.

One of the advantages of Larch’'s two-tiered approach to specification
is that the relationship of implementations to specifications is relatively
straightforward. Consider, for example, the LCL specificationinFigure 3.6
and the C implementation in Figure 3.7.

The specification defines a relation between the program state when
choose iscaled and the state when it returns. This relation contains all
pairs of states <pre, post> in which

e thestates differ only in the value of the global variable z, and

e inpost the value of z isthat of one of the two arguments passed to
choose.

The implementation also defines a relation on program states. This
relation contains all pairs of states <pre, post> in which

e the states differ only in the value of thevariable z, and

e inpost the value of z isthe maximum of the two arguments passed
tochoose.

26 3.4. Relating implementationsto specifications

voi d choose(int x, int y) {
if (x >y) z = x;
else z =vy;

FIGURE 3.7. An implementation of choose

We say that the implementation of choose in Figure 3.7 satisfies the
specificationin Figure3.6—or isacorrect implementation of Figure3.63—
becausetherel ation defined by theimplementationisasubset of therelation
defined by the specification. Every possible behavior that can be observed
by aclient of theimplementation is permitted by the specification.

The definition of satisfaction we have just given is not directly useful.
In practice, formal arguments about programs are not usualy made by
building and comparing relations. Instead, such proofs are usually done by
pushing predicates through the program text, in ways that can be justified
by appeal to the definition of satisfaction. A description of how to do this
appears in the books [21, 36].

The notion of satisfactionisabit more complicated for implementations
of abstract types, because the implementor of an abstract type is working
simultaneously at two level s of abstraction. To implement an abstract type,
one chooses data structures to represent val ues of the type, then writesthe
procedures of the type in terms of that representation. However, since the
specifications of those procedures arein terms of abstract val ues, one must
be able to relate the representation data structures to the abstract values
that they represent. Thisrelation isan essentia (but too oftenimplicit) part
of the implementation.

Figure 3.8 shows an implementation of the LCL specification in
Figure 3.4. A vaue of the abstract typet abl e isrepresented by a pointer
to a struct containing two arrays and an integer. You need not look at the
details of the code to understand the basi ¢ idea behind thisimplementation.
Instead, you should consider the abstraction function and representation
invariant.

The abstraction function is the bridge between the data structure used

3«Correct” is a dangerous word. It is not meaningful to say that an implementation
is “correct” or “incorrect” without saying what specification it is claimed to satisfy. The
technical sense of “correct” that is used in the formal methods community does not imply
“good,” or “useful,” or even “not wrong,” but merely “consistent with its specification.”

3. AnIntroduction to Larch

#i ncl ude "bool . h"
#defi ne naxTabSi ze (10)

typedef struct {char ind[naxTabSi ze];
char val [mraxTabSi ze] ;
int next;} tabl eRep;
typedef tableRep * table;

table table_create(void) {
table t;
t = (table) nalloc(sizeof(tableRep));
if (t == 0) {
printf("Malloc returned null in table_create\n");
exit(1);
}
t->next = O;
return t;
}
bool table_add(table t, char i, char c) {
int j;
for (j =0; j < t->next; j++)
if (t->ind[j] ==1i) {
t->val[j] =c¢
return TRUE

}
if (t->next == naxTabSize) return FALSE;
t->val [t->next ++] = c;
return TRUE;

char table_read(table t, char i) {
int j;
for (j = 0; TRUE | ++)
if (t->ind[j] ==1i) return t->val[j];

FIGURE 3.8. Implementing an abstract type

27

28 3.4. Relating implementationsto specifications

in the implementation of an abstract type and the abstract values being
implemented. It maps each value of the representation type to a vaue of
the abstract type. Here, we represent at abl e by a pointer, call itt, to
a struct. If the triple <i nd, val, next> contains the values of the
fields of that struct in some state s, then we can define the abstract value
represented by t instates ast oTab(<i nd, val, next>),where
toTab(<ind, val, next>) ==
if next = 0 then enpty
el se insert(toTab(<next - 1, ind, val >),
i nd[next], val[next])

Abstraction functions are often many-to-one. Here, for example, if
t->next = 0, t represents the empty t abl e, no matter what the
contentsof t - >i nd andt - >val .

The typedefsin Figure 3.8 define a data structure sufficient to represent
any value of type t abl e. However, it is not the case that any vaue
of that data structure represents a value of type t abl e. In defining the
abstraction function, we relied upon some implicit assumptions about
which data structures were valid representations. For example, t oTab
is not defined when t - >next is negative. A representation invariant
is used to make such assumptions explicit. For this implementation, the
representation invariant is

e Thevaueof next liesbetween 0 and raxTabSi ze:

0 < tesnext A tesnext < nmaxTabSi ze

¢ and no index may appear more than once in the fragment of i nd
that liesbetween 0 and next :

Vi,j:rint
(0 <i A <] Aj < teenext)
= (te>ind)[i] # (te>ind)[]j]

To show that that this representation invariant holds, we use a proof
technique called data type induction. Since t abl e is an abstract type,
we know that clients cannot directly access the data structure used to
represent at abl e. Therefore, all values of typet abl e that occur during
program execution will have been generated by the functions specified
in the interface. So to show that the invariant holds it suffices to show,
reasoning from the code implementing the functionson t abl es, that

3. AnIntroduction to Larch 29

e the value returned by t abl e_cr eat e sdtisfies the invariant (this
isthe basis step of the induction),

¢ whenever t abl e_add is cdled, if the invariant holds for t ~ then
theinvariant will also hold fort’ , and

e whenevert abl e_r ead iscdled, if theinvariant holdsfor t ~ then
theinvariant will also hold fort ' .

A dlightly different data type induction principle can be used to reason
about clients of abstract types. To prove that a property holds for al
instances of thetype, i.e., that it is an abstract invariant, one inducts over
all possible sequences of callsto the procedures that create or modify locs
of thetype. However, onereasons using the specifications of the procedures
rather than their implementations. For exampl e, to show that thesi ze(t)
isnever greater than maxTabSi ze one shows that

e the specification of t abl e_cr eat e implies that the size of the
t abl e returned isnot greater than maxTabSi ze, and

¢ the gpecification of t abl e_add combined with the hypothesis
t” < maxTabSi ze impliesthatt’ < maxTabSi ze.

Given the abstraction function, it is relatively easy to define what it
means for the procedure implementations in Figure 3.8 to satisfy the
specifications in Figure 3.4. For example, we say that the implementation
of t abl e_r ead satisfies its specification because the image under the
abstraction function of the relation between pre and post-states defined by
theimplementation (i.e., what one getsby applying the abstraction function
to al valuesof typet abl e intherelation defined by the implementation)
isasubset of the relation defined by the specification. Notice, by the way,
that any argument that the implementation of t abl e_r ead satisfies its
specification will rely on both ther equi r es clause of the specification
and on the representation invariant.

3.5 LP, the Larch proof assistant

The discussionsof LSL, LCL, and LM3 have alluded to tools supporting
those languages. LP is atool that is used to support al three. Chapter 7,
which is about reasoning about LSL specifications, contains a brief
description of LP. Here we give merely a glimpse of its use.

30 3.5. LP, the Larch proof assistant

LPisaproof assistant for a subset of multisorted first-order logic with
equality, thelogic—described in Chapter 2—onwhichthe Larch languages
are based. It is designed to work efficiently on large problems and to be
used by specifiers with relatively little experience with theorem proving.
Its design and development have been motivated primarily by our work
on LSL, but it also has other uses, for example, reasoning about circuit
designs[75, 79], dgorithmsinvolving concurrency [25], data types [92],
and algebraic systems|[65].

LP is intended primarily as an interactive proof assistant or proof
debugger, rather than as a fully automatic theorem prover. Its design is
based on the assumption that initia attemptsto state and prove conjectures
usually fail. So LPis designed to carry out routine (but possibly lengthy)
proof steps automatically and to provide useful information about why
proofs fail. To keep users from being surprised and confused by its
behavior, LP does not employ complicated heuristics for finding proofs
automaticaly. It makes it easy for users to employ standard techniques
such as proof by cases, by induction, or by contradiction, but the choice
among such strategiesis | eft to the user.

THE LIFE CYCLE OF PROOFS

Proving issimilar to programming: proofs are designed, coded, debugged,
and (sometimes) documented.

Before designing a proof it is necessary to formalize the things being
reasoned about and the conjecture to be proved. The design of the proof
proper starts with an outline of its structure, including key lemmas and
methods of proof. The proof itself must be given in sufficient detail to be
convincing. What it means to be convincing depends on who (or what) is
to be convinced. Experience shows that humans are frequently convinced
by unsound proofs, so we look for a mechanical “skeptic” that isjust hard
enough (but not too hard) to convince.

Once part of aproof has been coded, LP can be used to debug it. Proofs
of interesting conjectures hardly ever succeed the first time. Sometimes
the conjecture is wrong. Sometimes the formalization is incorrect or
incompl ete. Sometimesthe proof strategy isflawed or not detailed enough.
LPprovidesavariety of facilitiesthat can be used to understand the problem
when an attempted proof fails.

While debugging proofs, users frequently reformulate axioms and
conjectures. After any change in the axiomatization, it is necessary to
recheck not only the conjecture whose proof attempt uncovered the

3. AnIntroduction to Larch 31

Nat: trait
i ncl udes AC(+, Nat)
i ntroduces
0: — Nat
s: Nat — Nat
< __ ¢ Nat, Nat — Bool
asserts
Nat generated by 0, s
Vi, j, ki Nat
i +0==1,;
i+ s(j) ==s(i +]);
(i < 0);
0 < s(i);
s(i) < s(j) ==i < j
implies Vi, j, k: Nat
i < j =i < (j +Kk)

FIGURE 3.9. A trait containing a conjecture

problem, but a so the conjectures previously proved using the old axioms.
LP hasfacilities that support such regression testing.

LPwill, upon request, record asessionin ascript filethat can berepl ayed.
LP “prettyprints” script files, using indentation to reflect the structure of
proofs. It also annotates script files with information that indicates when
subgoals are introduced (e.g., in aproof by induction), and when subgoals
and theorems are proved. On request, asLP replays ascript file, it will halt
replay at the first point where the annotations and the new proof diverge.
This checking makesit easier to keep proof attempts from getting “out of
sync” with their author’s conception of their structure.

A SMALL PROOF

Figure 3.9 contains a short LSL specification, including a simple
conjecture (following the reserved word i npl i es) that is supposed to
follow from the axioms. Figure 3.10 showsa script for an LP proof of that
conjecture.

The decl ar e commands introduce the variables and operators in
the LSL specification. The assert commands supply the LSL axioms
relating the operators; the Nat gener at ed by assertion provides an
induction scheme for Nat . The prove command initiates a proof by

32 3.5. LP, the Larch proof assistant

set nanme nat
decl are sort Nat
declare variables i, j, k: Nat
decl are operators
0: — Nat
s: Nat — Nat
+: Nat, Nat — Nat
<: Nat, Nat — Boo

assert Nat generated by 0, s
assert ac +
assert

i + 0 ==

i+ s(j) ==s(i +])

-(i < 0)

0 < s(i)

s(i) < s(j) ==i < j

set nanme | enma
prove i < j =i < (j + k) by induction on |j
<> 2 subgoal s for proof by induction on |j
[basis subgoal
resume by induction on
<> 2 subgoal s for proof by induction on
[basis subgoal
[1 induction subgoa
[1 induction subgoa
[T conjecture
ged

FIGURE 3.10. Sample L P proof script

3. AnIntroduction to Larch 33

induction of the conjecture. The diamond (<>) annotations are provided
by LP; they indicate the introduction of subgoals for the inductions. The
box ([]) annotations are a so provided by LP; they indicate the discharge
of subgoals and, finaly, of the main proof. Ther esune command starts
a nested induction. No other user intervention is needed to complete this
proof. Theged command on the last line asks L P to confirm that there are
no outstanding conjectures.

3.6 Lexica and typographic conventions

The Larch languages were designed for use with an open-ended collection
of programming languages, support tools, and input/output facilities, each
of which may have its own lexical conventions and capabilities. To
avoid conflicts, LSL assigns fixed meanings to only a small number of
characters. To conformtolocal conventionsand to exploitlocally available
capabilities, LSL's character and token classes are extensible, and can be
tailored for particular purposes by initialization files. Since LSL terms
appear in interface specifications, corresponding extensibility is a part of
each interface language. Appendix C explains the structure of these files
and givestheinitialization files used in checking the specifications in this
book.

Thereare several semantically equival ent formsof each Larch language.
Any of these forms can be translated mechanically into any other without
losing information.

e Presentation forms are used in environments, such as this book, that
haverich character setswith symbolssuch asV, 3, A, v, €.

¢ Interchange form is an encoding of the language using a widely
available subset of the 1SO Latin* character set. Characters outside
this subset are represented by extended character s—sequences of
characters from the subset, preceded by a backslash (or other
designated character). Interchange form is the “lowest common
denominator” for each Larch language. Each Larch tool can parseit
and generate it on demand.

¢ Interactiveformsmay be used by Larch editors, browsers, checkers,
etc., for interaction with users. Many such forms will not be limited

4Thisis also a subset of the older ASCII subset.

34

3.6. Lexical and typographic conventions

to character strings for input and output (e.g., they will use menus
and pointing), and some may impose additional constraints and
equivalences (e.g., case folding, operator precedence).

Chapter 4
LSL: The Larch Shared Language

Thischapter providesatutoria introduction thethe L arch Shared Language
(LSL). It begins by systematically working through the features of the
language, illustrating each with a short example. It concludes with a
slightly longer example, designed to illustrate how the various features
of the language can be used in concert.

4.1 Equational specifications

LSL's basic unit of specification is a trait. Consider, for example, the
specification of tablesthat store valuesin indexed places, Figure4.1. This
is similar to a conventiona algebraic specification, as it would be written
in many languages [4, 20, 24, 96].

The trait can be referred to by its name, Tabl el. This should not be

Tablel: trait
i ntroduces
new. — Tab

add: Tab, Ind, Val — Tab
€ __: Ind, Tab — Bool
| ookup: Tab, Ind — Val

i sEmpty: Tab — Bool
size: Tab — Int

0,1: — Int
_+ _Int, Int — Int
asserts Vi, il: Ind, val: Val, t: Tab
-(i € new;
i € add(t, il, val) ==i =il v i €t;
| ookup(add(t, i, val), il) ==
if i =i1then val else |ookup(t, il);
si ze(new) == 0;
size(add(t, i, val)) ==

if i €t then size(t) else size(t) + 1;
i SEmpty(t) ==size(t) =0

FIGURE 4.1. A table trait

36 4.1. Equational specifications

confused withthe name of adataabstraction (e.g., thesort Tab) or operator
(e.g.,1 ookup). Thenameof atrait isindependent of the namesthat appear
withinit.

Thepart of thetrait followingi nt r oduces declaresalist of operators,
each with its signature (the sorts of its domain and range). As discussed
in Chapter 2, an operator stands for a total function that maps a tuple of
values of its domain sorts to its range sort. Every operator used in atrait
must be declared; signaturesare used to sort-check termsin much the same
way as expressions are type-checked in programming languages. Sorts are
denoted by identifiers and are declared implicitly by their appearance in
signatures.

The remainder of this trait constrains the operators by means of
equations. An equation consists of two terms of the same sort, separated
by = or ==. The operators= and == are semantically equivaent, but havea
different precedence, asdiscussed bel ow. We use== asthe main connective
in equations. Equations of theform term==t r ue can be abbreviated by
simply writing term; thus the first equationin Tabl el isan abbreviation
for

(i € new) ==true

Double underscores (--) in an operator declaration indicate that the
operator will be used in mixfix terms. For example, € is declared as a
binary infix operator. Infix, prefix, postfix, and distributed operators (such
as_+_,-_, 1V {_},[-],andif_then_el se_)areintegral parts
of many familiar mathematical and programming notations, and their use
can contribute substantially to the readability of specifications.

LSL’s grammar for mixfix terms is intended to ensure that legal terms
parse as readers expect—even without studying the grammar.t LSL has a
simple precedence scheme for operators:

e postfix operatorsthat consist of adot followed by an identifier (asin
field selectors, eg., . fi r st) bind most tightly;

e other user-defined operators and the built-in Boolean negation
operator — bind more tightly than

e the built-in equality operators (= and #), which bind more tightly
than

'However, writers of specificationsshould take pity on readers and study the grammar.

4. LSL: TheLarch Shared Language 37

e the built-in propositional connectives (A, Vv, and =), which bind
more tightly than

e the built-in conditiona connective (i f __t hen__el se__), which
binds more tightly than

e the equation connective (==).

For example, the equationv == x + w.a.b =y VvV z isequiv-
denttotheteemv = (((x + ((wa).b)) =vy) v z).LSL d-
lows unparenthesized infix terms with multiple occurrences of an operator
at the same precedence level, but not different operators; it associates such
terms from left to right. Fully parenthesized terms are always acceptable.
Thusx Ay A zisequivdentto(x A y) A z,butx vy A z
must bewrittenas(x vV y) A zorasx V (y A z),dependingon
which is meant.

Each well-formed trait defines a theory (a set of sentences closed
under logical consequence, see Chapter 2) in multisorted first-order logic
with equality. Each theory contains the trait’s assertions, the conventional
axiomsof first-order logic, everything that followsfrom them, and nothing
else. This loose semantic interpretation guarantees that formulas in the
theory follow only from the presence of assertionsin thetrait—never from
their absence. Thisisin contrast to algebrai ¢ specification languages based
oninitial algebras[34] or fina algebras[85]. Using thelooseinterpretation
ensuresthat al theorems proved about an incompl ete specification remain
valid whenit is extended.

Each trait should be consistent: it must not define atheory containing the
equationt rue == f al se. Consistency isoften difficult to proveandis
undecidable in general. Inconsistency is often easier to detect and can be
a useful indication that there is something wrong with a trait. Detecting
inconsistenciesis discussed in Chapter 7.

4.2 Stronger theories

Equationa theories are useful, but a stronger theory is often needed, for
example, when specifying an abstract type. The constructs gener at ed
by andpartiti oned by providetwowaysof strengthening equationa
specifications.

A generated by clause asserts that a list of operators is a complete set
of generatorsfor asort. That is, each value of the sort is equal to one that

38 4.2. Stronger theories

can be written as a finite number of applications of just those operators,
and variables of other sorts. This justifies a generator induction schema
for proving things about the sort. For example, the natural numbers are
generated by 0 and succ, and the integers are generated by 0, succ, and
pr ed.

The assertion

Tab generated by new, add

if added to Tabl el, could be used to prove theorems by induction over
newand add, since, according to thisassertion, any value of sort Tab can
be constructed from new by a finite number of applications of add. For
example, to prove

Vit:Tab, i:Ind (i €t = size(t) > 0)
one can do an inductive proof with the structure

e Basisstep:
Vi:lnd (i € new = size(new) > 0)
e Induction step:

V t:Tab, il:ind, v1:Val
(Vi:Ind (i €t = size(t) > 0)
= (Vi:lnd (i € add(t, i1, vl)
= size(add(t, i1, vl)) > 0)))

A partitioned by clause asserts that a list of operators constitutes a
complete set of observers for a sort. That is, all distinct values of the
sort can be distinguished using just those operators. Terms that are not
distinguishable using any of them are therefore equal. For example, sets
are partitioned by €, because setsthat contain the same elementsare equal .
Each partitioned by clause is a new axiom that justifies a deduction rule
for proofs about values of the sort. For example, the assertion

Tab partitioned by &, |ookup

adds the deduction rule
Viliind (il etl=il¢€t2),
Vil:ind (lookup(tl, il) = lookup(t2, il)))

4. LSL: TheLarch Shared Language 39

If added to Tabl el this partitioned by clause could be used to derive
theorems that do not follow from the equations alone. For example, to
prove the commutativity of add of the same value,

YV t:Tab, i,il:lnd, v Val
(add(add(t, i, v), i1, v)
= add(add(t, i1, v), i, Vv))

one discharges the two subgoal's

Vi2ind
(i2 € add(add(t, i, v), i1, v)
= i2 € add(add(t, i1, v), i, v))
Vi2ind
(1 ookup(add(add(t, i, v), i1, v), i2)
= |l ookup(add(add(t, i1, v), i, v), i2))

4.3 Combining traits

Tabl el contains three operators that it does not define: 0, 1, and +.
Without more information about these operators, the definition of si ze
is not particularly useful. We could add assertions to Tabl el to define
these operators. However, it is often better to specify such operatorsin a
separate trait that is included by reference. This makes the specification
more structured and makesit easier to reuse existing specifications, such as
thetraitsgivenin Appendix A. We might remove the explicit introductions
of these operatorsin Tabl el, and instead add an external reference to the
trait | nt eger (page 163):

i ncl udes I nteger

which not only introduces the operators, but also defines their properties.

The theory associated with an including trait is the theory associated
with the union of itsi nt r oduces and assert s clauses with those of
itsincluded traits.

It is often convenient to combine severa traits dealing with different
aspects of the same operator. Thisis common when specifying something
that is not easily thought of as a data type. Consider, for example,
the specifications of properties of relations in Figure 4.2. The trait
equi val encel has the same associated theory as the less structured
trait equi val ence2.

40 4.3. Combining traits

reflexive: trait
introduces __ o _: T, T — Boo
asserts V. x: T
X ¢ X

symetric: trait

introduces __ o : T, T — Boo
asserts vV x, y: T
X oy ==y o X

transitive: trait
introduces __ o _: T, T — Boo
asserts v x, vy, z: T
(X oy Ay oz) =>Xoz

equi val encel: trait
i ncludes reflexive, synmetric, transitive

equi val ence2: trait

introduces __ o : T, T — Boo
asserts v x, y, z: T

X ¢ X;

X oy ==Yy o X;

(X oy Ay oz) =>Xoz

FIGURE 4.2. Specificationsof kinds of relations

4. LSL: TheLarch Shared Language 41

equi val ence: trait
i ncl udes
(reflexive, symretric, transitive)(= for o)

FIGURE 4.3. An example of renaming

4.4 Renaming

Thetrait equi val encel relies heavily on the use of the same operator
symbol, ¢, and the same sort identifier, T, in the three included traits. In
the absence of such happy coincidences, renaming can be used to make
names coincide, to keep them from coinciding, or simply to replace them
with more suitable names, asin Figure 4.3, where ¢ isreplaced by amore
customary symbol for an equivalence relation.

In genera, thephrase Tr(namel f or name2) standsfor thetrait Tr with
every occurrence of name2 (which must be either a sort or an operator)
replaced by namel. If name2 isasort, thisrenaming changesthe signatures
of al of the operatorsin Tr in whose sighatures name2 appears.

The two specifications in Figure 4.4 have the same theory. Note that
the infix operator __€__ was replaced by the operator def i ned, and that
the operator | ookup was replaced by the mixfix operator [__] . All
renamings preserve the order of operands.

Any sort or operator in atrait can berenamed whenthat trait i sreferenced
in another trait. Some, however, are more likely to be renamed than others.
It is often convenient to single these out so that they can be renamed
positionally. For example, if the header for the trait had been

SparseArray(Val, Arr): trait
the reference
i ncl udes SparseArray(Int, IntArr)

would be equivaent to

i ncl udes SparseArray(Int for Val, IntArr for Arr)

4.5 Stating intended consequences

It is not possible to prove the “correctness’ of a specification, because
there is no absolute standard against which to judge correctness. But since

42 4.5. Stating intended consequences

SparseArray: trait
i ncl udes Tabl el(Arr for Tab, defined for €,
assign for add, _ [] for lookup, Int for Ind)

Spar seArrayExpanded: trait
i ntroduces
new. — Arr
assign: Arr, Int, Val — Arr
defined: Int, Arr — Bool
_[_1: Arr, Int — Val
i SEnpty: Arr — Bool
size: Arr — Int
0,1: — Int
_+ _Int, Int — Int
asserts Vi, il: Int, val: Val, t: Arr
—defined(i, new;
defined(i, assign(t, i1, val)) ==
i =il v defined(i, t);

assign(t, i, val)[il] ==

if i =il then val else t[il];
si ze(new) == 0;
size(assign(t, i, val)) ==

if defined(i, t) then size(t) else size(t) + 1;
i SEmpty(t) ==size(t) =0

FIGURE 4.4. Two specifications of sparsearrays

4. LSL: TheLarch Shared Language 43

specifications can contain errors, specifiersneed helpin locatingthem. LSL
specifications cannot, in general, be executed, so they cannot be tested in
the way that programs are commonly tested. LSL sacrifices executability
in favor of brevity, clarity, flexibility, generdlity, and abstraction. To
compensate, it provides other ways to check specifications.

This section briefly describes ways in which specifications can be
augmented with redundant information to be checked during validation.
Chapter 7 discussesthe use of L P, the Larch proof assistant, in specification
debugging.

Checkable properties of LSL specifications fall into three categories:
consistency, theory containment, and completeness. As discussed earlier,
the requirement of consistency means that any trait whose theory contains
theeguationtrue == fal seisillega.

Implies clauses make claims about theory containment. Suppose we
think that a consequence of the assertions of Spar seArr ay is that no
array with a defined element is empty. To formalize this claim, we could
add to Spar seArr ay

implies V. a: Arr, i: Int
defined(i, a) = -isEnpty(a)

The theory to be implied can be specified using the full power of LSL,
including equations, generator clauses, partitioning clauses, and references
to other traits. Attempting to verify that such a theory actually isimplied
can be helpful in error detection, as discussed in Chapter 7. Implications
also help readers confirm their understanding. Findly, they can provide
useful lemmas that will simplify reasoning about specifications that use
thetrait.

L SL doesnot require that each trait define a completetheory, that is, one
in which each sentence is either true or false. Many finished specifications
(intentionally) do not fully defineall their operators. Furthermore, it can be
useful to check the completeness of some definitions|ong before finishing
the specification they are part of. Therefore, instead of buildinginasingle
test of completeness that is applied to al traits, LSL provides a way to
include within atrait specific checkable claims about completeness, using
converts clauses.

Adding theclaim

i mplies converts isEnpty

to Tabl el saysthat thetrait'saxiomsfully definei sEnpt y. Thismeans
that, if the interpretations of all the other operators are fixed, thereis only

a4 4.6. Recording assumptions

oneinterpretationof i sEnpt y that satisfiestheaxioms. (A morecomplete
discussion of the meaning of convert s iscontained in Section 7.1.)
The stronger claim

i mplies converts isEnpty, | ookup

however, cannot be verified, because the meaning of terms of the form
| ookup(new, i) isnot defined by the trait. This incompletenessin
Tabl el could beresolved by adding another axiom to the trait, perhaps

| ookup(new, i) == errorVal

But it isgenerally better not to add such axioms. The specifier of Tabl el
should not be concerned with whether the sort Val has an err or Val
and should not be required to introduceirrelevant constraintson | ookup.
Extra axioms give readers more details to assimilate; they may preclude
useful specializations of a general specification; sometimes there simply
is no reasonabl e axiom that would make an operator convertible (consider
division by 0).

LSL providesanexenpt i ng clausethat liststermsthat are not claimed
to be defined.? Theclaim

i mplies converts isEnpty, | ookup
exenpting V i: Ind | ookup(new, i)

meansthat i SEnpty and | ookup arefully defined by the trait’'s axioms
plus interpretations of the other operators and of all terms of the form
| ookup(new, i).Thisisprovablefrom the specification of Tabl el.

4.6 Recording assumptions

Many traits are suitable for use only in certain contexts. Just as we write
preconditions that document when a procedure may properly be called,
we write assumptionsin traits that document when atrait may properly be
included. As with preconditions, assumptions impose a proof aobligation
on the client, and may be presumed within the trait containing them.

It isuseful to construct genera specifications that can be speciaized in
avariety of ways. Consider, for example, the specification in Figure 4.5.
We might specidize this to | nt eger Bag by renaming E to | nt and

Thisis different from “that are claimed not to be defined.”

4. LSL: TheLarch Shared Language 45

BagO(E): trait

i ntroduces
{}: — B
insert, delete: E, B — B
€ __: E B — Boo
asserts

B generated by {}, insert
B partitioned by delete, €
vV b: B e el, e2: E
delete(e, {}) =={1};
delete(el, insert(e2, b)) ==
if el = e2thenb
el se insert(e2, delete(el, b));
—(e € {});
el € insert(e2, b) ==el =e2 v el € b

FIGURE 4.5. A specification of bags

46 4.6. Recording assumptions

Bagl(E): trait
i ncl udes BagO, | nteger

i ntroduces
rangeCount: E, E, B — Int
__ < _: E E — Bool

asserts V el, e2, e3: E b: B
rangeCount (el, e2, {}) == 0;
rangeCount (el, e2, insert(e3, b)) ==
rangeCount (el, e2, b)
+ (if el < e3 A e3 < e2 then 1 else 0)

FIGURE 4.6. A specialization of Bag0

including it in atrait in which operators dealing with | nt are specified,
for example,

I ntegerBag: trait
i ncl udes | nteger, BagO(lnt)

The interactions between | nt eger and BagO are limited. Nothing in
BagO depends on any particular operators being introduced in including
traits, let done their having any special properties. Therefore Bag0 needs
no assumptions.

Consider, however, extending Bag0 to Bagl by adding an operator,
r angeCount , to count the number of entriesin a B that lie between two
values, asin Figure 4.6.

Aswritten, Bag1 saysnothing about the properties of the < operator. But
it probably doesn’t make sensein any specialization unless < provides an
ordering onthe values of sort E. We cannot define < withinBag1, because
it will depend onthetrait usingBagl. What we need isan assumes clause,
asinFigure4.7.

Since Bag2 may presumeits assumptions, its (local) theory isthe same
asif Tot al Or der (E) , page 194, had been included rather than assumed,;
Bag2 inherits all the introductions and assertions of Tot al O der .
Therefore, the assumption of Tot al Or der can be used to derive various
properties of Bag2, for example, that r angeCount is monotonicin its
second argument, as claimed in theimplies clause.

Thedifference betweenassunes andi ncl udes appearswhen Bag2
is used in another trait. Whenever atrait with assumptionsis included or
assumed, its assumptions must be discharged. For example, in

4. LSL: TheLarch Shared Language 47

Bag2(E): trait
assunes Total Order (E)
i ncl udes BagO, | nteger
i ntroduces rangeCount: E, E, B — Int
asserts Vv el, e2, e3: E bh: B
rangeCount (el, e2, {}) == 0;
rangeCount (el, e2, insert(e3, b)) ==
rangeCount (el, e2, b)
+ (if el < e3 A e3 < e2 then 1 else 0)
implies V el, e2, e3: E, b: B
el < e2 =
rangeCount (e3, el, b) < rangeCount(e3, e2, b)

FIGURE 4.7. An example of an assumption

I nt egerBagl: trait
i ncl udes | nteger, Bag2(lnt)

the assumption to be discharged is that the (renamed) theory associated
with Tot al Or der is a subset of the theory associated with the rest
of I nt eger Bagl (i.e, | nt eger). When a trait includes a trait with
assumptions, it is often possible to confirm that these assumptions are
syntactically discharged by noticing that the same traits are assumed or
included by theincluding trait. For example, thel nt eger trait, page 163
directly includes Tot al Or der. A more complete discussion of how
assumptionsare discharged is contained in Chapter 7.

4.7 Built-in operators and overloading

In our examples, we have freely used the predicate connectives defined
in Chapter 2. We have also used some heavily overloaded and apparently
unconstrained operators. i f __t hen__el se__, =, and #. These operators
are built into the language. Thisallowsthem to have appropriate syntactic
precedence. More importantly, it guarantees that they have consistent
meanings in all LSL specifications, so readers can rely on their intuitions
about them.

Similarly, LSL recognizes decimal numbers, such as 0, 24, and 1992,
without explicit declarations and definitions. In principle, each litera
could be defined within LSL, but such definitions are not likely to
advanceanyone' sunderstanding of thespecification. Deci nal Li t er al ,

48 4.7. Built-in operators and overloading

OrderedString(E, Str): trait
assumes Tot al Order (E)
i ncl udes DerivedOrders(Str)

i ntroduces
enpty: — Str
-] _:+ E Str — Str
< i Str, Str — Bool
asserts

Str generated by empty, -|
Ve el: E s, sl: Str
empty < (e -| s);
-(s < enpty);
(e -] s) < (el -] s1) ==
e <el v (e=¢el A s < sl
implies Total Order(Str)

FIGURE 4.8. An example of overloading

page 164 is a predefined quasi-trait that implicitly defines all the numeras
that appear in a specification.

In addition to the built-in overloaded operators and numbers, LSL
provides for user-defined overloadings. Each operator must be declared
in an i ntroduces clause and consists of an identifier (e.g., enpty)
or operator symbol (eg., --<__) and a signature. The signatures of most
occurrences of overloaded operators are deduciblefrom context. Consider,
for example, Figure4.8.3 Theoperator symbol < isused inthelast equation
to denote two different operators, one relating terms of sort St r, and the
other, terms of sort E, but their contexts determine unambiguously which
iswhich.

L SL providesnotationsfor disambiguating an overloaded operator when
context does not suffice. Any subterm of aterm can be qualified by its sort.
For example, a: Sina: S = b explicitly indicates that a is of sort S.
Furthermore, since the two operands of = must have the same sort, this
gualification also implicitly defines the signatures of = and b. The last
axiom in Figure 4.8 could a so be written as

(e -] s):Str < (el -| sl):Str ==
e:E < el:E Vv (e =el A s:Str < sl:Str)

3Deri vedOr der s isin Appendix A, pagel95. It relates the ordering relations <, >,
<, and > to each other.

4. LSL: TheLarch Shared Language 49

i ntroduces
cold, warm hot: — Tenp

succ: Tenp — Tenp
asserts
Tenp generated by cold, warm hot

equati ons
cold # warm
cold # hot;
warm # hot ;
succ(col d) == warm
succ(warm == hot

FIGURE 4.9. Expansion of an enumeration shorthand

Outsideof terms, overloaded operators can be disambiguated by directly
affixing their signatures, for example

i mplies converts <:Str, Str—Bool

4.8 Shorthands

Enumerations, tuples, and unions provide compact, readable representa-
tions for common kinds of theories. They are syntactic shorthands for
thingsthat could be written in LSL without them.

ENUMERATIONS

The enumeration shorthand defines a finite ordered set of distinct
constants and an operator that enumerates them. For example,

Tenmp enuneration of cold, warm hot

isequivaent toincluding atrait with the body appearing in Figure 4.9.

TUPLES

The tuple shorthand is used to introduce fixed-length tuples, similar to
records in many programming languages. For example,

Ctuple of hd: E, tl: S

is equivalent to including atrait with the body appearing in Figure 4.10.
Each field name (e.g., hd) isincorporated in two distinct operators (e.g.,
_.hd: C-Eandset _hd: C, E~C).

50 4.8. Shorthands

i ntroduces

.,] EE S—=C
_.hd: C—= E
__.tl: C—='S

set_hd: C, E— C

set_tl: C S —C
asserts

C generated by [__, _]

C partitioned by .hd, .tl
VY e,el: E s,s1: S
([e, s]).hd ==¢g;
([e, s]).tl ==s;
set_hd([e, s], el) ==[el, s];
set tl([e, s], sl) ==[e, sl]

FIGURE 4.10. Expansion of atuple shorthand

S tag enuneration of atom cell
i ntroduces
atom A — S

cell: C—'S
__.atom S — A
__.cell: s —=20C
tag: S — S tag
asserts
S generated by atom cell

S partitioned by .atom .cell, tag
Va A c C
atom(a) . atom== a;

cell(c).cell ==c;
tag(atom(a)) == atom
tag(cell(c)) == cell

FIGURE 4.11. Expansion of a union shorthand

UNIONS
The union shorthand corresponds to the tagged unions found in many
programming languages. For example,

S union of atom A, cell: C

is equivaent to including a trait with the body appearing in Figure 4.11.
Each field name (e.g., at om) is incorporated in three distinct operators
(eg.,atom —»S_tag,at om A—S, and __. at om S—A).

4. LSL: TheLarch Shared Language 51

InsertGenerated (E, C: trait
i ntroduces
empty: — C
insert: Ef C —» C
asserts
C generated by enpty, insert

FIGURE 4.12. InsertGenerated.Is|

4.9 Further examples

We have now covered all thefacilities of the Larch Shared Language. The
next series of examplesillustratestheir coordinated use.

The trait | nsert Gener at ed, Figure 4.12, abstracts the common
properties of data structures that contain elements, such as sets, bags,
gueues, stacks, and strings. | nsert Gener at ed is useful both as a
starting point for specifications of many different data structures and as an
assumption when defining generic operators over such data structures.

Thegenerated by clausein| nser t Gener at ed assertsthat each value
of sort C can be constructed from enpty by repeated applications of
insert (i.e,enpty andi nsert constituteacompleteset of generators
for C). This assertion is carried along when | nsert Gener at ed is
included in or assumed by other traits, even if those traits introduce
additional operators with range C.

The trait Cont ai ner, Figure 4.13, includes | nser t Gener at ed.
It constrains the operators introduced in | nsert Gener at ed, as well
as the operatorsit introduces. The axioms defining count guarantee that
insertionsarenot lost. Thisimplies, for example, that setsdo not satisfy this
definition of container. The last axiom asserts that, when applied to a non-
empty container, t ai | removes an element equal to the element returned
by head. Naotice that these axioms do not imply the stronger property
-i sEmpty(c) = insert(head(c), tail(c)) = c.

The converts clause adds checkabl e redundancy to the specification. The
implied formula follows from the last axiom and the two axioms defining
count . If head were to return something that was not in c, inserting it
back in would change the count for that value.

PQueue, Figure 4.14, specializes Cont ai ner by constraining head
and tail in a way that is consistent with the last two axioms of
Cont ai ner. The first implication states a fact that may be helpful in

52 4.9. Further examples

Container (E, O: trait
i ncl udes | nsert CGenerated, |nteger
i ntroduces
i sEmpty: C — Boo
count: E, C — Int

€ __: E C— Boo

head: C — E

tail: C - C
asserts

C partitioned by isEnpty, head, tai
Ve el: E c: C
i SEnpty(enpty);
—i sEnpty(insert(e, c));
count (e, enpty) == 0;
count (e, insert(el, c)) ==
count(e, c) + (if e = el then 1 else 0);
e € ¢ == count(e, ¢c) > O0;
-i sEmpty(c) =
count (e, insert(head(c), tail(c)))
= count(e, c)
i mplies
vc: C
—i sEnpty(c) = count(head(c), c) > O;
converts isEnpty, count, €

FIGURE 4.13. Container.lsl

4. LSL: TheLarch Shared Language

PQueue (E, Q: trait

assunes Total Order (E)
i ncl udes Container(Q for C
asserts Ve, el: E g Q
head(i nsert(e, q)) ==
if isEnmpty(qg) v e > head(q)
then e el se head(q);
tail (insert(e, q)) ==
if isEnmpty(qg) v e > head(q)
then q else insert(e, tail(q))

i mplies
Vg Q e E
e € g => (e < head(Qq))
converts head, tail, isEnpty, count, €

exenpting head(enpty), tail (enpty)

FIGURE 4.14. PQueue.ls|

53

54 4.9. Further examples

reasoning about PQueue and may hel p readerssolidify their understanding
of thetrait. The second implication states that the trait fully defineshead
andtail (except when applied to enpty), i SEnpty, count, and €.
The axioms that convert i SEnpty, count, and € are inherited from
Cont ai ner.

Unlikethe preceding traitsin thissection, PQueue specifies acomplete
abstract type constructor. In such a trait there is a distinguished sort,
sometimes called the type of interest [40] or data sort. An abstract type's
operators can be categorized as generators, observers, and extensions
(sometimes in more than one way). A set of generators produces all the
values of thedistinguishedsort. The extensionsare the remaining operators
whose range is the distinguished sort. The observers are the operators
whose domain includes the distinguished sort and whose range is some
other sort. An abstract type specification usually has axioms sufficient to
convert the observers and extensions. The distinguished sort is usually
partitioned by at |east one subset of the observers and extensions.

In the example of PQueue, Q is the distinguished sort, enpt y and
i nsert form agenerator set, t ai | is an extension, head, i SEnpty,
count and € arethe observers, and head, tai | , andi sEnpty form a
partitioning set.

A good heuristic for writing enough equations to adequately define an
abstract type is to write an equation defining the result of applying each
observer or extension to each generator. For PQueue, this rule suggests
writing equations for

1) isEnpty(enpty)
2) count(e, enpty)
3) e € enpty
4) head(enpty)
5) tail (enpty)
6) isEnmpty(insert(e, Q))
7) count(e, insert(el, Qq))
8) e € insert(el, Q)
9) head(insert(e, q))
10) tail(insert(e, Q))

PQueue containsexplicit equationsfor only thelast two of thesg; it inherits
equations for five more from Cont ai ner . The third and eighth termsin
the list do not appear explicitly in equations. Instead, € is defined by
relating it directly to count . The remaining two terms, head(enpty)
andtail (enpty), are explicitly exempted.

4. LSL: TheLarch Shared Language 55

Pai rwi seExtension (o, ®, E, O: trait
assunes Container(E, C

i ntroduces
o __: E E—SE
@ _:C C—=2C

asserts Vv el, e2: E, cl1, c2: C
enpty © enpty == enpty;,
(-isEmpty(cl) A -—isEnpty(c2))
= ¢l ® c2 = insert(head(cl) o head(c2),
tail(cl) ® tail(c2));
i mplies
converts @®
exenpting V e: E c¢: C
enpty ® insert(e, c),
insert(e, c) ® enpty

Pai rwi seSum{C): trait
assunes Container(Int, CQ
i ncl udes I nteger, Pairw seExtension(+, @, Int, C
i mpl i es Associative(®, O,
Conmut ative(® for o, Cfor T, C for Range)

FIGURE 4.15. Specification of generic operators

The traits Pai r wi seExt ensi on and Pai r wi seSum Figure 4.15,
specify generic operatorsthat can be used with variouskinds of containers.

Pai r wi seExt ensi on isagenerictrait that may beinstantiated using
a variety of data structures and operators. Given a container sort and a
binary operator, o, on elements, it defines a new binary operator, ©, on
containers. The result of applying @ to a pair of containers is a container
whose elements are the results of applying o to corresponding pairs of
their elements. The exenpt i ng clause indicates that, although the result
of applying ® to containers of unequal size is not specified, thisis not an
oversight.

The trait Pai rwi seSum specidizes Pai rwi seExt ensi on by
binding o to an operator, +, whose definition is to be taken from the trait
I nt eger (page163). Thevalidity of theimplicationsthat ¢ isassociative
and commutative stems from the replacement of o by +, whose axioms
in the trait | nt eger imply its associativity and commutativity. These
implications can be proved by induction over enpty andi nsert.

Chapter 5

LCL: A Larch Interface
Languagefor C

LCL isaLarchinterface language for Standard C. LCL isnot a C dialect.
Programs specified and devel oped with LCL are C programs, accepted by
ordinary C compilers. Use of LCL will tend to encourage some styles of
development, but it does not change the programming language.

This chapter isintended to serve three purposes:

e Present dmost dl of LCL in enough detail to permit interested
readersto start writing their own specifications. If you areinterested
in doing this, we strongly urge you to get the LCL tools first. The
toolsare available at no cost, as described in Appendix D.

e Provide examples of how two-tiered specifications are used in
practice, not just for C, but for any implementation language. While
the syntax for incorporating traits may differ, al Larch interface
specifications build upon LSL specifications in approximately the
same way.

¢ lllustrate a style of C programming in which abstract types play a
major role. While LCL can be used to specify interfacesinwhich al
types are exposed, that is not the style of programming for which it
is best suited. It is certainly not one we would wish to encourage.

Before presenting any interface specifications, we discuss the intended
relation between L CL specificationsand C programs, how names appearing
in LCL specifications are related to values in C computations, and the
overdl structure of LCL function specifications.

This chapter is intended for C programmers—practicing or potential.
We assume some familiarity with C. Readers unfamiliar with C may wish
to consult one of the numerous books on C.

5.1 Thereation between LCL and C

Cisagenera and flexible language that is used in many different ways. A
common style for organizing a program is as a set of program units, often

5. LCL: A Larch Interface Languagefor C 57

called modules. A module consists of an interface and an implementation.
The interface is a collection of types, functions, variables, and constants
for use in other modules, caled its clients.

A Cmodule M istypically represented by threefiles:

e M. c contains most of its implementation, including function
definitions and private data declarations.

e M. h contains a description of its interface, plus parts of its
implementation. Comments provide an informal specification of the
module. Typedeclarations, function prototypes, constant definitions,
declarations of external variables, and macro definitions provide al
the information about M that is needed to compileits clients.

e M. 0 contains its compiled form. Such files are linked together to
create executablefiles.

C modules specified using LCL have two additional files:

e M. I cl containsits LCL interface specification—aformal descrip-
tion of the types, functions, variables, and constants provided for
clients—together with comments providing informal documenta-
tion. It replaces M. h as documentation for client programmers. The
extra information it provides will aso be exploited by a planned
LCLint tool to perform more extensive checking than an ordinary C
lint.

e M. I h is a header file derived automatically from M. | ¢l to be
included in M. h. Mechanica generation of . | h files savesthe user
from having to repeat information in the . h file, saving work and
avoiding an opportunity for error. The implementation portion of
M. h must still be provided by the implementor.

M. | ¢l may also refer to another kind of file:
e . | sl filescontain auxiliary specificationsin theform of LSL traits

to precisely define operatorsusedin . | ¢l files.

THE LCL STORAGE MODEL

The LCL and LSL tiers of a specification are connected as described in
Chapter 3.

58 5.1. Therelation between LCL and C

Since LCL, like C, isstatically typed, the kind of values that an object?
can beboundto in astateisfixed. Similarly, each LSL value has a unique
sort. To connect the two languages, there is amapping from LCL typesto
LSL sorts. Each built-intypeof C, each typebuilt from C type constructors
(e.g., i nt *), and each abstract type defined in LCL is based on an LSL
sort. If an expression, e, denotes an object of type T and T is based on sort
S then thevalues of € and € are of sort S The sort on which atypeis
based does not appear explicitly in LCL specifications. Instead, an LCL
type specifier (a type name or an expression denoting a type) is used to
stand for its associated sort.

A standard LSL trait defines operators of the sorts upon which C built-
in types, eg., i nt and doubl e, are based. Users familiar with C will
aready know what these operators mean. Specifier-supplied traits are
used to introduce application-specific operators. Users familiar with the
operators involved may not need to examine such traits closely, but most
users are expected to read them. A uses clause is used to incorporate
specifier-supplied traits and to make the connection between types and
sorts.

Consider, for example, the specification fragment:

uses Vector(int for elem int[] for vec);

void vMult(int i, int a[]) {
nodi fies a;
ensures a’ =i * a”;
}

The uses clause incorporates the trait Vect or (not shown here) with two
renamings, the sort of the values contained by objects of type i nt for
el emand the sort of the values contained by objects of typei nt [] for
vec. The operator * used inthe ensur es clause is defined in that trait.
The equation containing this operator sort checks because the formal i
denotesani nt , theforma a an array object, and the expressionsa” and
a’ vectorsof integers.

VARIABLES, TYPES, OBJECTS AND STATES

Associated with each scope in a C program is an environment that maps
variables to typed objects. A type, as we said in Chapter 1, is most

lUnfortunately, “object” means several different things in different programming
languages. In this chapter, we use it in its C sense: memory locations that can contain
values; in the next chapter, in its Modula-3 sense.

5. LCL: A Larch Interface Languagefor C 59

conveniently thought of as a set of values and a set of operations that
can be applied to those values.

LCL provides two different kinds of types. Exposed types correspond
exactly to typesin C; abstract types® do not correspond to anything in C.

Although C provides no direct support for abstract types, thereisastyle
of C programming in which they play a prominent role. The programmer
relies on conventions to ensure that the implementation of an abstract
type can be changed without affecting the correctness of clients. The key
restriction is that clients never directly access the representation of an
abstract value. All accessisthrough the functions provided initsinterface.
LCL supports this style of programming by providing both mutable and
immutable abstract types. Values of immutabletypes are used in much the
same way as values of exposed types. Vaues of mutable types are used to
support a more object-oriented style of programming.

In LCL, type checking for exposed types follows the usua C rules.
For abstract types, however, type checking is done strictly on the basis of
names.

Abstractly, an object isacontainer for values of a particular type. More
concretely, it can be thought of as region of storage. The major kinds of
vaues are:

¢ basic values. These are mathematical abstractions, like the integer
3, the letter A, and the set {3}. Such values are independent of the
state of any computation. LSL traits are used to give meaning to
basic vaues.

e structs. These are (possibly heterogeneous) collections of objects,
each denoted by a field name. For example, given the variable
declaration

struct {int fieldA, char fieldB;} s;

s. fi el dA denotes an abject of type intObj and s. fi el dB an
object of type charObj.

e unions. These are somewhat similar to the variant records of other
programming languages. They are like structs, except that their
objects overlap in memory.

2See Chapter 3 for a more thorough discussion of abstract types.

60 5.1. Therelation between LCL and C

e pointers. These point to an object in a homogeneous sequence of
objects. If pisapointer,* (p + mi nl ndex(p)) denotesthefirst
object of the sequence and * (p + maxl ndex(p)) denotesthe
last object, where mi nl ndex(p) < 0 < maxl ndex(p) .3

Theinfix operator - > isasyntactic shorthand to dereferenceapointer
to a struct and then select one of its members. For example, a- >b
isequivaentto (*a) . b.

e arrays. These are homogeneous sequences of objects. If a is
an aray, a[0] denotes the first object in the sequence and
a[maxl ndex(a)] thelast object.

Although C makes little distinction between pointer and array
parameters, LCL treats them rather differently. In a C function
prototype, for example, char *s and char s[] areequivalent.
In an LCL prototype, however, char *s adlows access to
al of the characters from *(s + minlndex(s)) (recal that
m nl ndex is non-positive) to *(s + maxl ndex(s)), while
char s[] dlows access only to the characters from s[0] to
s[max| ndex(s)].

¢ objects. Thevalue of an object may itself be an object. For example,
the value of afield of a struct may itself be a struct. The value of an
object of a mutable abstract type is dways an object. Therefore, if
x isaformal parameter of a mutable abstract type, X~ stands for the
value contained in the pre-state by the object to which x is bound.

A function call may change the values of abjects accessibleto thecaller,
but it cannot change the caller’s environment. Therefore, for our purposes,
the state of a C computation can be thought of as a mapping from objects
to values.

Since parameters are passed by value in C, forma parameters should
be thought of as denoting values.* In the case of formals that are of type
array or of amutableabstract type, thisvalueisan object. Global variables
always denote abjects.

3C does not make the values of max| ndex and ni nl ndex available at runtime, but
they are useful for specifying and reasoning about programs.

4within the body of a function, an object is associated with a formal parameter, but
since that object does not exist in the environment of the caller, it is not relevant to the
specification.

5. LCL: A Larch Interface Languagefor C 61

In LCL, the postfix operators ~ and * are used to refer to the values
contained by objects in the pre-state and post-state of a function. They
can be applied to expressions denoting objects, collections of objects, or
sequences of objects.

e When applied to an object, " and * yield the value stored in that
object. For example, if x isaglobal variable of typei nt,x™ = 3
asserts that in the pre-state the value contained by the object to
which the variable x is bound is 3. On the other hand, if x is a
formal parameter of typei nt , x” = 3 does not sort check, since”
cannot be applied to abasic value.

e Whenappliedtoanarray,” and’ yieldavector containingthevalues
stored in the sequence of objects denoted by the array.

¢ When gppliedto astruct, " and’ yield atuple containing the values
stored in the collection of objects denoted by the struct. Here again,
we make a distinction between pointers and arrays. If afield of the
struct has an array type, thetuple contains a vector. If thefield has a
pointer type, the tuple contains a pointer.

5.2 Function specifications

A C function may communicate with its callers by returning a result, by
accessing objects accessible to the caller, by modifying such objects, or by
returning control to a different place. The specification of each functionin
an interface can be studied, understood, and used without reference to the
specifications of other functions. Asdiscussed in Chapter 3, aspecification
consists of afunction header (similar to a C function prototype) followed
by a body. Recall that the specification places constraints on both clients
and implementations of the function.

e Therequires clause (precondition) restricts the state and arguments
withwhich theclient isallowed to call the function; theimplementor
may presumeit on entry. An omitted requires clauseis equivalent to
the weakest possible requirement, r equi res true.

e The modifies clause says what a function is alowed to change. If
there is no modifies clause, then nothing may be changed.

62 5.3. A guided tour through an LCL specification

e The ensures clause (postcondition) places constraints on the
function’s behavior when it is called properly. It relates the state
when the function is called, the pre-state, and the state when it
terminates, the post-state. Theobject r esul t containsthevalue (if
any) returned by thefunction, and the object cont r ol containsthe
point to which control will be transferred.®

e The client is expected to establish the precondition before each
call; having done so, the client may presume that the function will
terminatein astate satisfying the postcondition, with changeslimited
to the modifies|ist.

¢ The implementor may presume the precondition upon each entry.
Under that presumption, theimplementation must terminatein astate
satisfying the postcondition, without changing any client-visible
object not in the modifieslist.

5.3 A guided tour through an LCL specification

To illustrate the use of most of LCL's features, we present and discuss
a small specification. This example is only superficially redlistic; it was
structured to use language constructsin the order we want to discussthem.
It isnot really atypical specification or an especially wonderful program
design. As you study this tutorial, you will probably find it instructive to
consider alternative designs and how they would be specified.

The example in this section uses various conventions for names,
formatting, comments, etc. These are not mandated by L CL ; specifications
should be written using the conventions of the organization for which they
areintended. Because theexampleisbeing used to document L CL features,
rather than areal interface, the density of comments embedded within the
formal text is low, and most of the comments are in the accompanying
prose.

Thisexampl e hasbeen machine-checked for syntax and type correctness.
The .l1cl and .| sl files have been checked by the LCL and LSL
Checkers, respectively. The . | h files were automaticaly generated by
the LCL Checker. The. | h,. h, and. c files were compiled by gcc (this

5In the pre-state, the value of control is the return address of the invocation.
Constructslike abor t and| ongj np can be specified as modificationsof cont r ol .

5. LCL: A Larch Interface Languagefor C 63

took longer than &l the Larch checking). Finally, the compiled code was

exercised by atest driver. Although wetried to be careful at each stage of

devel opment, each of the mechanical checks caught errors that we had not.
The exampleisavery simplified employee data base. We

e start with a couple of traits defining useful operators on strings,

e move to a simple interface using exposed types to represent
individual employee records,

¢ introduce an abstract data type for representing sets of employees,
¢ specify the database interface,

e present asmall test program,

¢ specify some modulesthat will be used in the implementation, and

e comment on the implementations.

STRING TRAITS

Thetraitsin Figures 5.1 and 5.2 present a coll ection of operators on strings.
They are used throughout the interface specificationsin this section.

Thetrait cstri ng, Figure 5.1, specializes the strings of the St ri ng
trait in Appendix A (page 173) to the null-terminated strings conven-
tionaly used in C programs. Note that this trait defines the operators
t hr oughNul |, sameStr and | enStr only when they are applied to
null-terminated strings.

The trait spri nt was written for specifying functions that convert
values to strings. It is intentionally weak. It doesn't say much about
the meanings of its operators. This allows considerable flexibility in
implementing the interface functions. The first equation guarantees that
different T values will have different string forms, without specifying
what those forms are. The second equation gives two important properties
of acceptabl e string forms. We coul d repeat these propertiesin theinterface
specification of each such function, but it is better to get them right once,
and then reuse the trait.

EMPLOYEE

Theinterface specified in Figure 5.3, enpl oyee, exportstwo constants,
three types, and four functionsto its clients.

64 5.3. A guided tour through an LCL specification

cstring: trait
i ncludes String(char, String), Integer(int for Int)
i ntroduces
null: — char
nul | Term nated: String — boo
throughNul I : String — String
saneStr: String, String — boo
lenStr: String — int
asserts
Vs, s1, s2: String, c: char
=nul | Terni nat ed(enpty);
nul | Term nated(s F c) ==
¢ = null Vv nullTerm nated(s);
nul | Ter m nat ed(s)
= throughNull (s F ¢) = throughNull(s);
=nul | Term nat ed(s)
= throughNull (s F null) = s F null
sameStr(sl, s2) ==
t hroughNul I (s1) = throughNull (s2);
lenStr(s) == len(throughNull(s)) - 1

FIGURE 5.1. cstring.Isl fragment

sprint(T, String): trait
i ncl udes cstring
i ntroduces
parse: String — T
unparse: T — String
isSprint: String, T — boo
asserts v t: T, s: String
parse(unparse(t)) ==1t;
isSprint(s, t) ==
parse(s) =t A null Term nated(s)
implies T partitioned by unparse

FIGURE 5.2. sprint.Is|

5. LCL: A Larch Interface Languagefor C

constant int naxEnmpl oyeeNaneg;
constant int enpl oyeePrintSize;

typedef enum { MALE, FEMALE, gender_ANY} gender;
typedef enum { MGR, NONMGR, j ob_ANY} j ob;
typedef struct {int ssNum

char nane[naxEnpl oyeeNane] ;

int salary;

gender gen;

job j;} enployee;

uses enpl oyeeConstants, sprint(enployee, char[]);

voi d enpl oyee_sprint(char s[], enployee e) {
requi res nmaxlndex(s) > enployeePrintSize;
nodi fies s;
ensures isSprint(s’, e)
A lenStr(s’') = enployeePrintSize;

}
bool enpl oyee_equal (enpl oyee *el, enpl oyee *e2) {

ensures result = sanmeStr(el—nanme”, e2—nane”)
A (el—ssNunf = e2—ssNunt)
A (el—salary”™ = e2—salary”)
A (el—gen” = e2—gen”)
A (el—)” = e2—)7);

}

bool enpl oyee_set Nane(enpl oyee *e, char na[]) {
requi res null Terni nated(na”);
nodi fi es e<»>nane;
ensures result = lenStr(na”) < maxEnpl oyeeNane
A (if result
t hen saneStr(e<>nanme’, na’)
A nul |l Term nat ed(e<>nane’)
el se ess>nane’ = es>nane’);
}
voi d enpl oyee_i nitMd(void) {
ensures true;

}

FIGURE 5.3. employee.lcl

65

66 5.3. A guided tour through an LCL specification

enpl oyeeConstants: trait
assumes CTrait
i ntroduces
maxEnmpl oyeeNane, enpl oyeePrintSize: — int
asserts equations
maxEmpl oyeeNane > 0 A maxEnpl oyeeNanme < 20;
enpl oyeePrintSize > 0 A enployeePrintSize < 80

FIGURE 5.4. employeeConstants.lsl

The constant declarations give symbolic namesfor valuesthat are used
elsewhere in the specification and that may be used by clients of the
interface. The allowable values of the two constants are restricted by
axioms in the trait enpl oyeeConst ant s, Figure 5.4. LCL interface
constants may be implemented either by macro definitionsor by C const
variables.

Theinterface defines, inthelinesthat ook like C typedefs, three exposed
types, gender, j ob and enpl oyee. Clients of this interface are being
told exactly how these types are represented, and clients may deal with
values of these typesin any way alowed by Standard C.

The uses clause in Figure 5.3 directly incorporates two LSL specifica
tions. The trait enpl oyeeConst ant s, which was written specificaly
for use in enpl oyee. | cl, constrains the values of the two exported
constants: any i nt from 1 to 20 is dlowed for maxEnpl oyeeName
and any i nt from 1 to 80 is alowed for enpl oyeePri nt Si ze. The
trait spri nt gives the meaning of operators such as i sSpri nt and
nul | Ter m nat ed (recal that sprint includes cstri ng) that are
used later in the specification. Notice that the use of spri nt involves a
renaming. The sort T of sprint.| sl isto be replaced by the sort on
which the type enpl oyee isbased and the sort St ri ng by the sort on
which thetypechar [] isbased.

The specification for each function gives both the precondition that is
assumed to hold in the pre-state (when the function is caled) and the
postcondition that is guaranteed to hold in the post-state (upon return).
The function enpl oyee_spri nt is typical of a kind found in many
interfaces. It converts enpl oyee values into a string form suitable for
printing, and stores this string in an array. Its specification begins with
its function prototype. LCL prototypes are more restricted than C's; LCL
requiresthat each of theformal parametersbenamed, sothat thebody of the

5. LCL: A Larch Interface Languagefor C 67

specification can refer to any parameter by name. Since all functionsin an
interface are exported, the keyword ext er n will be added automatically
when enpl oyee. | h isgenerated.

The body of the specification consists of three clauses.

e Therequires clause saysthat thearray s must be big enough to hold
the longest string that could ever be returned.

¢ Themodifies clause saysthat only the contents of the array s can be
changed.

e The ensures clause constrains the new value of s.

A good rule of thumb is that each object in the modifies clause should
appear in primed form at least once in the ensures clause—unless it is
intentionally not being constrained.

Array parameters are passed as pointersin C; s isapointer to an array.
The term s’ denotes the vector of characters contained by the actual
parameter corresponding to s upon return from enpl oyee_spri nt.
Since struct parameters are copied, e denotes avaue of typeenpl oyee,
rather than a pointer.

This specification does not say what string will be generated for each
enpl oyee value—only that it will have certain properties. We might
want such freedom, for example, in a module that will have different
implementationsfor different countries, languages, or output devices. This
specification does not even require an implementationto be deterministic.®
Althoughour implementationof enpl oyee doesnot exploit thisfreedom,
later interfaces will have implementations that do exploit alowed non-
determinism.

The specification of enpl oyee_equal may strike the reader as
surprisingly complicated. The questions arises, why didn’'t we use one
of the following, simpler, ensures clauses?

ensures result = ((*el) = (*e2))

ensures result = ((*el)” = (*e2)")

The first of these clauses asserts that r esul t is true exactly when el
and e2 point to the same struct. This is unlikely to be appropriate. The
second clause assertsthat r esul t istrue exactly when el and e2 point
to structs containing the same values. Even thisis likely to be too strong,

8A function is deterministic if its post-state is completely determined by its pre-state.

68 5.3. A guided tour through an LCL specification

sinceit requires that the arrays containing the names be the same beyond
theterminating nul | character.

The function enpl oyee_set Name returns avaue of type bool , the
one built-intype of LCL that ismissing from C. When LCL specifications
are checked, bool istreated as adistinct type.

The requires clause in enpl oyee_set Nane says that the function
should be called only with null-terminated strings. The implementation
is entitled to rely on this. Indeed, it must. It is not generally possible to
determine a runtime the max| ndex of an array. Yet without a guarantee
that a string is null-terminated, it is not safe to search for its terminating
null character, because the search might run past the end of the allocated
storage and generate references to nonexistent memory. Completely
defensive programming just isn't possible in C. The implementation
of enpl oyee_set Name in enpl oyee. ¢, Figure 5.8, relies on this
property from its specification. It may crash if na” isn’t null-terminated.

The modifies clause says that enpl oyee_set Nanme may change one
field of itsfirst argument, e- >nane, but nothing else. Unlikerequires and
ensures clauses, amodifies clause constrainseverything it doesn’t mention.

The ensures clause says that enpl oyee_set Nane will have one of
two outcomes. It will either:

¢ Make the nane field of its first argument the same as its second
argument (when both areinterpreted as strings), make the new value
of the nare field be null-terminated, and return TRUE, or

¢ Change nothing and return FALSE.

Furthermore, the first outcome will occur exactly when the new name
fits(i.e,l enStr(na”) < maxEnpl oyeeNane). Theuseof r esul t
in severa subterms of an ensures clause is a frequent idiom. Since the
predicate in the ensures clause is just a logica formula, it makes no
semantic difference whether the equation for r esul t is written first or
last. We are free to choose an order that hel psthe exposition or emphasizes
some particular aspect of the specification.

In this example, we include an i ni t Mod function as part of every
interface. Later we will discuss the way in which we use these functions.
The function enpl oyee_i ni t Mod is required by its specification to
have no visible effect, since it modifies nothing and returns no value. The
absence of arequires clause (equivalent to r equi res true) saysthat
it must always terminate.

5. LCL: A Larch Interface Languagefor C

/*PASS Qutput from LCL Version 1.7 11-AUG 1992 */
#i ncl ude "bool . h"
t ypedef enum {

MALE,

FEMALE,

gender _ANY} gender;

t ypedef enum {
MCR,
NONMGR,
j ob_ANY} j ob;

typedef struct {

int ssNum

char nane[maxEnpl oyeeNane] ;

int salary;

gender gen;

job j;
} enpl oyee;
extern void enpl oyee_sprint (char s[], enployee €);
extern bool enployee_equal (enployee *el, enployee *e2);
extern bool enployee_setNane (enployee *e, char na[]);

extern void enployee_inithvbd (void);

FIGURE 5.5. employee.lh

#i f !defined(EMPLOYEE_H)
#defi ne EMPLOYEE_H

#def i ne naxEnpl oyeeNane (20)

#defi ne enpl oyeeFormat "9®d % 20s %6s % 11ls 9%d. 00"
#define enpl oyeePrint Si ze (63)

#i ncl ude "enpl oyee. | h"

#define enpl oyee_initMd() bool _initMd()

#endi f

FIGURE 5.6. employee.h

69

70 5.3. A guided tour through an LCL specification

#if !defined(BOOL_H)
#define BOOL_H
#define FALSE 0O
#define TRUE (! FALSE)
typedef int bool;

#def i ne bool _i ni t Mod()
#endi f

FIGURE 5.7. bool.h

From the specificationin enpl oyee. | ¢l the LCL Checker generates
thefileenpl oyee. | h, Figure5.5. In additionto the appropriate typedefs
and function prototypes, it #i ncl udes bool . h, Figure 5.7, for the
implicitly imported interface bool . Thisisused in the implementation of
enpl oyee. h, Figure 5.6, and indirectly, inenpl oyee. c, Figure 5.8.

By convention, we start each . h fileswitha#i f that makessurethat its
body will only be included once into any module. Both enpl oyee. ¢
and al clients of enpl oyee will include enpl oyee. h. In turn,
enpl oyee. h includes enpl oyee. | h, which provides prototypes.
The implementation of the function enpl oyee_i ni t Mod is aso in
enpl oyee. h.

The file enpl oyee. h, Figure 5.6, contains macros defining the
constants maxEnpl oyeeNane and enpl oyeePri nt Si ze. Because
of arestrictionimposed by C, the definition of max Enpl oyeeNanme must
precede the inclusion of enpl oyee. | h, sinceit is used in the typedef
of enpl oyee. The#def i ne cannot be automatically generated because
the LCL processor has no way of knowing what value the constant is to
have; the specification leaves that design decision to the implementation.

The file enpl oyee. h aso implements enpl oyee_i ni t Mod. Our
convention is that each module initializes every module it explicitly
imports. Thusenpl oyee_i ni t Mod calsbool _i ni t Mbd.”

In general, M h contains, in order:

e A test of whether MH is #def i ned in the current context. This
make sure that, for example, aclient of M can safely includeit, and
other clients can include them both without getting errors caused by
repeated type definitions.

"Since the specification of enpl oyee_i ni t Mod guarantees that it modifies nothing,
calling it multiple times cannot have effects visible to clients.

5. LCL: A Larch Interface Languagefor C

#i ncl ude <stdio. h>
#i ncl ude "enpl oyee. h"

bool enpl oyee_set Nane(enpl oyee *e, char na []) {
int i;

for (i =0; na[i] !'="\0"; i++)

if (i == maxEnpl oyeeNane) return FALSE;
strcpy(e->nane, na);
return TRUE

bool enpl oyee_equal (enpl oyee * el, enployee * e2) {
return ((el->ssNum == e2->ssNum

&& (el->sal ary == e2->sal ary)
&& (el->gen == e2->gen)
&& (el->j == e2->j)
&& (strncnp(el->nane, e2->nane,
maxEnmpl oyeeNane) == 0));
voi d enpl oyee_sprint(char s[], enployee e) {
static char *gender[] ={"male", "ferale", "?"};
static char *jobs[] = {"nmanager", "non-nanager", "?"};

(void) sprintf(s,
enpl oyeeFor nat ,
e. ssNum
e. nare,
gender[e. gen],
jobs[e.j],
e.sal ary);

FIGURE 5.8. employee.c

71

72 5.3. A guided tour through an LCL specification

e A definition of MH.

e Definitions of al constantsdeclared in M | ¢l , either as macros or
asCconst variables.

¢ Concrete representations (typedefs) for any abstract types declared
inM 1 cl .

e A #includeof MI h.

e Macros, if any, for inline implementations of functions with
prototypesin M | h.

EMPSET

Enpset , inFigure5.9, isamutable abstract type. Values of thetypeare
objects that contain sets of enpl oyees. Aswe have seen, exposed types
are specified using C typedefs. Abstract types are specified as collections
of functionsthat manipulate val ues of the type. The representation of these
valuesishidden within theimplementation. Clients can create, modify and
examine enpset s by caling the functions specified in the interface, but
they cannot directly access the representation of enpset s.

Type checking for abstract types in both the LCL Checker and LCLint
is based on type names, not on their representations. However, within
the implementation of the module exporting an abstract type, LCLint
treats the abstract type and its representation as the same. This alows
the implementation to access the interna structure that is hidden from
clients.

The imports clause of enpset . | cl says that the specification of
the enpset interface depends on the specification of enpl oyee;
it gives enpset and its clients access to the constants, types and
functions exported by enpl oyee. It also makes the trait associated
with the enpl oyee interface a part of the specification of the enpset
interface. Such specification dependencies should not be confused with
implementation dependencies, where one module is used within the
implementation of another. Implementation dependencies are typicaly a
superset of the specification dependencies. Clients, however, should not
be concerned with implementation dependencies.

Theusesclause bringsintwotraits. Thetrait spri nt isusedinexactly
thesameway asitwasinenpl oyee. Theinvocation of theL SL handbook
trait Set (page 167) substitutesthe sort onwhichtypeenpl oyee isbased
for E and the sort on which typeenpset isbased for C.

5. LCL: A Larch Interface Languagefor C 73

i mports enpl oyee

nmut abl e type enpset;

uses Set (enpl oyee, enpset),
sprint(enmpset, char[]);

enpset enpset _create(void) {
ensures fresh(result) A result’ = { };
}

voi d enpset _final (enpset s) {
nodi fies s;
ensures trashed(s);
}

voi d enpset _cl ear (enpset s) {
nodi fies s;
ensures s’ = { };
}

bool enpset _insert(enpset s, enployee e) {
nodi fies s;
ensures result = (e € s") A s = insert(e, s7);
}

voi d enpset _insertUni que(enpset s, enployee e) {
requires —(e € s7);
nodi fies s;
ensures s’ = insert(e, s7);
}

bool enpset del ete(enpset s, enployee e) {
nodi fies s;

ensures result = e € s A s° = delete(e, s7);
}

enpset enpset _uni on(enpset sl1, enpset s2) {
ensures result’ = sl1”™ U s2° A fresh(result);
}

FIGURE 5.9. empset.Icl, part 1

74 5.3. A guided tour through an LCL specification

enpset enpset _di sj oi nt Uni on(enpset s1, enpset s2) {

requires s1” n s2” = { };
ensures result’ = sl1”™ U s2” A fresh(result);
}

voi d enpset _intersect(enpset sl1, enpset s2) {
nodi fies si;
ensures s1' = sl1”™ N s27;
}
i nt enpset_size(enpset s) {
ensures result = size(s");
}
bool enpset nenber (enpl oyee e, enpset s) {
ensures result = e € s7;
}
bool enpset subset (enpset sl, enpset s2) {
ensures result = s1™ C s27;
}
enpl oyee enpset _choose(enpset s) {
requires s” # { };
ensures result € s7;
}
char *enpset _sprint(enpset s) {
ensures isSprint(result[], s7)
A fresh(result[]);
}

voi d enpset _initMd(void) {

ensures true;

}

FIGURE 5.9. empset.Icl, part 2

5. LCL: A Larch Interface Languagefor C 75

enpset esl, es2;

esl = enpset_create();

es2 = esl;

enpset _i nsert(es2, e);

if (enpset_size(esl) == 1) printf("Sharing.");
else printf("No sharing.");

FIGURE 5.10. Codeto test for sharing

enpset esl, es2;

esl = enpset_create();

es2 = enpset_create();

if (esl == es2) printf("Sane object.");
else printf("Different objects.");

FIGURE 5.11. Code to test meaning of ==

Clients may write assignment statementsinvolving variables and values
of abstract types. Since the value of an object of a mutable abstract typeis
itself an object, assignments produce sharing. Consider, for example, the
code fragment in Figure 5.10.

Because of the semantics associated with mutable abstract types, this
program code will print “Sharing.” As we shall see shortly, it is the
responsibility of the implementor of the type to ensure that assignment
has the proper semantics.

Clientsmay not writecodethat usesC’'s== operator to compareval ues of
abstract types. The problem isthat for mutable abstract typesan expression
of theform x ==y would return true exactly when x and y denote the
same object. For example, the code in Figure 5.11 would print “ Different
objects.” Forimmutableabstract types, however, theresult of acomparison
using == would beunpredictable, sincetheimplementation hasthefreedom
to have or not have multiple copies of the same value. We return to this
point in Section 5.3.

The first two functions exported by enpset . | cl , enpset creat e
andenpset _fi nal ,aretypica of functionsfoundininterfacesexporting
abstract types.

The first conjunct in the ensur es clause of enpset _cr eat e says
that the function returns a fresh object of type enpset . Saying that it is
fresh meansthat it is not aliased to any objectsvisiblein the pre-state. The
second conjunct says that the value of the returned object is the empty set
of enpl oyees. This function will typically appear in a statement of the

76 5.3. A guided tour through an LCL specification

form es = enpset create(). Since enpsets are mutable, cals
to other functions exported by this interface, such as enpset _i nsert,
can then be used to change the value contained by the abject.

A client of enpset shouldcall enpset _fi nal whenitiscertainthat
an enpset object will never be referenced again. The clause ensur es
t rashed(s) saysthat uponreturnfromenpset _fi nal (es) nothing
can be assumed about the value of the object to which es isbound. The
assertiont rashed(s) isnot equivalent to

nodi fies s
ensures true

because referencing atrashed object can even cause the client program to
crash.

A good implementation of enpset _fi nal will free storage that isno
longer needed, athough this specification does not require it to. Since
a client has no information about how an enpset is represented, it
cannot directly free the storage consumed by an enpset . For example,
if enpset were implemented as a pointer to a pointer to a data structure,
thecall f r ee(es) would free only the pointer, not the data structure.

The third function in the interface, enpset _cl ear, is provided for
reinitializing an existing enpset . Unlike enpset _cr eat e, it does not
create anew enpset but rather has a side effect on an existing object.

Thefunctionsenpset _i nsert andenpset _i nsert Uni que both
add an enpl oyee to an enpset . The chief difference is that the latter
requires that the enpl oyee to be added is not already present. This may
make it possible to implement the function more efficiently. However, if
the requirement is violated, the behavior of enpset _i nsert Uni que
istotaly unconstrained by the specification. The implementation we give
later does not check the requirement. If it is violated the implementation
returns without complaint, but it breaks a representation invariant—thus
leading to unpredictable behavior on subsequent uses of the enpset .

The functionsenpset _uni on and enpset _di sj oi nt Uni on both
return the union of two enpset s. Once again, the requires clause makes
it possible to implement one more efficiently than the other. Notice that
even though s1 and s2 are not modified, the specifications refer to s1”
and s2”. The” isnheeded because s1 and s2 refer to objects. These must
be evaluated in some stateto get avalue. Heres1 and s 2 contain the same
values in the pre- and post-states. By convention, we use ~ rather than
for objectsthat are guaranteed to have the same valuesin both states.

Since both functionsare required (by f r esh(r esul t)) toreturn sets

5. LCL: A Larch Interface Languagefor C 77

that are not aliased to any objects visible in the pre-state, the sets that
they return can be modified without affecting the values of other sets. For
example, knowing that theresult enpset isfresh allowsthe client to pass
it to enpset _fi nal without worrying about having an effect on other
enpset s.

One way of ensuring freshness is to allocate new storage. This raises
the question of what happens if there is no storage to allocate. In the
implementations of these functions (see Appendix B), thisis handled by
printing amessage and terminating the program. But such behavior seems
to violate the specification, which says that they should return. We could
have augmented the specification to take the possibility of running out
of storage into account, but it would have been tedious and not very
informative. Almost every function may fail for lack of storagein the stack
or heap. Sothepossibility of exiting theentire program, instead of returning
from the function, isimplicit in every ensur es clause. This allows any
function to terminate the program. Of course, responsible implementors
do not take wanton advantage of this. For some applications it may be
important to specify interfaces that preclude running out of storage.

Therequires clause of enpset _choose isnecessary to guarantee that
the ensures clause is satisfiable. If s is empty, it is not possible to return
anenpl oyee that isamember. If s™ contains more than one el ement, the
specification alows any member s” to be returned. The implementation
we present later gains efficiency by being abstractly non-deterministic:
A singleabstract enpset vaue may have many different representations
(depending on the order in which itselementswereinserted), and thevalue
returned by enpset _choose is determined by the representation value
passed in.

Although the remaining functions are a necessary part of thisinterface,
they don't illustrate any new LCL features. An implementation of the
interface is given in Appendix B.

DBASE

The next specification describes a simple data base of employees.

Up to now we have presented modules by first giving an interface
specification, then its auxiliary LSL specification, and finaly, its imple-
mentation. This works well when the reader has good a priori intuition

8For simplicity, our implementation checksinline after each allocation. In practice, it is
better to isolate this by calling user-supplied allocation routines.

78 5.3. A guided tour through an LCL specification

about the meaning of the abstractions used in the interface specification.
When such intuition cannot be relied upon, it is often better to present the
auxiliary specification first, as we do here.

Figure 5.12 contains a trait that constrains the kinds of elements a
database may contain. Not coincidentaly, it corresponds closely to the
trait associated with enpl oyee. | cl . It isassumed by thedbase trait.

Figure 5.13 starts by including Set. This inclusion tells us that
a db is a set of enpl oyees. Recdl that enpl oyee is defined in
dbaseAssunpt i ons tobeat upl e withfive fields. Notice that since
adb ismerely aset of tuples, no invariant about the elements, e.g., that no

dbaseAssunptions: trait
i ncl udes Set (enpl oyee for E, enpset for Q)
gender enuneration of MALE, FEMALE, gender_ANY
job enuneration of MGR, NONMGR, job_ANY
enpl oyee tuple of ssNum int,
name: enpl oyee_nane,
salary: int,
gen: gender,
j: job

FIGURE 5.12. dbaseAssumptions.Is|

dbase: trait
assunes dbaseAssunpti ons
i ncludes Set(db for C, enployee for E, new for {},
hire for insert)
db_qgq tuple of g:gender, j: job, I: int, h: int
db_status enuneration of db_OK sal ERR gender ERR
j ObERR, dupl ERR

i ntroduces
query: db, db_g — enpset

mat ch: gender, gender — boo
mat ch: job, job — boo

fire, pronote: db, int — db
setSal: db, int, int — db
find: db, int — enployee
enpl oyed: db, int — boo
nunkEnpl oyees: db — int

FIGURE 5.13. dbase.ldl, part 1

5. LCL: A Larch Interface Languagefor C 79

asserts
vV e: enployee, k: int, g, gq: gender,

j, jg: job, g: db_qg, sal: int, d: db
query(new, q) =={ };
query(hire(e, d), q) ==
if match(g.g, e.gen) A match(q.j, e.j)
A g.l < e.salary A e.salary < g.h
then insert(e, query(d, q)) else query(d, q);
match(gq, g) == gq = gender _ANY VvV g = gq;
match(ja, j) ==jg = job_ANY v j = jq;
fire(new, k) == new,
fire(hire(e, d), k) ==
if e.ssNum = k
then fire(d, k) else hire(e, fire(d, k));
pronot e(new, k) == new;
pronmote(hire(e, d), k) ==
if e.ssNum = k
then hire(set_j (e, MER), pronote(d, k))
el se hire(e, pronote(d, k));
set Sal (new, k, sal) == new,
setSal (hire(e, d), k, sal) ==
if e.ssNum = k
then hire(set_salary(e, sal),
set Sal (d, k, sal))
el se hire(e, setSal(d, k, sal));
enpl oyed(d, k)
= (find(d, k).ssNum= k A find(d, k) € d);
enpl oyed(new, k) == fal se;
enpl oyed(hire(e, d), k) ==
e.ssNum = k Vv enployed(d, k);
nunEnmpl oyees(new) == 0;
nunEnmpl oyees(hire(e, d)) == nunkEnpl oyees(d)
+ (if enployed(d, e.ssNum then O else 1);

FIGURE 5.13. dbase.ldl, part 2

80 5.3. A guided tour through an LCL specification

two enpl oyees have the same ssNum isimplied. Thisisin contrast to
type db, whose specification, Figure 5.14, doesimply such an invariant.

In addition to the operators inherited from Set , the trait introduces
a number of operators that will prove useful in writing dbase. | cl .
Understanding the meaning of these operators is the key to understanding
dbase. | cl , Figure5.14.

The most interesting of these operators is query. The first two
axioms imply that the value of query(d, q) isthe set containing al
enpl oyeesinthe database that match thegender andj ob fields of g
and that have salariesbetween q. | and g. h.

The dbase interface encapsulates a database and a set of functions
to query and manipulate it. It exports two exposed types, db_q and
db_st at us, and a number of functions. It also contains our first use
of globa variables. LCL uses the same scope rules as C. However, LCL
extends the function prototype by including a list of the global variables
referenced by the function. LCLint will check that each global variable
accessed by the function body appearsin itsglobalslist.

At first glance, it may seem abit surprising that we have chosen to make
db an immutabletype. The reason for thisis that we don’'t intend to have
formals of type db. Changes to the global variable d will be described as
changes to the binding of the variable, not as mutations to the object to
which the variable is bound in the pre-state.

Asit happens, the global variablein dbase isaspecification variable.
Such variables are declared solely to facilitate writing specifications.
Neither the specification variable d nor the specification type db is
exported by the interface. Client code cannot refer to either. Furthermore,
since they are not exported, specification types and variables need not be
implemented. In fact, neither the type db nor the variable d appearsin our
implementation of thisinterface.

This example contains our first use of the an LCL claims clause. Such
clausesplay aroleanalogoustothei npl i es clausesof LSL. They assert
facts that the specifier believes should be derivable from the rest of the
specification. The cl ai ns clause here asserts that ssNumns are unique
keysfor employees. Theterm d® isanalogoustod™ and d’ ; it means “the
value of d in any state visibleto clients of thisinterface.” Therefore, this
claim is an invariant that must hold in al states visible to clients. As we
shall see shortly, such invariants can be verified by data type induction.

The function hire is closdy related to the operator hire of
dbase. | sl . Thedifferenceisthat it doessomeerror checking and returns

5. LCL: A Larch Interface Languagefor C 81

i mports enpl oyee, enpset, stdio;

typedef struct{gender g; job j; int |I; int h;} db_q;
typedef enum {db_OK, sal ERR, gender ERR, | obERR
dupl ERR, mi ssERR} db_st at us;
spec i nmmutabl e type db
spec db d;

uses dbase, sprint(ioStream db);

cl ai ms Uni queKeys(enpl oyee el, enployee e2) db d; {
ensur es
(el € d* A e2 € d* A el.ssNum = e2.ssNum
= (el = e2);

}

db_status hire(enployee e) db d; {
nodi fies d;
ensur es
(if result = db_OXK
then d = hire(e, d7) else d = d7)

A result =
(if e.gen = gender ANY t hen gender ERR
else if e.j = job_ANY then jobERR

else if e.salary < 0 then sal ERR
el se if enployed(d”, e.ssNunm then dupl ERR
el se db_OXK);
}
voi d uncheckedH re(enpl oyee e) db d; {
requires e.gen # gender ANY A e.j # job_ANY
A e.salary > 0 A —enployed(d”, e.ssNum;
nodi fies d;
ensures d = hire(e, d7);
}
bool fire(int ssNum) db d; {
nodi fies d;
ensures result = enployed(d”, ssNum
A d = fire(d’, ssNum;
}

FIGURE 5.14. dbase.lcl, part 1

82 5.3. A guided tour through an LCL specification

int query(db_q q, enpset s) db d; {
nodi fies s;

ensures s’ = s~
}
bool promote(int ssNum db d; {
nodi fies d;
ensur es
result = (enployed(d”, ssNum

A find(d®, ssNum).j = NONMGR)
A (if result then d = promote(d”, ssNun
else d = d7);
}

db_status setSalary(int ssNum int sal) db d; {
nodi fies d;

ensur es

result

(if enployed(d”, ssNum

then (if sal < 0 then sal ERR el se db_OK)
el se mi sSSERR)

U query(d”, Qq)
A result = size(query(d’, q));

A (if result = db_OK
then d = setSal (d”, ssNum sal)
else d = d7);

void db_print(void) db d; FILE *stdout; ({
nodi fi es *stdout "

ensures 3 s:ioStream (
(*stdout™)’ = wite((*stdout™) ", s)

A isSprint(d”, s));
}

voi d db_initMd(void) db d; {
nodi fies d;
ensures d = new,

}

FIGURE 5.14. dbase.lcl, part 2

5. LCL: A Larch Interface Languagefor C 83

aresult indicating the outcome of this checking.

ThefunctionuncheckedH r e doesno error checking. Of coursg, if it
iscalled when itsrequires clause does not hold, it islikely to do something
unfortunate that may not be detected for quite some time. Both functions
modify the specification variabled. Sinced isaglobal variablerather than
aformal parameter, it can be accessed directly; thereis no need to passin
apointer toit.

Thefunctionquer y isaso closely related to the LSL operator query.
But the operator returnsan enpset andthefunctionreturnsani nt equa
to the number of employeesadded to s astherequired side effect of calling
guery. Thisisacommon C idiom.

Now we can use data type induction, discussed in Chapter 3, to show
that the claims clause holds. The function dbase_i ni t Mod ensures
that d starts out empty. The only functions that are alowed to add
employeestod arehi r e and uncheckedHi r e. If hi r e iscaled with
an employee whose ssNumis already in d, its specification says that it
must return dupl ERR and leave d unchanged. Finally, the requires clause
of uncheckedHi r e forbidscalling thefunctionwith an employeewhose
ssNumisaready ind.

The only thing of note about dbase. | h, Figure 5.15, is that the
specification variable and specification type do not appear init.

An implementation of dbase is presented in Appendix B.

A TEST DRIVER FOR DBASE

Before looking at the abstractions used in the implementation of dbase,
we pause to take alook at some codethat usesdbase. Figure 5.16 is part
of aprogram we used to test our implementationsof the modul es specified
earlier in this section.

The program dr i ve beginswith aseries of #i ncl udes of the .hfiles
for the modules containing functions or types that it uses directly. It does
not include any subsidiary modules that they may use. While the included
.h files are necessary to compile the driver, to understand the code one
need look only at the corresponding .Icl files. If the implementation of
one of the used modules, such asenpset , should change, dr i ve would
have to be re-linked or re-compiled (depending upon whether the .h files
#i ncl udedindri ve weremodified), but dr i ve’s codewould not have
to be changed.

After declaring somevariables, dr i ve initializestheincluded modules.
LCLint will issue awarning if thisinitiaization is not done immediately

84 5.3. A guided tour through an LCL specification

/*PASS Qutput from LCL Version 1.7 11-AUG 1992 */
#i ncl ude "bool . h"
#i ncl ude "enpl oyee. h"
#i ncl ude "enpset.h"
#include "stdio.h"
typedef struct {
gender g;
job j;
int |;
int h;
} db_g;
t ypedef enum {
db_CX,

sal ERR,
gender ERR,

j ObERR,
dupl ERR,
m ssERR} db_st at us;
extern db_status hire (enpl oyee e);
extern void uncheckedH re (enpl oyee e);
extern bool fire (int ssNum;
extern int query (db_q g, enpset s);
extern bool pronote (int ssNunj;
extern db_status setSalary (int ssNum int sal);

extern void db_print (void);

extern void db_initMd (void);

FIGURE 5.15. dbase.lh

5. LCL: A Larch Interface Languagefor C

/* Include those nodul es that export */
/* things used explicitly here */
#i ncl ude <stdio. h>

#i ncl ude "bool . h"

#i ncl ude "enpl oyee. h"

#i ncl ude "enpset.h"

#i ncl ude "dbase. h"

int main(int argc, char *argv[]) {
enpl oyee e;
enpset es;
char na[10000];
char * sprintResult;
int i, j;
db_status stat;
db_q g;

/* Initialize the LCL-specified nodul es */
/* that were included */
bool _ini t Mod();
enpl oyee_i ni t Mod() ;
enpset _i nit Mod() ;
db_i ni t Mod();

/* Performtests */
for (i =0; i <20; i++) {
e.ssNum = i;
e.salary = 1000 * i;
if (i <10) e.gen = MALE, else e.gen = FEMALE;
if (i <15) e.j = NONMGR, else e.j = MR
(void) sprintf(na, "J. Doe %", i);
enpl oyee_set Nane(&e, na);
if (i == 0) hire(e);
el se {

uncheckedH re(e);

stat = hire(e);

if (stat !'= dupl ERR

printf("Error 1. Duplicate not found\n");

}
printf("Should print 20 enpl oyees:\n");
db_print();

[* o0

FIGURE 5.16. Fragment of test driver

85

86 5.3. A guided tour through an LCL specification

following the declarations of thefunction mai n. Since the author of nmai n
has no way of knowing what modules are used in the implementations of
the included modules, the various i ni t Mod functions must themselves
cal thei ni t Mod functions of the modules they use. This could result in
somei ni t Mod functionsbeing called more than once, which iswhy their
specifications typically require them to be idempotent.

Thedriver then callssomeof the specified functions. Effectsthat arefully
constrained by specifications, such as the result returned by fire, are
checked internally. Where the specification alows a variety of acceptable
effects, output is printed so it can be checked by eye or by atest harness
that comparesit with the output of a previous run.

We now move down a level of abstraction and specify three interfaces
that are useful in implementing the modules specified above. In order to
avoid storing more than one copy of an enpl oyee, the implementations
of db andenpset usehandlesthat “point” to objectsof typeenpl oyee.
These handles are defined in eref. | cl. The functions specified in
ereftab. | cl areused to ensure that the mapping from enpl oyees
to er ef s is one-to-one. The interface er c. | cl exports a type that is
basically abag of er ef s. Objects of type er ¢ are used both to represent
enpset s and within the implementation of db.

EREF

Figure5.17, introducesan immutabl eabstract type. Values of typeer ef
can be thought of as abstract pointers to enpl oyees. They can be used
in much the same way as pointers, except that no functions corresponding
to pointer arithmetic have been supplied. Using er ef s rather than actual
pointers offers several advantages:

e It provides alevel of abstraction. The implementor can change the
implementation, e.g., fromanindex into an array to apointer, without
worrying about invalidating client code.

¢ It alows private storage management. For example, a compacting
storage manager can be written, since al access must be through
functionsin the module.

e It is more general, alowing references to data that is in another
address space, on another machine, on adisk, etc.

5. LCL: A Larch Interface Languagefor C

i mports enpl oyee

i mut abl e type eref;
spec i mmutabl e type map

spec map m
constant eref erefNIL = nil;

uses ref Tabl e(eref, enployee, nap);

eref eref_alloc(void) map m {

nodi fies m

ensures newl nd(result, m, ni);

}

d eref _free(eref er) map m {

requires er € domain(ni);

nmodi fies m

ensures nmi = delete(nf, er);

}

d eref_assign(eref er, enployee e) map m {

requires er € domain(ni);

nodi fies m

ensures mi = assign(m, er, e);

}

enpl oyee eref_get(eref er) map m {
requires er € domain(ni);

VO

VO

ensures result = mer];
}
bool eref_equal (eref erl, eref er2) {
ensures result = (erl = er2);
}

voi d eref _initMd(void) map nm {
nodi fies m
ensures m = new,

}

FIGURE 5.17. eref.Icl

87

88 5.3. A guided tour through an LCL specification

ref Tabl e(lnd, Val, Tab): trait

i ncludes Set (I nd, |ndSet)

i ntroduces
new. — Tab
assign: Tab, Ind, Val — Tab
delete: Tab, Ind — Tab
_[_1: Tab, Ind — Val
domai n: Tab — I ndSet

nil: — Ind
newl nd: | nd, Tab, Tab — Boo
asserts

Tab generated by new, assign
Tab partitioned by _[__], donain

Vi, il, i2: Ind, v: Val, t,t1,t2: Tab
del ete(new, i) == new,
del ete(assign(t, i1, v), i2) ==
if il1=1i2

then delete(t, i2)
el se assign(delete(t, i2), i1, v);
assign(t, i1, v)[i2] ==

if il=1i2then v else t[i2];
domai n(new) = {};
domai n(assign(t, i, v)) ==
insert(i, domain(t));
new nd(i, t1, t2) == =(i € domain(tl))
A domain(t2) = insert(i, domain(tl))
A =(i = nil)

FIGURE 5.18. refTable.lsl

5. LCL: A Larch Interface Languagefor C

#if !defined(EREF_H)
#defi ne EREF_H

#i ncl ude "enpl oyee. h"
typedef int eref;

/* Private typedefs used in macros */
typedef enum {used, avail} eref_status;
typedef struct {enployee *conts;
eref _status *status;
int size;} eref_ERP;

/* Declared here so that nacros can use it */
extern eref_ERP eref_Pool;

#i nclude "eref.lh"

#define erefNIL -1

#define eref _free(er) (eref_Pool.status[er] = avail)
#define eref_assign(er, e) (eref_Pool.conts[er] = e)
#define eref_get(er) (eref_Pool.conts[er])

#define eref_equal (erl, er2) (erl == er2)

#endi f

FIGURE 5.19. eref.h

89

20 5.3. A guided tour through an LCL specification
#i ncl ude <stdio. h>
#i nclude "eref.h"

eref _ERP eref_Pool ; /* private */
static bool needslnit = TRUE, /* private */

eref eref_alloc(void) {

int i, res;
for (i=0;
(eref _Pool .status[i] == used)
&& (i < eref_Pool . size);
i ++);
res = i;
if (res == eref_Pool.size) {

eref _Pool . conts =
(empl oyee*) realloc(eref_Pool.conts,
2*eref _Pool . si ze*si zeof (enpl oyee)) ;

if (eref_Pool.conts == 0) {
printf("Malloc returned null in eref_alloc\n");
exit(1);

eref _Pool . status =
(eref _status*)real | oc(eref _Pool . status,
2*eref _Pool . si ze*si zeof (eref _status));
if (eref_Pool.status == 0) {
printf("Malloc returned null in eref_alloc\n");
exit(1);

eref _Pool . si ze = 2*eref_Pool . si ze;
for (i =res+l; i < eref_Pool.size; i++)
eref _Pool .status[i] = avail;

eref _Pool . status[res] = used;
return (eref) res;

}

FIGURE 5.20. eref.c, part 1

5. LCL: A Larch Interface Languagefor C 91

void eref_initMd(void) ({
int i;
const int size = 16;

if (needslnit == FALSE) return;
needsl nit = FALSE;
bool _init Mod() ;
enpl oyee_i ni t Mod();
eref _Pool . conts =
(empl oyee *) nall oc(size*si zeof (enpl oyee));

if (eref_Pool.conts == 0) {
printf("Malloc returned null in eref_initMd\n");
exit(1);

eref _Pool .status =
(eref _status *) malloc(size*sizeof (eref_status));
if (eref_Pool.status == 0) {
printf("Malloc returned null in eref_initMd\n");
exit(1);

eref _Pool . si ze = size;
for (i =0; i <size; i++) eref_Pool.status[i] = avail;

FIGURE 5.20. eref.c, part 2

92 5.3. A guided tour through an LCL specification

Ineref.|cl, the specification variable mis used to keep track of the
set of extant er ef s(sothat thespecificationer ef _al | oc can say that the
result isanew er ef) and of the mapping from er ef s to enpl oyees.
Trait r ef Tabl e, Figure 5.18, specifies the operators on the values of
objects of type map.

Figures 5.19 and 5.20 contain an implementation of er ef .

The implementation variable er ef _Pool has much the same role in
the implementation as the specification variable mdid in eref. | cl.
However, there are other implementations that would not have anything
corresponding to m for example, one that used the C type enpl oyee *
to represent er ef s. Because theimplementation variable er ef _Pool is
used inmacro definitions, C requiresittobedeclaredext er niner ef . h,
even though clients of er ef should not reference it—or even know about
its existence.

In this implementation of eref, the function eref _equal is
implemented by a macro that uses ==. However, one can imagine
implementations of er ef for which this would not work. Suppose, for
example, the implementation used a gratuitous level of indirection and
madei nt * therepresentation of er ef . Thener ef _equal would have
tobeimplementedas*er 1 == *er 2. Thisillustrateswhy LCLint will
generateawarningif clientsusethe== operator directly, rather than calling
eref _equal .

ERrRC

Figures 5.21 and 5.22 together specify a set of functions operating on the
mutableabstract types, er ¢ (for “employeeref collection”)ander cl t er .
These types and functions are used in theimplementation of both enpset
and dbase.

An erc is essentially a bag.® Most of the functions on er c’s are
unremarkable.; the unusua functions in this specification are those that
dea withercl ters.

Objects of type ercl t er are used by clients to iterate over al the
elements of an er c. In the specification, Figure 5.21, (though not in the
implementation, discussed on page 99) er cl t er 's are modeled as a pair
consisting of theer ¢ tobeiterated over and abag containingthoseer ef s
that have not been yielded to the client. The functionerc_iter Start

Trait Bag can befound in Appendix A, page 169.

5. LCL: A Larch Interface Languagefor C 93

erc: trait
assumes CTrait
i ncl udes Bag(eref, ercElens)
erc tuple of val:ercElens, activelters: int
erclter tuple of toYield: ercElens, eCbj: ercObj
i ntroduces
{}: — erc
yi el ded: eref, erclter, erclter — boo
startlter: erc — erc
endlter: erc — erc

asserts
VYV e: eref, itl, it2: erclter, c: erc
{} ==1[{}, 0];

yielded(e, itl, it2) == e € itl.toYield

A it2 = [delete(e, itl.toYield), itl.ebj];
startlter(c) ==[c.val, c.activelters + 1];
endlter(c) ==[c.val, c.activelters - 1]

FIGURE 5.21. erclsl

94 5.3. A guided tour through an LCL specification

i mports eref;

nmut abl e type erc;
nmut abl e type erclter;

uses erc(obj erc for ercObj), sprint(erc, char[]);

erc erc_create(void) {

ensures fresh(result) A result’ = { };
}

d erc_clear(erc c) {

requires c”.activelters = 0;

nodi fies c;

ensures ¢’ = { };

}

d erc_insert(erc c, eref er) {
requires c .activelters = 0 A er # erefNL;
nodi fies c;

ensures ¢’ = [insert(er, c".val), 0];

VO

VO

bool erc_delete(erc c, eref er) {
requires c”.activelters = 0;
nodi fies c;
ensures result = er € c".va
A ¢ = [delete(er, c".val), 0];
}

bool erc_menber(eref er, erc c) {
ensures result = er € c".val;

}

FIGURE 5.22. erc.Icl, part 1

5. LCL: A Larch Interface Languagefor C

eref erc_choose(erc c) {
requires size(c .val) # 0;
ensures result € c”.val;

}

int erc_size(erc c) {
ensures result = size(c .val);
}

erclter erc_iterStart(erc c) {
nodi fies c;
ensures fresh(result) A result’ = [c".val, c]
A ¢ = startlter(c?);
}
eref erc_yield(erclter it) {
nodifies it, it". ej;
ensures if it .toYield # { }
then yielded(result, it", it")
A (itT.etnj) = (it".emj)”
else result = erefNIL A trashed(it)
A (it7.ebj) = endlter((it".ej)");
}

void erc_iterFinal (erclter it) {
nodifies it, it". ej;
ensures trashed(it)
A (it7.elbj) = endlter((it".ehj)");
}
void erc_join(erc cl1, erc c2) {
requires cl”. activelters = 0;
nodi fies cl;
ensures cl’ = [cl”.val U c2".val, 0];

}

char *erc_sprint(erc c) {

ensures isSprint(result[]", ¢c”) A fresh(result[]);

}

void erc_final (erc c) {
nodi fies c;
ensures trashed(c);
}

void erc_initMd(void) {
ensures true

}

FIGURE 5.22. erc.Icl, part 2

95

96 5.3. A guided tour through an LCL specification

maps an er ¢ into an er cl t er in which al the elements remain to be
yielded. Each time er c_yi el d is called with this object, it returns an
er ef and updatestheer cl t er by deleting thereturned er ef from the
bag of er ef sthat remaintobeyieded. Wheneach er ef hasbeenyieded
asmany timesasit occursintheer c, erc_yi el d returnser ef NI L.
Iterator functions are typically used in code of the form
eref er;

erc c;
erclter it;

fo.r_ércEIerrB(er, it, c) {
Body of | oop
}

wheref or _er cEl ens isdefined by the macro

#define for_ercEl ens(er, it, c)\
for (er = erc_yield(it = erc_iterStart(c));\
er = erefNL;\
er = erc_yield(it))

It is often the case that the body of an iteration itself uses an iterator.
Theintroduction of er cl t er s makesit possibleto have nested iterations
over thesameer c.

One question that arises with thisprogramming paradigm concerns what
happens if the er ¢ is modified within the body of the loop. Writing
specifications that give a precise semantics for such a situation is not
difficult. However, building an efficient implementationis. For that reason,
our specification forbids modification of an er ¢ that isbeing iterated over.

Inerc.|sl, Figure 5.21, an er ¢ is modeled as a pair of a bag of
ercEl ens and ani nt. The bag is used to contain the elements of the
erc and thei nt isused, inerc. | cl, to keep track of the number of
activeiterators. Thismakesit possibletowriterequiresclausesthat prohibit
caling a function that might modify an er ¢ while that er c is being
iterated over. Conceptually, the function erc_i t er St art increments
the number of active iterators. The function er c _yi el d decrements the
number of activeiteratorswhen it hasyielded thelast e ement. Thefunction
erc_i terFi nal aso decrements the number of active iterators. This
function should be called before exiting prematurely (e.g., by br eak or
r et ur n) from the body of an iteration.1°

©Thefunctioner c_i t er Fi nal can be used in macrosto define versionsof r et ur n
and br eak that are appropriate for use within iterations. An example of this appearsin
Appendix B.

5. LCL: A Larch Interface Languagefor C 97

i mports enpl oyee, eref;
nmut abl e type ereftab;
uses ereftab;

ereftab ereftab_create(void) {
ensures result’ = enpty;
}

void ereftab_insert(ereftab t, enployee e, eref er) {
requires getERef(t", e) = erefNL;

nodi fies t;
ensures t' = add(t”, e, er);
}
bool ereftab_delete(ereftab t, eref er) {
nodi fies t;
ensures result = in(t", er) A t' = delete(t”, er);
}
eref ereftab_| ookup(enpl oyee e, ereftab t) {
ensures result = getERef(t", e);
}

void ereftab_initMd(void) {
ensures true;

}

FIGURE 5.23. ereftab.lcl

Again, the implementation is not presented here, but appears in
Appendix B.

EREFTAB

The last module in our example is er ef t ab, Figures 5.23 and 5.24. It
is used to create a one-to-one mapping from enpl oyees to er ef s. It
makes it unnecessary to store multiple copies of the same enpl oyee
record within the implementation of enpset .

The intended use of ereftab_i nsert isto put an enpl oyee in
an ereftab only after a lookup has failed to find an er ef for that
enpl oyee. The requires clause of eref t ab_i nsert formalizes this
property, and allowstheimplementation not to duplicate atest that hasjust
been made by the client.

Theimplementationof er ef t ab isunremarkable, andis not presented.

98 5.3. A guided tour through an LCL specification

ereftab: trait
assumes CTrait
i ntroduces
enmpty: — ereftab
add: ereftab, enployee, eref — ereftab
del ete: ereftab, eref — ereftab
get ERef : ereftab, enployee — eref
erefNIL: — eref
in: ereftab, eref — boo
size: ereftab — int
asserts
ereftab generated by enpty, add
ereftab partitioned by get ERef
V e, el: enployee, er, erl: eref, t: ereftab
del ete(enpty, er) == enpty;
del ete(add(t, e, er), erl) ==
if er = erl thent
el se add(delete(t, erl), e, er);
in(empty, er) == fal se;
in(add(t, e, er), erl) ==er = erl v in(t, er);
get ERef (enpty, el) == erefNL;
get ERef (add(t, e, er), el) ==
if e = el then er else getERef(t, el);
size(enpty) == 0;
size(add(t, e, er)) ==
1+ (if in(t, er) then 0 else 1)

FIGURE 5.24. ereftab.Isl

5. LCL: A Larch Interface Languagefor C 99

typedef struct _elem

{eref val; struct _elem *next;} ercE em
t ypedef ercEl em *ercli st;
typedef struct {ercList vals; int size;} erclnfo;
typedef erclnfo *erc;
typedef ercList *erclter;

FIGURE 5.25. erc’'s representation

IMPLEMENTATION NOTES

Here we take the opportunity to make some comments about the
relationship of these specifications to the implementations presented in
Appendix B.

In erc. | cl, Figure 5.22, the value of an abject of type erc was
modeled asapair of abag and aninteger. Theinteger wasused to keep track
of the number of active iterators. Figure 5.25 contains the representation
used in the implementation of er ¢c and er cl t er . The representation of
er ¢ isapair, but the integer is not used to keep track of the number of
active iterators. Rather it contains the number of elementsintheerc. In
fact, the implementation has no need to keep track of the number of active
iterators. It is the responsibility of the clients of this interface to ensure
that the requires clause holds whenever afunctioniscalled. It might be an
appropriate application of defensive programming for the implementor of
erc. | cl tokeep track of the number of active iterators and check that
requires clauses hold on entry to functions, but it is not required by the
specification.

The implementation of enpset usesan er ¢ to represent an enpset .
(Recadll thattheval field of aner ¢ isabag.) Theimplementational so uses
a non-exported module-level variable, known, to avoid allocating space
for the same enpl oyee more than once. The first time an enpl oyee
isinserted into any enpset , it isaso inserted into known and a newly
alocated er ef isinsertedintotheer c¢. On subsequent insertsof the same
enpl oyee intoany enpset , theolder ef isreused. Thisauxiliary data
structure is shared by the implementation of all objects of type enpset ,
but this sharing is not visibleto clients.

Figure 5.26 contains a representation invariant for the implementation
of enpset . The implementation ensures that thisinvariant is established
by enpset _cr eat e and preserved by al other functionsin theenpset
interface. The first conjunct of the invariant asserts that no er ef occurs

100 5.3. A guided tour through an L CL specification

YV s:enpset
(V er:eref (count(er, s.val) < 1)
A s.activelters = 0
AV er:eref
(count(er, s.val) = 1 = er € known)

FIGURE 5.26. Representation invariant for empset

#define firstERC nMCRS
#define | ast ERC f NON
#define numERCS (lastERC - firstERC + 1)

typedef enum {nMERS, fMERS, nNON, fNON} enpl oyeeKi nds;

erc db[nunERCS] ;

FIGURE 5.27. dbase.c fragment

more than onceintheval part of an er ¢ used to represent an enpset .
The second conjunct corresponds to the requires clause of many of the
functions of type er c, and therefore must be maintained so that the
implementation of enpset can use those functions. The third conjunct
givesarel ationship that must a ways hol d between the modul e specification
variable known and any er ¢ representing an enpset .

The implementation of dbase is considerably longer than that of the
other modules specified here. It is also somewhat different in structure.
Unlikeenpset . h ander c. h, dbase. h contains no typedef (although
it doesinherit typedefs of exposedtypesfromdbase. | h). Thisisbecause
dbase. | cl exportsno abstract types and the implementation of dbase
doesn’t use any macros that depend on locally defined types. Information
pertinent only to compiling the implementation itself is restricted to
dbase. c, Figure5.27.

The specification variable d in dbase. | cl is implemented by
the variable db. We chose a different name for the variable in the
implementation to emphasize that there is no necessary correspondence
between module-level variables appearing in the implementation and
specification variabl es appearing in the specification. It ispurely accidental
that our specification variable corresponds to a single implementation
variable; one of our earlier implementations of the interface used four
distinct er csto represent d.

5. LCL: A Larch Interface Languagefor C 101

The correctness of the implementations of the functionsin dbase. ¢
depends upon the maintenance of the representation invariant given in
Figure 5.26. That this holds can be shown by an inductive argument:

e Itisestablished by dbase_i ni t Mod.

e For each exported function, if the invariant and the requires
clause hold on entry, the invariant will hold upon termination. In
discharging this step of the proof, it is necessary to examine even
those functions whose specification does not allow them to modify
d, sincethey might still modify the representation of d, i.e., thearray
db.

The implementation of dbase includes severa functions that do not
appear in dbase. | cl and therefore are not accessible to clients. It
would be acceptable for these functionsto break the invariant temporarily
(although, in fact, they don't).

Chapter 6

LM3: A Larch Interface Language
for Modula-3

This chapter describes much of LM3, version 1.1, and gives an informal
description of its semantics. It skimssomewhat rapidly over therole of the
LSL specification tier, which isquite similar to that for LCL, as discussed
in the previous chapter.

Because Modula-3 is structured around the definition and use of explicit
interfaces, LM 3 specifications are more intimately related to Modula-3
programsthan LCL specificationsare to C programs. Because Modula-3's
opaquetypesand revelations providedirect support for abstract types, LM3
doesn’'t need to add much in that area. Because Modula-3's REF types are
moredisciplinedthan C's pointer types, LM 3's storage model is somewhat
simpler. Because Modula-3 provides garbage collection, specifications
don’'t have to say as much about storage management; for example, there
isno need for anything correspondingtot r ashed in LCL. But subtyping
and concurrency raise issues that make LM3 complicated in other ways.

LM3 provides constructs for specifying:

types, both fully exposed and abstract (opague);

procedures and object methods (collectively, routines);

invariants, for both types and modules;

concurrency and synchronization.

This chapter is intended for Modula-3 programmers—practicing or
potential. We assume some familiarity with Modula-3. If you are not
acquainted with Modula-3, you may wish to consult a Modula-3 text
[52, 69].

6.1 Theredation between LM 3 and Modula-3

Modul a3 has well-defined notions of interface and implementation:

e Aninterfacefile(. i 3 fileor . i g file) declares the components of
the modul€e'sinterface and documentsthe intended uses of exported

6. LM3: A Larch Interface Languagefor Modula-3 103

types and the actions of exported procedures. LM3 specifications
areincorporated ininterfacefiles;, wewill often call such augmented
files interface specifications.

e An implementation file (. nB file or . ng file) supplies the
representations of the types and the bodies of the procedures and
object methods declared in the interface, as well as code that is
private to the module.

Clients of amodule should look at itsinterface, not its implementation.
LM3isusedto provideclientswith apreci se description of thefunctionality
of the interface.! An LM3 specification also provides implementors a
contract with precise information about what they are to implement.

There are two kinds of information in an LM 3 interface specification:

¢ Modula-3 declarations. Each Modula-3 interface fileisalsoan LM 3
specification. Thereis abuilt-in association of Modula-3 base types
and type constructors with LSL sorts, and there is a standard set of
traitsfor Modula-3 that provides operators on these sorts.

e LM3pragmas. Aswill be discussed in therest of this chapter, LM3
annotations are incorporated in Modula-3 as pragmas, set off by
the brackets <* and *>. Pragmas embedded in interface files can
introduce abstract types and give constraints on types, variables,
and routines. Since the compiler ignores pragmas that it does not
recoghi ze, they provideaconvenient way of embedding specification
information in the program text. LM3 annotations may be thought
of as formaized commentswithin the interface file.

6.2 TheLM3 semantic model

The LM3 and LSL tiers of a specification are connected as described
in Chapter 3. LM3 annotations are written using LSL terms plus some
syntactic sugar to make specifications more Modula-3-like in appearance.

Since LM3, like Modula-3, is statically typed, the kind of vaues that a
variable can contain in any stateis fixed. Similarly, each LSL value has a
unique sort. To connect the two languages, there is a mapping from LM 3

1L M3 isalso used to annotate implementations for program verification. This aspect of
LM3is not addressed in this book.

104 6.2. The LM3 semantic model

typesto LSL sorts. Each built-in type of Modula-3, each type built from
Modula-3 type constructors (e.g., ARRAY [1..100] OF | NTECER),
and each abstract type defined in LM 3 is based on an LSL sort. The sort
on which atypeis based does not appear explicitly in LM 3 specifications.
Instead, an LM 3 typenameor other typeexpression standsfor itsassociated
sort. LM 3 follows Modula-3's type checking rules [69].

Standard L SL traits define operators of the sorts upon which Modula-3
built-in types (e.g., | NTEGER and TEXT) are based. Users familiar with
Modula-3will already have someintuitionabout these operators. Specifier-
supplied traits are used to introduce appli cation-specific operators. A traits
clauseis used to incorporate specifier-supplied traits and to connect user-
defined typesto LSL sorts.

An LM3 interface specification defines the functional behavior of a
collection of exported routines (procedures and methods), variables, and
constants. From a semantic point of view, thereis no significant difference
between procedures and methods; methods are just procedures with an
implicit SELF parameter and a slightly different syntax.

A routine may communicate with its calers by returning a result, by
accessing variables accessible to the caller, by modifying such variables,
or by raising an exception. The specification of each routinein an interface
can be studied, understood, and used without reference to the specifications
of other routines.

Each routineis specified by apredicate on apair of states—thepre-state
and the post-state—that defines the set of state transformations (actions)
the routine is allowed to perform.?

A stateisarepository for entitiesthat can be changed by routines. Itisa
mapping from entire variables to values. Each program and specification
variableisacoordinate of thestate space; entirevariablesaretheorthogonal
coordinates. Each entire variable can be assigned a value without affecting
thevalue of any other entire variable. For example, if Aisanarray variable,
Aisentire,but Al i] andA[j] arenot, sinceassigningto onemight change
the other, depending on thevaluesof i and j . Each field of an object type
is an entire variable, indexed by objects. However, t . f is analogous to
f[t] andisnot entire.

e The global state for an interface specification is defined by its
type, variable and constant declarations, and the global states of the

2Inour discussion of concurrency, wewill generalize the predicateto apply to asequence
of pairs of states, rather than just a single pair; see page 116.

6. LM3: A Larch Interface Languagefor Modula-3 105

interfaces it imports. It may include auxiliary variables and fields
introduced in pragmas purely for the purposes of the specification.

e The local state for a routine specification is given by its formal
parameter list, RESULT (which representsthereturned value, if any),
RAI SEVAL (which represents the normal or exceptional outcome),
RAI SEARG (which represents the value of the argument to RAI SE,
if any), CURRENT (which represents the identity of the thread that
called the routing), and the components of the global state that the
routineis alowed to access.

e Thetarget variables of a routine are those variables to which it is
allowed to assign new values. They are a subset of its local state,
and are explicitly listed in its specification.

¢ Within a specification, an immutable value (constant) is represented
directly by its name. The value of avariablein the pre-state isaso
represented by itsname; thevalue of atarget variablein the post-state
is represented by its name followed by aprime ().

As discussed in Chapter 3, aroutine specification consists of a routine
declaration augmented by a body containing REQUI RES, MODI FI ES,
and ENSURES clauses. It effectively separates the obligations of clients
and implementations. The requires clause gives the obligations of the
client, which the implementor is entitled to presume. The modifies and
ensures clauses give the obligationsof theimplementor, which (along with
termination) the client is entitled to presume.

6.3 A guided tour through an LM 3 specification

To show how LM 3 is used, we present and discuss an exampl e that makes
use of most of its features. The example is only superficially redlistic; it
was structured to use language constructs in the order that we want to
discuss them.

AN EMPLOYEE DATABASE

Our exampleis asimpledatabase that hol ds information about employees.
If you have aready looked at the example in Chapter 5, you should note
that thisis not the same design. For example, this database stores sharable
Enpl oyee objects; Chapter 5's database stores values of records about

106 6.3. A guided tour through an L M3 specification

employees. Some of the differences are due to differences between the
stylesthat are natural in C and in Modula-3; some are arbitrary.

An interesting feature of this database is that these routines may be
invoked concurrently and therefore require mutualy exclusive access
to the shared data. How this mutual exclusion is ensured is up to the
implementation; the specification does not say. However, it does say which
routines are allowed to be non-atomic; all the rest must appear atomic to
their users.

We start with simple interfaces and build up to more complex ones:

e Enpl oyeeDat a containsno specification pragmas, but showshow
Modula-3 declarations are interpreted as LM 3 specifications.

e Enpl oyee introduces some explicit LM3 type specifications and
illustrates the specification of methods of an exposed type.

e CGeneri cSet gpecifiesatypethat is generic and opague, and has
anondeterministic method.

¢ Enpl oyeeSet showstheinstantiation of a generic interface.

e Enpl oyeeG oup illustrates simple subtyping and a non-atomic
routine.

e Enpl oyeeDat abase usesacombination of previously-discussed
features.

e Enpl oyeeSet Fri ends illustrates the use of a partial revelation
to give access to part of the representation of an abstract type.

We specify each interface, and describe the meaning of the LM3
constructsit introduces.

EMPLOYEEDATA

The interface specification in Figure 6.1 declares some simple types
that we use in later interfaces, but contains no specification pragmas. It
illustrates exposed types, whose full specification is given by the semantics
of their Modula-3 declarations. The specification states that:

e MaxSal isaconstant of sort| nt .

6. LM3: A Larch Interface Languagefor Modula-3 107

| NTERFACE Enpl oyeeDat a;
CONST MaxSal = 1000000;
TYPE

Gender = {Mal e, Fenule};
Job = {NonMyr, Manager};
Salary = [1 .. MaxSal];
SSnum = | NTEGER

END Enpl oyeeDat a

FIGURE 6.1. EmployeeData.i3

¢ Inany state, the value of a variable of type Sal ary has sort | nt
from the trait | nt eger, (since | NTEGER is the base type of any
integer subrange). Furthermore, the value will be between 1 and
MaxSal . SSnumissimply arenaming of | NTEGER.

e Gender and Job are enumeration types with the constants
Gender. Mal e and Gender . Fenal e and Job. NonMyr and
Job. Manager . These constants may be used in specificationsjust
asthey arein programs.

EMPLOYEE

Figure 6.2 defines a datatype used to hold information about individual
employees.

The imports clause of Enpl oyee says that its interface specifi-
cation depends on Enpl oyeeDat a’s interface specification; it gives
Enpl oyee and its clients access to the constants, variables, types, and
routines specified in Enpl oyeeDat a. It aso makes the trait associated
with Enpl oyeeDat a a part of Enpl oyee’s associated trait. This
specification dependency should not be confused with an implementation
dependency, where an interface is used within the implementation of a
module.

Following a common convention in Modula-3, the principal type of the
Enpl oyee interface is named T, for easy reference within the interface
specification and implementation. Outside the module, it is referred to as
Enpl oyee. T.

T is an exposed object type.2 It doesn’t introduce any abstraction, and

SUnfortunately, “ object” means different thingsin different programming languages. In
Modula-3, an object type is an explicit reference type with fields and methods.

108 6.3. A guided tour through an L M3 specification

| NTERFACE Enpl oyee;
| MPORT Enpl oyeeDat a;

TYPE

T = OBJECT
ssnum : Enpl oyeeDat a. SSnum
name . TEXT;
sal ary: Enpl oyeeDat a. Sal ary;
gender: Enpl oyeeDat a. Gender ;
job . Enpl oyeeDat a. Job;

METHODS
pronmote (increase: Enpl oyeeData. Sal ary)
RAI SES { Al r eadyManager};
END;

EXCEPTI ON Al r eadyManager ;
<* METHOD T. pronot e(i ncrease)
REQUI RES
(SELF.sal ary + increase) < EnployeeData. MaxSal
MODI FI ES SELF. j ob, SELF.sal ary
ENSURES SELF. job’ = Enpl oyeeDat a. Job. Manager
A SELF.salary’ = SELF.salary + increase
EXCEPT SELF.job = Enpl oyeeDat a. Job. Manager
i} => (RAI SEVAL = Al readyManager A UNCHANGED(ALL))

>
END Enpl oyee.

FIGURE 6.2. Employee.i3

6. LM3: A Larch Interface Languagefor Modula-3 109

itsdatarepresentation isfully defined by Modula-3. Theimplicit operators
for an object typedlow accesstoitsfields, sothat, for example, t . namne’
refers to the value in the post-state of the nane field of the object t .

This interface provides our first example of a specification that goes
beyond what is provided by Modula-3 itself. In the specification of the
method T. pr onot e

¢ therequiresclause saysthat pr onot e should becaled withavaue
of i ncr ease that resultsin avalid raise; theraise will be positive
becauseof thetypeof i ncr ease. If theraiseistoo big, thebehavior
of pr onot e isunconstrained.

¢ themodifiesclause (target list) saysthat pr onot e may not ater the
values of any client-visible variables except the object’'s own j ob
andsal ary fields.

¢ the ensures clause says that pr onot e must change the j ob and
sal ary fieldsin particular ways. This postcondition is written in
two parts:

— Thefirst part describes the normal result of an invocation of
pr onot e: thej ob field will bechanged to Manager andthe
sal ary field will beincremented by i ncr ease.

— The second part describes the exceptional behavior. If
SELF. j ob is dready Manager then pronot e must raise
the exception Al r eadyManager and change nothing.

There are several more things to note about the constructs used in this
specification:

e An except clause consists of one or more guarded predicates. If
any guard (a predicate before =>) is true, then the method must
ensure the postcondition given after one of the true guards, rather
than the normal postcondition. If more than one guard is true, the
implementation may satisfy any of the associated postconditions,
nondeterministically.

e RAI SEVAL is aspecia component of the state; a value other than
RETURNS in the post-state represents the raising of an exception. If
thereis no except clause, RAI SEVAL = RETURNS isimplicit.

110 6.3. A guided tour through an L M3 specification

e Wedo not follow RESULT and RAI SEVAL with primes; sincethey
are meaningful only in the post-state, there is no ambiguity.

¢ The UNCHANGED operator is a shorthand for saying that the values
of alist of variables may not change between the pre-state and the
post-state, even though they are in the target list. It is equivalent to
saying X = xfor each x inthelist. ALL is a further shorthand for
the complete target list.

GENERICSET

Theinterfacein Figure 6.3 providesageneric set abstraction. Thisisour
first typethat is not exposed. T is an abstract type whose representation is
hidden from clients. In Modula-3, thisis called an opaque type.

T <: Public saysthat T is a subtype of thetype Public. Itisa
common conventionin Modula-3 to use an auxiliary type named Publ i ¢
to declare the methods and fields exported by an opague type.

Since we have chosen not to make the representation of T visible, we
have to provide some way to represent its values in specifications. We
declare a specification field, T. set to denote the value represented by
the hidden components. Within the specification, we treat it as though it

GENERI C | NTERFACE GenericSet (E);
EXCEPTI ON Not Found;
TYPE
T <: Public;
Public = OBJECT

METHODS

init OF
copyTo (newCopy: T);
f reshCopy O: T,
si ze (): CARDI NAL;
i nsert (e: ET);
renove (e: ET);
uni on (s: TO;
disjointUnion (s: T);
i ntersect (s: T);
nmenber (e: E.T): BOOLEAN,
choose (O): ET,

END;

FIGURE 6.3. GenericSet.ig, part 1

6. LM3: A Larch Interface Language for Modula-3 111

<* TRAITS Set(E. T FOR E, ETSet FOR Q);
TYPE ETSet ;
FIELDS OF T set: ETSet
METHOD T.init()
MODI FI ES SELF. set
ENSURES SELF.set’ = {}
METHOD T. copyTo(hewCopy)
MODI FI ES newCopy. set

ENSURES newCopy. set’ = SELF. set
METHOD T. f reshCopy()
ENSURES RESULT. set’ = SELF.set A FRESH(RESULT)

METHOD T. si ze()

ENSURES RESULT = si ze(SELF. set)
METHOD T.insert(e)

MODI FI ES SELF. set

ENSURES SELF.set’ = insert(e, SELF.set)
METHOD T. r enpve(e)

MODI FI ES SELF. set

ENSURES SELF. set’ = delete(e, SELF. set)
METHOD T. uni on(s)

MODI FI ES SELF. set

ENSURES SELF. set’ = SELF.set U s.set
METHOD T. di sj oi nt Uni on('s)

REQUI RES SELF.set n s.set = {}

MODI FI ES SELF. set

ENSURES SELF. set’ = SELF.set U s.set
METHOD T.intersect(s)

MODI FI ES SELF. set

ENSURES SELF. set’ = SELF.set N s.set
METHOD T. menber (e)

ENSURES RESULT = e € SELF. set
METHOD T. choose()

REQUI RES SELF.set # {}

MODI FI ES SELF. set

ENSURES RESULT € SELF. set

A SELF.set’ = del ete(RESULT, SELF. set)

*

>
END Generi cSet.

FIGURE 6.3. GenericSet.ig, part 2

112 6.3. A guided tour through an L M3 specification

| NTERFACE Enpl oyeeSet = Generi cSet (Enpl oyee)
END Enpl oyeeSet .

FIGURE 6.4. EmployeeSet.i3

were declared as an ordinary field of T. We don’'t have to include it in
the implementation, but any revelation of hidden fields of T must have
an associated abstraction relation that shows how the specification and
implementation values are rel ated.

In our earlier examples, the trait associated with each interface has been
implicit, entirely composed of built-in traits associated with Modula-3 and
with the types and type constructors appearing in declarations. Here, the
traits clause explicitly includes Set , page 167, into the trait associated
with the Generi cSet interface, renaming the formal parameters of the
trait to the sorts on which thetypesE. T and ETSet arebased. E. T isa
programtype, and ETSet isaspecificationtype, introduced in thispragma
asthe type for the specification field, set .

Most of the method specifications follow the same pattern as our
previous example, using the specification fields of T rather than actual
fields. T. i ni t, for example, ensures that the abstract field SELF. set
has the value {} when it returns. The specification of T. copy To ensures
that theset field of the object passed in as a parameter becomes equal to
SELF. set . Thisisquitedifferent from saying that SELF isassigned to a
VAR parameter, which would be specified as follows:

METHOD T. assi gn(target)
MCDI FI ES t ar get
ENSURES target’ = SELF

The choose method is an example of a specification of a non-
deterministic routine. The method is required to remove and return some
value from the set. No information is given about which element isto be
chosen; the implementation may use this freedom to improve efficiency,
so clients must not rely on any particular choice.

EMPLOYEESET

Enpl oyeeSet is a simple interface that instantiates the interface
Ceneri cSet passing the Enpl oyee interface for the forma pa
rameter E. The instantiated program type Enpl oyeeSet. T has an

6. LM3: A Larch Interface Languagefor Modula-3 113

instantiated specification field set with instantiated specification type
Enpl oyeeSet . ETSet that holdsaset of Enpl oyee. Ts.

EmMPLOY EEGROUP

Figure 6.5 introduces a specialization of Enpl oyeeSet that hasan extra
component, manager . Informally, agroup is a set of employeeswith one
distinguished member. The only extra operation we add to a group is a
method to make an employee (who may or may not already be a member
of the group) the manager of the group.

In thisinterface, weillustrate the interaction between specification and
subtyping, show atype invariant, and specify a non-atomic method.

Here, we have a partially opaque type. The type has one visiblefield,
Enpl oyeeG oup. T. manager, but there may also be hidden fields
used by the implementation. Since T is a subtype of Enpl oyeeSet . T,
both the exposed and specification fields of Enpl oyeeSet . T can be
used in the specification of T. We use the local manager field and the
inherited set specification field.

| NTERFACE Enpl oyeeG oup;
| MPORT Enpl oyeeDat a, Enpl oyee, Enpl oyeeSet;
TYPE
T <: Public;
Public = Enpl oyeeSet. T OBJECT
manager: Enpl oyee. T;
METHODS
copyTo (newCopy: T);
freshCopy(): T;
makeManager (e: Enpl oyee. T);
END;
PROCEDURE Subordinates (t: T): Enpl oyeeSet. T,
<* TYPE_INVARIANT t: T
t. manager = N L
v (t.nmanager.job = Enpl oyeeDat a. Job. Manager
A t.manager € t.set)
PROCEDURE Subor di nat es(t)
ENSURES RESULT. set’ = del ete(t.manager, t.set)
A FRESH(RESULT)

FIGURE 6.5. EmployeeGroup.i3, part 1

114 6.3. A guided tour through an L M3 specification

<* STRENGTHEN T.init()
MCDI FI ES SELF. manager
ENSURES SELF. manager = N L
STRENGTHEN T. r enpve(e)
MCDI FI ES SELF. manager
ENSURES | F e = SELF. manager
THEN SELF. manager’ = N L
ELSE UNCHANGED(SELF. manager)
STRENGTHEN T. i ntersect(s)
MCDI FI ES SELF. manager
ENSURES | F SELF. manager € SELF. set’
THEN UNCHANGED(SELF. manager)
ELSE SELF. manager = N L
STRENGTHEN T. choose()
MCDI FI ES SELF. manager
ENSURES | F RESULT = SELF. manager
THEN SELF. manager = N L
ELSE UNCHANGED(SELF. manager)
METHOD T. copyTo(hewCopy)
MODI FI ES newCopy. manager, newCopy. set
ENSURES newCopy. manager’ = SELF. manager
A newCopy.set’ = SELF. set
METHOD T. f reshCopy()
ENSURES RESULT. manager = SELF. manager
A RESULT.set = SELF. set
A FRESH(RESULT)
METHOD T. makeManager (e)
MODI FI ES e. job, SELF. manager, SELF. set
COVPCSI TI ON OF pronmote; add_to_group; install
ACTI ON pronot e
ENSURES e.job’ = Enpl oyeeDat a. Job. Manager
A UNCHANGED(SELF. nanager, SELF. set)
ACTI ON add_t o_group

ENSURES SELF.set’ = insert(e, SELF.set)
A UNCHANGED(e. j ob, SELF. manager)
ACTION i nstall

ENSURES SELF. manager’ = e
A UNCHANGED(e. j ob, SELF. set)

* >
END Enpl oyeeG oup.

FIGURE 6.5. EmployeeGroup.i3, part 2

6. LM3: A Larch Interface Languagefor Modula-3 115

The first new construct in this specification is a type invariant. The
meaning of thisclauseisthat, in any state visibleto aclient, each instance
of T either has no manager or has a nanager field whosej ob field
has the value Manager and that manager will aways be a member of
its set . Thisinvariant is conjoined to the precondition of each routine
and action in the interface that may read something of type T, and to the
postcondition of each routine and actionin theinterface that may modify or
return something of type T. Variable names in the invariant are implicitly
primed for postconditions.

The procedure in theinterface, subor di nat es, returns the members
of a given group, excluding the manager. It could, of course, have been
specified asamethod on T, but it is also perfectly valid to do it thisway.
The only item of interest in the specification of isthe use of the set field
of aT asavauefor the equivalent field in an Enpl oyeeSet . T. Thisis
permitted since theset field was inherited from the supertype.

Each of the methods that T inherits from Enpl oyeeSet . T has an
inherited specification. A subtype method awaysinheritsthe specification
of the corresponding method for the supertype; otherwise it would not
be sensible to use vaues of the subtype in contexts where values of
the supertype is expected. Since the subtype is more speciadized, it is
often appropriate to give it a stronger specification. This is done using a
strengthen clause.

For example, because an Enpl oyeeG oup. T hasanmanager field,
and an Enpl oyeeSet . T does not, most methods that modify values of
type Enpl oyeeG oup. T should have strengthened specifications.

For some of the methods, such as si ze, manager is smply
irrelevant. Generalizing the principl ethat an omitted modifiesclause means
nodi fi es not hi ng, the absence of any further specification of si ze
meansthat it leavesthemanager field unchanged. Thisinterpretation also
suffices for the specifications of i nsert, uni on, di sj oi nt Uni on,
and menber .

The incremental specifications of i ni t, renove, i ntersect and
choose are simple: they just say what value manager isto havein the
post-state. This extra clause is conjoined onto the specification inherited
from the supertype.

The treatment of the methods copyTo and freshCopy is more
complex, but not unusual. In Modula-3, only the implicit SELF parameter
to a method gets the subtype by inheritance. So both inherited methods
produce an Enpl oyeeSet . T, rather than an Enpl oyeeG oup. T. To

116 6.3. A guided tour through an L M3 specification

get around this, we use a standard trick. We introduce hew methods that
produce Enpl oyeeGr oup. T vaues, intentionally giving them the same
names, so they obscure the inherited methods. Since the new methods
have different signatures, STRENGTHEN is not appropriate and we give
full specifications for the new methods.*

The method makeManager introduces another feature. Modula-3 has
built-in support for threads, which are lightweight units of concurrency
that may share a state space. When specifying routines that may be called
from multiple threads, we have to be concerned about the possibility of
interference among these threads. LM3 provides constructs to specify
each non-atomic routine as a sequence of atomic actions.® To clients of
an interface, atomic actions must always appear to have executed in some
particular order; any concurrency in the implementation must be hidden.

The behavior of makeManager is specified as three atomic actions.
Consider the elements of its specification:

e Themodifies clause is the same as for an atomic routine. It restricts
each of the actions to a subset of its target list. None of the
actionscan modify non-target variables. An action specification may
further limit the changes to a subset of the target list, by indicating
componentsthat are not to be changed by that action.

e Rather than a single ensures clause, the method is specified as
a composition of a three actions. Each action has an associated
specification that can be read as if it were a routine specification
without arequires clause:

1. pronot e—must change the j ob component of the e
parameterto Manager ,and must not alter either thenanager
field or theset specification field;

2. add_t o_gr oup—must insert e into the group;
3. i nst al | —must make e the manager of the group.

4Thesignature of inherited methods sometimes confuses novice Modula-3 programmers
and they make the mistake of expecting all parameters of the supertype to be converted
to the subtype. The same misunderstanding will lead to the detectable mistake of using
STRENGTHEN when it is inappropriate.

5This section only touches the tip of the concurrency iceberg. It does not discuss
synchronization operations or the general case where routines may have action sequences
of arbitrary length. A more complete example is contained in Chapter 5 of Systems
Programmingwith Modula-3[69], which usesan earlier version of LM 3 to specify Modula-
3's synchronization primitives.

6. LM3: A Larch Interface Languagefor Modula-3 117

So the overall effect of the method is to make e the manager of
the group, while ensuring that each action preserves the invariant on T.
Preserving theinvariant between actionsisimportant because other actions
might be interleaved between pr onot e and add_t o_gr oup or between
add togroupandinstall.

EMPLOYEEDATABASE

An Enpl oyeeDat abase, Figure 6.6, provides a collection of routines,
including both queries and updates, over a set of Enpl oyeeG oups and
their employees.

| NTERFACE Enpl oyeeDat abase;
| MPORT Enpl oyeeDat a, Enpl oyee, Enpl oyeeSet,
Enpl oyeeG oup;
TYPE
T <: Public;
Public = OBJECT
METHODS
init ();
query (q: Query): Enpl oyeeSet. T,
hire (e: Enployee. T, g: EnployeeG oup.T)
RAI SES { Al readyEnpl oyee};
get Goup (e: Enployee.T): EnployeeG oup.T
RAI SES { Not Enpl oyee};
createG oup (man: Enpl oyee. T):
Enpl oyeeG oup. T;
renoveG oup (g: Enpl oyeeGoup.T);
END;
Query = RECORD
g : = Enpl oyeeDat a. Gender . Mal e;
j = Enpl oyeeDat a. Job. NonMyr ;
t est Gender, testJob: BOOLEAN : = FALSE;
| ow : = FI RST(Enpl oyeeDat a. Sal ary);
hi gh : = LAST(Enpl oyeeDat a. Sal ary) ;
END;
EXCEPTI ON Al r eadyEnpl oyee;
EXCEPTI ON Not Enpl oyee;

FIGURE 6.6. EmployeeDatabase.i3, part 1

118 6.3. A guided tour through an L M3 specification

<* TRAITS Set (Enpl oyeeGroup. T FOR E, EGSet FOR C);
TYPE EGSet ;
FIELDS OF T set: EGSet;
METHOD T.init
MODI FI ES SELF. set
ENSURES SELF.set’ = {}
VETHOD T. query(q)
ENSURES V e: Enpl oyee. T;
e € RESULT. set’
&
(3 gr: Enpl oyeeG oup. T;
gr € SELF. set

A e € gr.set

A (q.testGender = g.g = e.gender)
A (q.testJob = g.j] = e.job)

A g.low < e.salary

A e.salary < q.high)
METHOD T. hire(e, @)
REQUI RES g € SELF. set
MODI FI ES g. set
ENSURES g.set’ = insert(e, g.set)
EXCEPT 3 gr: Enpl oyeeG oup. T;
(gr € SELF.set A e € gr.set)
=> RAI SEVAL = Al r eadyEnpl oyee
METHOD T. get Group(e)
ENSURES e € RESULT.set A RESULT € SELF. set
EXCEPT V gr: Enpl oyeeG oup. T;
—-(gr € SELF.set A e € gr.set)
=> RAI SEVAL = Not Enpl oyee
METHOD T. cr eat eG oup(han)
MODI FI ES SELF. set
ENSURES RESULT. manager = nman

A RESULT.set’ = {man}
A FRESH(RESULT)
A SELF.set’ = insert(RESULT, SELF. set)

METHOD T. renoveG oup(Q)
MODI FI ES SELF. set
ENSURES SELF.set’ = delete(g, SELF.set)

*
>
END Enpl oyeeDat abase.

FIGURE 6.6. EmployeeDatabase.i3, part 2

6. LM3: A Larch Interface Languagefor Modula-3

| NTERFACE Enpl oyeeSet Fri end;
| MPORT Enpl oyee, Enpl oyeeSet, List;

REVEAL Enpl oyeeSet. T <: Enpl oyeeSet. Public
OBJECT
cont: List.T
END;

PROCEDURE Sort (s: Enpl oyeeSet.T);

*
TYPE_| NVARI ANT s: Enpl oyeeSet. T
size(s.set) = length(s.cont.I)
A VY e: Enpl oyee. T;
e € s.set & di:lnt;
0 < i A i < size(s.set)
A s.cont.I[i] = e

STRENGTHEN Enpl oyeeSet. T.insert(e)
ENSURES
e ¢ SELF. set
= SELF.cont.|’'[size(SELF.set)] = e

PROCEDURE Sort ('s)
MODI FI ES s. cont . |
ENSURES
Vi:lnt;
(0 <i A1 < (size(s.set)-1))
= (s.cont.l’'[i]).ssnhum
< (s.cont.l’'[i+1]).ssnum
* >

END Enpl oyeeSet Fri end.

FIGURE 6.7. EmployeeSetFriend.i3

119

As before, the actual representation of a T is hidden, so we provide a

specification field set , of abstract type EGSet .

EMPLOYEESETFRIEND

Thetype Enpl oyeeSet . T, Figure 6.7, illustrates a Modula3 partial
revelation of an opague type. It alows clientsto know some of the detail

of an Enpl oyeeSet . T without exposing al of it.

In Figure 6.7, we expose the fact that an Enpl oyeeSet. T has a
field that isaLi st. T. We do not show the specification of the Li st

120 6.3. A guided tour through an L M3 specification

interface here, but it has a specification field | that represents an abstract
list. The TYPE_I NVARI ANT providesthe abstraction relation, by relating
this concrete field to the abstract fields visible from Enpl oyeeSet . We
strengthenthei nser t method specification in aconsistent way, requiring
that each new element be added at the end of thelist.

Finally, we specify a procedure, Sort, that only makes sense in the
presence of the revelation: the set abstraction does not have an order, but
thelist representation does. Since the modifies clause doesn’t allow Sor t
to modify s. set, the specification can dispense with the usua clause
saying that the final value must be a permutation of theinitia value.

For more extensive use of partia revelation, see Chapter 6 of [69].

+
Chapter 7

Using L P to Debug L SL Specifications

In earlier chapters, we have attempted to show how Larch can be used to
write precise specifications. However, it is not sufficient for specifications
to be precise; they should also accurately reflect the specifier’s intentions.
Mistakes from many sources will crop up in specifications. Any practical
methodology that relies on specifications must provide meansfor detecting
and correcting their flaws, in short, for debugging them.

Parsing and type-checking are useful and easy to do, but don’t go
far enough. Unfortunately, we cannot prove the “correctness’ of a
specification, because there is no absol ute standard against which to judge
correctness. So we seek methods and toolsthat will be helpful in detecting
and localizing the kinds of errors that we commonly observe.

Since the Larch style of specification emphasizes brevity and clarity
rather than executability, it is usualy not possible to evduate Larch
specifications by testing. Instead, LSL allows specifiers to state precise
claims about specifications. If these claims are true, they can be verified
statically. Such a verification won't guarantee that a specification meets a
specifier'sintent, but it isapowerful debugging technique. Oncethe flaws
verification reveals are removed, there should be fewer doubts about the
specification’s accuracy.

Theclaimsalowed in LSL specifications are undecidable in the general
case. Hence we can't hope to build a tool that will automatically certify
an arbitrary specification. However, tools can assist specifiersin checking
claims during debugging.

This chapter describes how two such tools fit into our work on LSL.
Our principal debugging tool is LP [30], the Larch proof assistant.! LP's
design and development have been motivated primarily by our work on
LSL, but it also has other uses (cf. Appendix E). Because of these other
uses, and because we aso intend to use LP to anayze Larch interface
specifications, we have tried not to make L P too L SL-specific. Instead, we
have chosen to build and useasecond tool, the LSL Checker, asafront-end
to LP. The LSL Checker checks the syntax and type consistency of LSL

Theversion of L P describedin this book is that released in November, 1991. A version
with increased logical power is currently under development.

122 7.1. Semantic checksin LSL

specifications, then generates L P proof obligations from their claims.

Sections 7.1 and 7.2 describe the checkable claims that can be madein
LSL specifications. Sections 7.3 through 7.6 describe how LP is used to
check these claims. Section 7.7 contains an extended example.

7.1 Semantic checksin LSL

We begin by reviewing the kinds of semantic claims that can be madein
LSL. As mentioned in Chapter 4, semantic claims about LSL traits fall
into three categories:

e consistency (that a specification does not contradict itself),

¢ theory containment (that aspecification hasintended consequences),
and

¢ relative completeness (that a set of operatorsis adequately defined).

Consistency is an assertion about what is not in the theory of trait, and
is therefore not expressible in LSL. Instead, it is implicitly required of
al traits: no legal LSL trait’s theory contains the inconsistent equation
true == fal se.Clamsintheother two categories are stated explicitly
using the LSL constructsi npl i es and assunes.

CHECKING IMPLICATIONS

Animplies clause adds nothing to the theory of atrait. Instead, it makesa
claimabout theory containment. It enablesspecifierstoincludeinformation
they believe to be redundant, either as a check on their understanding or
to call attention to something that a reader might otherwise miss. The
redundant information is of two kinds: statements like those in asserts
clauses, which are claimed to be in the theory of the trait, and converts
clauses, which describe the extent to which a specification isclaimed to be
complete.

Theinitial design of LSL incorporated abuilt-in notion of compl eteness.
We quickly concluded, however, that requirements of completeness are
better left to the specifier’s discretion. It useful to check certain aspects
of completeness|ong before a specification isfinished. Furthermore, most
finished specifications are left intentionally incomplete in places. LSL
allows specifiers to make checkable claims about how complete they

7. Using LPto Debug L SL Specifications 123

Li near Contai ner(E, C: trait
i ntroduces
empty: — C
insert: Ef C —» C
head: C — E
tail: C —= C
i sEnpty: C — Boo
€ __: E C— Boo
asserts
C generated by enpty, insert
C partitioned by head, tail, isEnpty
Vc: C e el: E
head(i nsert (e, enpty)) == e;
tail (insert(e, enpty)) == enpty;

i SEnpty(enpty);

—i sEnpty(insert(e, c));

-(e € enpty);

e € insert(el, c) == e =el Vv e € c
i mplies

Vc: C e E
i SEnpty(c) = —(e € c)
converts €, isEmpty

FIGURE 7.1. Sample LSL specification

intend specificationsto be. These claims are usually most valuable during
specification maintenance. Specifiers don’t usually make erroneous claims
about completeness when first writing a specification. On the other hand,
when editing aspecification, they often del ete or change somethingwithout
realizing itsimpact on completeness.

The first part of the implies clause of the trait Li near Cont ai ner ,?
Figure 7.1, asserts that if i SEnpt y of acontainer is true, no element is
in that container. By checking that this assertion follows from the axioms
of thetrait, we can gain confidence that the axioms describing i SEnpt y
and € are appropriate.

2This trait is similar to the trait Cont ai ner that appears in Figure 4.13 and in
Appendix A: its theory is contained in that of Cont ai ner. Many of the traits in this
chapter are adapted from traits appearing in Appendix A. However, in order to better
illustrate how traits are checked, we have changed them in small ways. In particular, we
have often added implications and suppressed details that do not affect the points we wish
to make.

124 7.1. Semantic checksin LSL

PQE Q: trait
assunes TotOrd(E)
i ncl udes Li near Cont ai ner(E, Q
asserts vV gq: Q e E
head(i nsert(e, q)) ==
if isEnmpty(qg) then e
else if e < head(qg) then e
el se head(q);
tail (insert(e, q)) ==
if isEnmpty(qg) then enpty
else if e <« head(q) then ¢
el se insert(e, tail(Q))

i mplies
Vg Q e E
e € g => (e < head(Qq))
converts i skEnpty, head, tail, €

exenpting head(enpty), tail (enpty)
FIGURE 7.2. LSL specification for apriority queue

The converts clause in Li near Cont ai ner claims that the trait
contains enough axioms to define € and i sEnpt y; that is, given any
fixed interpretations for the other operators, all interpretations of € and
i SEnpt y that satisfy the trait’s axioms are the same.

The converts clause in PQ Figure 7.2, involves more subtle check-
ing. The exempting clause indicates that the lack of equations for
head(enpty) andtail (enpty) isintentiona: the operators head
andt ai | areonly claimedto bedefined uniquely relativetointerpretations
for thetermshead(enpty) andtai | (enpty) . Section 7.5 describes
the checking entailed by the converts clause in more detail.

CHECKING ASSUMPTIONS

There are two mechanisms for combining LSL specifications. Both are
defined as operations on the texts of specifications. For both, the theory of
acombined specificationisaxiomatized by the union of the axiomatizations
for theindividual specifications; each operator isconstrained by theaxioms
of dl traitsin which it appears. Trait inclusion and trait assumption differ
only in the checking they entail.

Thetrait PQ, Figure 7.2, whichincludes Li near Cont ai ner, further
constrainstheinterpretationsof head, t ai | , andi nsert . The assumes

7. Using LPto Debug L SL Specifications 125

TotOrd(E): trait

i ntroduces
< __: E E — Bool
> _: E, E — Bool
asserts forall x, y, z: E
(0 x < x);
(X <y Ay < 2) =X <z
X <Yy VX=Yy VYy <KX
X >y == < X
i mplies
TotOd(E, > for <, < for >)
vV x, y: E

(X <y Ay < X)

FIGURE 7.3. LSL specification for total orders

clause of PQindicatesthat PQ's theory a so containsthe theory of thetrait
Tot O d, Figure 7.3.

The use of assumes rather than i ncl udes entails additiona
checking. Theassumption must be discharged whenever PQisincorporated
into another trait. For example, checking the trait

NunericPQ trait
i ncl udes PQ(N, NunericQ, Numeric

involves checking that the assertionsin the trait Tot Or d(N) areimplied
by those in the traits PQ Li near Cont ai ner, and Numeri ¢ taken
together. Sometimes these assumptions can be syntactically discharged for
example, if Nuner i ¢ explicitly includes Tot Or d(N) .

Figure 7.4 summarizes the checking that LSL requires for the sample
traitsintroduced in this section.

7.2 Proof obligations for LSL specifications

An LSL specification generally consists of a hierarchy of traits, some of
whichinclude, assume, or imply others. We usethe L SL Checker to syntax-
check and type-check the traits, to extract the proof obligations required
to check the semantic claimsin the traits, and to discharge some of these
proof aobligations. This section describes how the LSL Checker extracts
the proof obligations. The next several sections describe how we use LPto

126 7.2. Proof obligationsfor LSL specifications

Nuneri cPQ

Check consistency of Nuner i cPQ.

Check assumption of Tot O d(N) by PQ

Use the assertions of al traits except for those of Tot O d.

PQ Nuneri c
Check consistency of PQ Check . ..
Check implications Use...

Use the assertions of PQand the theories of
Li near Cont ai ner and Tot Or d.

Li near Cont ai ner TotOrd

Check consistency. Check consistency.
Check implications. Check implications.
Use local assertions. Uselocal assertions.

FIGURE 7.4. Summary of required checking

7. Using LPto Debug L SL Specifications 127

discharge those proof obligations that the LSL Checker cannot discharge
syntactically.

To extract proof obligations, the LSL Checker computes the following
sets of propositions (equations, generated by clauses, and partitioned by
clauses) for each trait T in atrait hierarchy.

e Theassertionsof T consist of the propositionsin the asserts clauses
of T and of al traits (transitively) included in T.

e The assumptions of T consist of the assertions of al traits
(transitively) assumed by T.

e Theaxiomsof T consist of itsassertions and its assumptions.

¢ Theimmediate consequences of T consist of the propositionsin T's
implies clause and the axioms of all traitsthat T explicitly implies.

The LSL Checker places the axioms for each trait T in a file
named T_Axi ons. | p. It dso generates a file named T_Checks. | p,
which contains the proof obligations associated with showing that T's
axioms entail its immediate consequences, its converts clauses, and the
assumptionsof each trait explicitly included in or assumed by T. The LSL
Checker does not generate an explicit proof obligationfor showingthat T's
axioms are consistent. In fact, such a proof obligation isnot expressiblein
LP Like LSL, LP contains no mechanisms for making statements about
what is not in atheory.

TheL SL Checker can discharge some proof obligationssyntactically, for
example, because a proposition to be proved occurs textualy among the
axioms available for use in the proof. When it cannot do this, it places
commands in T_Checks. | p that initiate a proof of the proposition.
Sometimes LP will be able to carry out the required proof automatically;
sometimesit will require user assistance.

Consider thetrait Nurrer i ¢PQ, whichincludesboth PQand Nurreri c.
Because PQassumes Tot Or d, it is necessary to check that the axioms of
Nurrer i cPQimply thoseof Tot Or d. If Nuner i ¢ explicitly includes or
impliesTot O d, or if theassertionsof Tot O d are among the axioms of
Nurrer i c, then the LSL Checker can discharge the assumption required
for including PQin Nuner i cPQ. On the other hand, if Nunmer i ¢ ssimply
asserts some properties of the binary relations < and >, the LSL Checker
will formulate LP commands that initiate a proof of the conjecture that
these propertiesimply the assertions of Tot O d.

128 7.2. Proof obligationsfor LSL specifications

LSL Traits
To. I'sl, ..., T,. Isl

'
| TheLSL Checker | — Diagnostics

.

T; Axions. | p, T, Theorens. | p
T; Checks. I p

}
User | LP |

t
Diagnostics

FIGURE 7.5. Using the LSL checker and LP to check LSL traits

LEMMAS FOR PROOF OBLIGATIONS

When checking the semantic claimsin a hierarchy of traits, it isgenerally
desirable to use lemmas that have been (or can be) shown separately
to follow from the axioms of those traits. The theorems of a trait
T consist of its axioms supplemented by al appropriately renamed
propositions (transitively) implied by T or by some trait below T in the
inclusion/assumption hierarchy.® The LSL Checker places the theorems
for each trait T in afile named T_Theor ens. | p, and refers to this file
instead of T_Axi ons. | p in T_Checks. | p when it is sound to do so.
In genera, soundnessis guaranteed as long as there is a partia order for
checking proof obligationsin which each theorem is (or can be) checked
before it is used as alemmato discharge another proof obligation.

By providing a small set of axiomsfor atrait T, a specifier can make it
easier to check traitsthat imply T or that include atrait that assumes T. By
providing alarge set of implicationsfor T, a specifier can makeit easier to
reason about T and, in particular, to check traitsthat include or assume T,
without at the same time making it harder to check traits that imply T or
that include atrait that assumes T.

Figure 7.5 shows how the LSL Checker and LP are used together to
check LSL traits.

3Some generated by and partitioned by clauseswill not qualify as theoremsof T when
arenaming identifies the generated or partitioned sort with some other sort.

7. Using LPto Debug L SL Specifications 129

decl are sorts
C E

decl are operators
head: C — E
insert: Ef C — C
i sEnpty: C — Boo
tail: C— C
empty: — C
€. E, C — Boo

decl are vari abl es

e: E
c.: C
el: E

FIGURE 7.6. LP declarations produced from Li near Cont ai ner

7.3 Trandating LSL traitsinto LP

LP is a proof assistant for a subset of multisorted first-order logic with
equality. The basisfor proofsin LPiscaled alogical system. This section
contains an overview of the components of a logical system in LP and
discusses their relation to the components of an LSL trait. The following
sections discuss how these components are used by L P to discharge proof
obligations associated with LSL traits.

A logical system in LP consists of a signature (given by declarations)
plus equations, rewrite rules, operator theories, induction rules, and
deduction rules. Logica systems are closely related to LSL theories, but
are handled somewhat differently. Axiomsin LP have operational aswell
as semantic content, and they can be presented to L P incrementally, rather
than all at once.

DECLARATIONS

Sorts, operators, and variables play the samerolesin LPasthey doinLSL.
AsinLSL, operators and variables must be declared, and operators can be
overloaded. There are afew minor differences: sorts must be declared in
LR, and LP doesn’t provide scoping for variables.

The LSL Checker produces the declarations in Figure 7.6 from the

130 7.3. Translating LSL traits into LP

introduces and V clausesin thetrait Li near Cont ai ner.

EQUATIONS AND REWRITE RULES

Equationsplay aprominentrolein LP. Some of L P sinference mechanisms
work directly with equations. Most, however, require that equations be
oriented into rewrite rules, which LP uses to reduce terms to normal
forms. It is usually essentia that the rewriting relation be terminating,
that is, no term can be rewritten infinitely many times. LP provides
severa mechanisms that automatically orient many sets of equations into
terminating rewriting systems. For example, in response to the commands
set name group
declare sort G
declare variables x, y, z: G
declare operatorse: - G i: G- G *: G G — G
assert
(x*y)*z == x*(y*z)
e == i(X)*x
e*x == Xx

which enter the usual axiomsfor groups, L P produces the rewrite rules
group.1l: (x *vy) *z —x* (y* 2)
group.2: i(x) * x — e
group.3: e * X — X

L P automatically reverses the second equation to prevent nonterminating
rewriting sequences such as

e - i(e) *e —i(e) *i(e) *e — ...

A system’s rewriting theory consists of the propositions that can be
proved by reduction to normal form. This theory is always a subset of its
equational theory, which consists of the propositions that can be proved
from its equations and from its rewrite rules considered as eguations.
A system’s rewriting theory does not usually include all of its equational
theory. The proof mechanismsdiscussed in Section 7.4 hel p to compensate
for this incompleteness. In the case of group theory, for example, the

equation e == i (e) follows logicaly from the axioms, but is not in
the rewriting theory of the three rewrite rules: it isirreducible, but not an
identity.

LP provides built-in rewrite rules to simplify predicates involving the
connectives—, A, V, =, and <, theequality operator =, and theconditional

7. Using LPto Debug L SL Specifications 131

operator i f. These rewrite rules are sufficient to prove many identities
involving these operators, but not al. Unfortunately, the sets of rewrite
rules that are known to be complete for propositiona calculus require
exponential time and space. Furthermore, they tend to expand, rather
than simplify, propositions that do not reduce to identities. These are
serious drawbackswhen we are debugging specifications, because we often
attempt to prove conjectures that are not true. So none of the complete sets
of rewrite rules is built into LP. Instead, LP provides proof mechanisms
that can be used to overcome incompletenessin arewriting system. It also
allows usersto add any of the complete sets they choose to use.

LP treats the equationstrue == falseandx =t == fal se,
where t is a term not containing the variable x, as inconsistent. (The
second equation rules out empty sorts.) Inconsistencies can be used to
establish subgoals in proofs by cases and contradiction. If they arise in
other situations, they indicate that the axioms in the logical system are
inconsistent.

OPERATOR THEORIES

L P provides special mechanisms for handling some equations that cannot
be oriented into terminating rewrite rules. LP recognizes two operator
theories: the commutative theory and the associative-commutative (ac)
theory. For example, the command assert ac + says that + is
associative and commutative. Logically, this assertion is an abbreviation
for two equations:

X+ (y +2z) ==(x +y) +2

X +y ==y + X

Operationaly, it causes LP to match and unify terms modul o associativity
and commutativity. This increases the number of theories that LP can
reason about. It also reduces the number of axioms required to describe
various theories, the number of reductions necessary to derive identities,
and the need for certain kinds of user interaction, such as case analysis. Its
main drawback isthat it can be much slower than ordinary rewriting.*

4A secondary drawback is that ordering equations that contain commutative and ac
operators into terminating sets of rewrite rulesis, in principle, more difficult. In practice,
however, this is not a problem.

132 7.3. Translating LSL traits into LP

INDUCTION RULES

LP uses induction rules to generate subgoals in proofs by induction. The
syntax for induction rulesisthe samein LPasin LSL.°
Users can specify multipleinduction rules for a single sort and can use

the appropriate rule when attempting to prove an equation by induction.
For example, assuming appropriate declarations, the L P commands

set nane setlnductionl

assert S generated by enpty, insert

set nane setlnduction2

assert S generated by enpty, singleton, U

alow
prove x C x by induction using setlnduction2

In LSL, the axioms of atrait typically have only one generated by for a
sort. It is often useful, however, to put othersin the trait’s implications.

DEDUCTION RULES

L P subsumes the logical power of the partitioned by construct of LSL in
deduction rules, which LP uses to deduce equations from other equations
and rewrite rules. Like other formulas in LP, deduction rules may be
asserted as axioms or proved as theorems. While the partitioned by clause
in the trait Li near Cont ai ner can be expressed by an eguation, in
general a partitioned by clause is equivalent to a universal-existential
axiom, which can only be expressed asadeductionrulein LP. For example,
the LP commands

assert S partitioned by ¢

assert
when (V e) e e x ==e €y
yield x ==

are equivalent and define a deduction rule equivalent to the axiom of set
extensionality

(Vz,y:8)[(Ve: E)e€z o ecy)=z =1y

Thisdeductionruleenables L Pto deduceequationssuchasx == x U X
automatically from equationssuchase € x == e € (x U X).

5The semantics of induction is somewhat stronger in LSL than in LP, since arbitrary
first-order formulas cannot be written in this version of LP.

7. Using LPto Debug LSL Specifications 133

Deduction rules can have multiple hypotheses and/or multiple conclu-
sions. For example, the transitivity of < can be formulated as a deduction
rule with two hypotheses:

when i < j, j < kyieldi < k
The built-in A-splitting law is a deduction rule with two conclusions:
when p A q yield p, q

Such deductionrules servetoimprovethe performance of LPand to reduce
the need for user interaction.

L P automatically applies deduction rules to equations and rewrite rules
whenever they are normalized. The sample proof in Section 7.5 illustrates
the logical power of deduction rules, as well as the benefits of applying
them automatically to the case and induction hypotheses in a proof.

7.4 Proof mechanismsin LP

This section provides abrief overview of the proof mechanismsin LP. The
next two sections discusshow they are used to check LSL semantic claims.

L P provides mechanisms for proving theorems using both forward and
backward inference. Forward inferences produce consequences from a
logical system; backward inferences produce subgoals whose proof will
suffice to establish a conjecture. There are four methods of forward
inferencein LP.

1. Automatic normalization produces new consequences when a
rewrite rule isadded to a system. L P keeps rewrite rules, equations,
and deduction rulesin normal form.

If an equation or rewriterule normalizesto anidentity, it isdiscarded,
becauseitislogically and operationally superfluous. If al hypotheses
of a deduction rule normalize to identities, the deduction rule is
replaced by the equations in its conclusions. If al conclusions
of a deduction rule normaize to identities, the deduction rule is
discarded.

Users can “immunize’ equations, rewrite rules, and deduction rules
to protect them from automatic normalization, both to enhance the
performance of LP and to preserve a particular form for use in a
proof. Users can also “deactivate” rewrite rules and deduction rules
to prevent them from being applied automatically.

134

7.4. Proof mechanismsinLP

2. Automatic application of deduction rules produces new conse-

guences after equationsand rewrite rulesin asystem are normalized.
Deduction rules can aso be applied by explicit command, for
example, to immune equations.

The computation of critical-pair equations and the Knuth-Bendix
completion procedure [58, 72] produce equational consequences
(such asi (e) == e) from incomplete rewriting systems (such
as the three rewrite rules for groups, page 130). We often compute
critical-pair equationsfrom selected setsof rewrite rules. Sometimes
we run the completion procedure to find the last few consequences
to finish off a proof or, as discussed in Section 7.7, to look for
inconsistencies. However, werarely completeour rewriting systems,
becauseacompl ete set of rewriteruleswith agiven equational theory
may not exist, may betoo expensiveto obtain, or may lead to normal
formsthat are hard to read [28].

Explicit instantiation of variables in eguations, rewrite rules, and
deduction rules also produces consequences. For example, in a
system that contains the deduction rule

when (V e) e €¢ x==e €y yield x ==y

and therewriterulee € (x Uy) — e € X V e € y,we
can instantiate y in the deduction rule by x U x to produce the
conclusonx == x U X.

There are seven methods of backward inference for proving theoremsin
LP. These methodsareinvoked by thepr ove and r esune commands. In
each method, LP generates a set of subgoalsto be proved, that is, lemmas
that together are sufficient to imply the conjecture. For some methods,
L P generates additional hypotheses that may be used to prove particular
subgoals.

1. Normalization rewrites conjectures. If a conjecture normalizes to

an identity, it is a theorem. Otherwise the normalized conjecture
becomes the subgoal to be proved.

2. Proofs by cases can further normalize a conjecture. The command

prove e by cases ti, ..., ty,, whee tq, ..., t, ae
predicates, directs LP to prove an equation e by division into cases

7. Using LPto Debug LSL Specifications 135

t1,...,tn(orintotwocases, t;and -t 1,if n = 1). Whenn > 1,
onesubgoal istoprovethat thecasesareexhaustive,i.e, t 1 v ...V
t . In addition, for each case t ;, LP substitutes new constants for
the variables of t; in botht,; and e to form t,;’ and e;’ , which
it uses to creates the subgoal e;” with the additional hypothesis
t;” — true. If an inconsistency results from adding the case
hypothesist ;" , that case isimpossible, and e;’ is vacuously true.
Otherwise, thesubgoa e;" must be shownto follow from the axioms
supplemented by the case hypothesis.

Case analysis hastwo primary uses. If the conjectureisatheorem, a
proof by cases may circumvent alack of completenessin the rewrite
rules. If the conjectureis not atheorem, an attempted proof by cases
may simplify the conjecture and make it easier to understand why
the proof is not succeeding.

. Proofs by induction are based on the induction rules described in
Section 7.3. For example, a proof by induction of

i SEnpty(c) = —-(e € c)

from the axioms of Li near Cont ai ner involves two steps. The
basis step involves showing that

i SEnpty(enmpty) = —(e € enpty)

Thisfollows from the axioms by normalization. The induction step
involves picking a new constant cc, assuming

i sSEnpty(cc) = —(e € cc)
as an induction hypothesis, and showing that

i sSEmpty(insert(el, cc)) =
-(e € insert(el, cc))

This follows by normalization from the axioms supplemented by
thisinduction hypothesis.

. Proofs by contradiction provide an indirect method of proof. If an
inconsi stency follows from adding the negation of the conjecture to
LP'slogica system, then the conjecture is a theorem.

136 7.4. Proof mechanismsinLP

5. Proofs of implications can be carried out using a simplified form of
proof by cases. The command prove t; = t, by = directs
LP to prove the subgoa t ,’ using the hypothesist ;" — true,
wheret ;" andt,’ areobtained asinaproof by cases. Thissuffices
because theimplication is vacuously truewhent ;" isfase.

6. Proofsof conditionalscan aso becarried out usingasimplified form
of proof by cases. The command

prove if(ty, to, tg3) ==t4 by if
directs LP to provethesubgoal t ,” == t 4 usingthe hypothesis
t1 , and to prove thesubgoal t 37 == t,4 using the hypothesis
-ty ,wheret{ ,...,t4 areobtained asinaproof by cases.

7. Proofs of conjunctions provide a way to reduce the expense of
rewriting modulo the associativity and commutativity of A. The
commandprovet; A ...A t, by AdirectsLPtoproveeach
oftq,...,t, asaseparate subgoal.

LP alows users to specify which methods of backward inference are
applied automatically and in what order. This is done by using the set
pr oof - met hods command. For example, the LP command

set proof-nmethods if, =, nornalization

tells LP that whenever it is given a conjecture to prove, it should
automatically try to apply these three methods, in the given order.

L P also provides automatic methods of backward inference for proving
induction and deduction rules. In each method, LP generates a set of
subgoals to be proved, as well as additiona hypotheses that may be used
to prove particular subgoas. (See the next section for examples.)

Proofs of interesting conjectures hardly ever succeed on the first try.
Sometimes the conjecture is wrong. Sometimes the formalization is
incorrect or incomplete. Sometimes the proof strategy is flawed or not
detailed enough. When an attempted proof fails, we use a variety of LP
facilities (e.g., case anaysis) to try to understand the problem. Because
many proof attempts fail, LP is designed to fail relatively quickly and
to provide useful information when it does. It is not designed to find
difficult proofs automatically. Unlike the Boyer-Moore prover [8], it does
not perform heuristic searches for a proof. Unlike LCF [71], it does not
allow users to define complicated search tactics. Strategic decisions, such
as when to try induction, must be supplied as explicit LP commands.

7. Using LPto Debug LSL Specifications 137

declare sorts
E

decl are operators
<. E, E — Bool
>:. E, E — Bool

decl are vari abl es

X: E
y: E
z:. E
set nanme TotOrd
assert
(X < X)
(X <y ANy <z) =x <1z
X <Yy VX=Yy VYy<X
X >y == < X

FIGURE 7.7. Tot Or d_Axi ons. | p

On the other hand, LP is more than a “proof checker,” since it does not
require proofs to be described in minute detail. In many respects, LP is
best described as a*“proof debugger.”

7.5 Checking theory containment

The proof obligations triggered by implies and assumes clauses in an
LSL trait require us to check theory containment, that is to check that
claims follow from axioms. This section discusses how the LSL Checker
formulates the proof abligationsfor theory containment for LP, aswell as
how we use LP to discharge these obligations. The next section discusses
checking consi stency.

PROVING AN EQUATION

The proof obligation for an equation is easy to formulate. Consider, for
example, the proof obligations that must be discharged to check the trait
Tot O d shown in Figure 7.3. Figure 7.7 displays the LP commands
that the LSL Checker extracts from this trait in order to axiomatize

138 7.5. Checking theory containment

execute Tot Ord_Axi ons
set nane Tot OrdTheorem
% Prove inplication of TotOrd(E, > for <, < for >)
prove —(X > X)
ged
prove (X >y A Yy > 2) => X > 2
ged
prove X >y V X =Yy V Yy > X
ged
prove X < y ==y > X
ged
% Prove inplied equation
prove (X <y Ay < X)
ged

FIGURE 7.8. Tot Or d_Checks. | p

its theory, and Figure 7.8 displays the LP commands that the LSL
Checker extracts from thistrait in order to discharge its proof obligations.
The execut e command obtains the axioms for Tot Or d from the file
Tot Or d_Axi ons. | p. Thepr ove commandsinitiate proofs of thefive
immediate consequences of Tot Or d.

LP can discharge dl proof obligations except the first without user
assistance. The user is aderted to the need to supply assistance in this
proof by a diagnostic (“Proof suspended”) printed in response to the ged
command. At this point, the user can complete the proof by entering the
conpl et e command or the command

critical-pairs TotOd with TotOrd
Proofs of equationsrequire varying amounts of assistance. For example,
when checking that Li near Cont ai ner implies
i SEnpty(c) = —-(e € c)
the singleLP command r esune by i nduct i on sufficesto finish the

proof.
When checking that PQ, Figure 7.2, implies

e € q= (e < head(q))

more guidance is required. This proof proceeds by induction on q. LP
proves the basis subgoal without assistance. For the induction subgoal, LP

7. Using LPto Debug LSL Specifications 139

introducesanew constant ¢ to takethe place of theuniversally-quantified
variable g, adds

e € qc = -(e < head(qc))

as the induction hypothesis, and attempts to prove

e € insert(el, qc) =
-(e < head(insert(el, qc)))

which normalizesto
(el =e VvV e €qc) =
-(e < (if isEnpty(qgc) then el
else if el < head(qc) then el
el se head(qc)))

LP now automatically applies the = proof method, i.e, it assumes
the hypothesis of the implication, introducing new constantsec and elc
to take the place of the variables e and el, and attempts to prove the
conclusion of the implication from this hypothesis. At this point, further
guidanceisrequired. The command

resume by case i seEnpty(qc)

directs LP to divide the proof into two cases based on the predicate
in the first i f. In the first case, i SEnpty(qgc), the desired conclu-
sion normalizes to -(ec < elc). The conpl et e command leads
LP to deduce (e € qc), using the implied equation in the trait
Li near Cont ai ner, which is available for use in the proof because
Li near Cont ai ner precedes PQ in the trait hierarchy. With this fact,
LP is able to finish the proof in the first case automatically. The second
case, ~i SEmpt y(gc), requires more user assistance.

Figure 7.9 shows the entire proof, as recorded and annotated by LP
in a script file. In addition to recording user input, LP has indented the
script to reveal the structure of the proof, and it has annotated the proof by
adding lines (beginning with <>) to indicate when it introduced subgoals
and lines (beginning with []) toindicate when each of these subgoalsand
the theorem itself were proved. Such an annotated proof providesthe user
with a means of regression testing after changing the axioms for a trait.
On request, when LP executes the annotated proof (using the new set of
axioms), it will halt execution and print an error messageif the annotations
do not match the execution. These checks help pinpoint the source of
a problem when changes in the axioms cause some step in the proof to
succeed with less user guidance than expected or to require more guidance.
Without the check, LP might, for example, apply atactic intended for a

140 7.5. Checking theory containment

set proof-nmethods =, normalization
prove e € q = —-(e < head(q)) by induction
<> 2 subgoal s for proof by induction on ‘q
<> 1 subgoal for proof of =
[l = subgoal
[basis subgoal
<> 1 subgoal for proof of =
resume by case i seEnmpty(qc)
<> 2 subgoal s for proof by cases
% Handl e case i sEnpty(qc)
conpl ete
[1 case isEnpty(qc)
% Handl e case —i sEnpty(qc)
resume by case elc < head(qc)
<> 2 subgoals for proof by cases
% Handl e case elc < head(qc)
resume by contradiction
<> 1 subgoal for proof by contradiction
conpl ete
[T contradiction subgoa
[] case elc < head(qc)
% Handl e case —(elc < head(qc))
resume by contradiction
<> 1 subgoal for proof by contradiction
conpl ete
[T contradiction subgoa
[T case —(elc < head(qc))
[1 case —(isEmpty(qc))
[l = subgoal
[1 induction subgoa

[T conjecture
ged

FIGURE 7.9. L P-annotated proof of PQimplication

7. Using LPto Debug L SL Specifications 141

FinSet: trait
i ntroduces
enmpty: — S
insert: S, E— S
singleton: E — S

U _:S S—S

€ __: E S — Boo

<€ _:S S — Boo
asserts

S generated by enpty, insert
S partitioned by €
forall s, s1: S, e, el: E

singleton(e) == insert(enmpty, e);
s U enpty ==s;
S U insert(sl, e) ==insert(s U s1, e);
-(e € enpty);
e € insert(s, el) == e € s VvV e = el;
enpty C s;
insert(s, e) € sl ==s C sl A e € sl
i mplies

S partitioned by C
S generated by enpty, singleton, U

FIGURE 7.10. An LSL trait for finite sets

particular case in a proof to the wrong case, thereby causing the proof to
fail in mysterious ways. This checking helps prevent proofs from getting
“out of sync” with their author’s conception of how they should proceed.

PROVING A “PARTITIONED BY”

Proving a partitioned by clause amounts to proving the vaidity of the
associated deduction rulein LP. For example, the LSL Checker formulates
the proof obligations associated with the partitioned by in the implies
clause of Figure 7.10 using the LP commands

execute FinSet_Axi ons
prove S partitioned by C

and LP trandlates the partitioned by into the deduction rule

when (V s3) sl € s3 ==s2 C s3,
s3 C s1 ==s3 C s2
yield sl == s2

142 7.5. Checking theory containment

L Pinitiatesaproof of thisdeduction rule by introducing two new constants,
slc and s2c¢ of sort S, assuming slc C s3 == s2c¢c C s3 and
s3 C slc == s3 C s2c as additiona hypotheses, and attempting
to prove the subgoal slc == s2c. LP cannot prove slc == s2c¢
directly, because the equation is irreducible. The user can guide LP by
typing conpl et e, which yieldsthelemmae € slc == e € s2c,
after which LP automatically finishes the proof by applying the deduction
rule associated with the assertion S partitioned by €.

PROVING A “GENERATED BY”

Proving a generated by clause involves proving that the set of elements
generated by the given operators contains al elements of the sort. For
example, theLSL Checker formulatesthe proof obligation associated with
the generated by in theimplies clause of Figure 7.10 as

execut e FinSet Axi ons
prove S generated by enpty, singleton, U

LP then introduces a new operator i sGener at ed: S—Bool , adds the
hypotheses

i sGener at ed(enpty)
i sGener at ed(si ngl eton(e))
(i sGenerated(sl) A isCenerated(s))
= isCGenerated(sl U s)
and attemptsto prove the subgoal i sGener at ed(s) . User guidance is
required to complete the proof, for example, by entering the commands

resume by induction
conpl ete

directing L P to use the induction scheme obtained from the assertion
S generated by enpty, insert

and then to run the compl etion procedure to draw the necessary inferences
from the additional hypotheses.

PROVING A “CONVERTS’

Proving that atrait converts a set of operators involves showing that the
axioms of the trait define the operators in the set relative to the other
operators in the trait. For example, to show that Li near Cont ai ner

7. Using LPto Debug LSL Specifications 143

execut e Li near Cont ai ner _Theor ens
decl are operators

i sEmpty’: C — Bool

€: E, C — Bool

assert C partitioned by head, tail, isEnmpty’
assert

i SEnpty’ (enpty)

- (i sEmpty’ (insert(e, c)))

-(e € enpty)

e € insert(el, ¢c) ==e =el v e € ¢

i SEnpty’' (c) = —(e € «c¢)

set nanme conver si onChecks

prove e € c == e € ¢
ged

prove i seEmpty(c) == isEnpty’' (c)
ged

FIGURE 7.11. Proof obligationsfor convert s in Li near Cont ai ner

converts i SEnpty and €, one must show that, given any interpre-
tations for enpty and i nsert, there are unique interpretations for
i sEmpty and € that satisfy the axioms of Li near Cont ai ner.
Equivalently, we must show that thetheoriesof Li near Cont ai ner and
Li near Cont ai ner (i seEnpty’ for isEnpty, € for €) to-
gether imply the two equationsi sEnpty(c) == i sEnpty’ (¢) and
ecc===¢ ¢ c

The LSL Checker formulates these proof obligations with the LP
commands in Figure 7.11.° The only user guidance required to discharge
these proof obligationsis a command to proceed by induction.

The proof obligation for the converts clause in PQis similar. Here we
must show that given any interpretationsfor enpt y andi nsert , aswell
as for the exempted terms head(enpty) and tail (enpty), there
are unique interpretationsfor head, t ai | , i SEnpt y, and € that satisfy
the theory of PQ The proof obligationsfor this are shown in Figure 7.12.
Again, theonly user guidance needed to compl ete the proofs are commands
to proceed by induction.

5The figure's last assertion comes from the implies clausein Li near Cont ai ner .

144 7.5. Checking theory containment

execut e PQ Theoremns
% Decl arati ons, axions, and theorens for

% head, tail’, isEnpty’, € occur here
set nane exenptions
assert

head(enpty) == head (enpty)
tail (enpty) ==tail’ (enpty)

set nanme conver si onChecks

prove i seEmpty(q) == isEnpty’' (Qq)
ged
prove head(q) == head’ (q)
ged
prove tail (gq) ==tail’(q)
ged
prove e € g ==e € (
ged

FIGURE 7.12. Proof obligationsfor converts in PQ

7. Using LPto Debug LSL Specifications 145
7.6 Checking consistency

Checks for theory containment fall into the typical pattern of use of
a theorem prover. The check for consistency is harder to formulate
because it involves nonconsequence rather than consequence. Techniques
for detecting when this check fails are more useful than techniques for
certifying that it succeeds.

A standard approach in logic to proving consistency involves inter-
preting the theory being checked in another theory whose consistency is
assumed (e.g., Peano arithmetic) or has been established previously [77].
Inthisapproach, user assistanceisrequired to definetheinterpretation. The
proof that the interpretation satisfies the axioms of the trait being checked
then becomes a problem of showing theory containment, for which LP
iswell suited. This approach is cumbersome and unattractive in practice.
More promising approaches are based on metatheoremsin first-order logic
that can be used for restricted classes of specifications. For example, any
extension by definitions (see [77]) of a consistent theory is consistent.

For equational traits (i.e., traits with purely equational axiomatizations,
of which there are relatively few), questions about consistency can be
tranglated into questions about critical pairs. In some cases, we can use
LP to answer these questions by running the completion procedure or by
computing critical pairs. If these actions generate an inconsistency, the
axioms are inconsistent; if they complete the axioms without generating
the equation t rue == f al se, then the trait is consistent. This proof
strategy will not usually succeed in proving consistency, because many
equationa theories cannot be completed at al, or cannot be completed in
an acceptable amount of time and space. Howevey, it has proved useful in
finding inconsi stencies among equations.

We can use al of LP's forward inference mechanisms to search for
inconsistencies in a specification. The completion procedure searches for
inconsistencies automatically, and we can instantiate axioms by “focus
objects’ (in the sense of McAllester [64]) to provide the completion
procedure with a basis for its search. Even though unsuccessful searches
do not certify that aspecification isconsistent, they increase our confidence
in a specification, just as testing increases our confidence in aprogram.

146 7.7. Extended example

Coordinate: trait
i ntroduces
origin: — Coord
__ - __: Coord, Coord — Coord
asserts V cd: Coord
cd - cd ==origin

Region(R): trait
assumes Coordi nate
i ntroduces
__ € __: Coord, R — Bool
%cd €r istrue if point cdis inregionr
% Not hi ng i s assumed about the contiguity
% or shape of regions

Di spl ayabl e(T): trait
assumes Coordi nate
i ncl udes Region(T)
i ntroduces
_[_1: T, Coord — Color
%t[cd] represents appearance of object t
% at point cd

FIGURE 7.13. Prototype traits for windowing abstraction

7.7 Extended example

To illustrate our approach to checking specifications in a slightly more
realistic setting, we show how one might construct and check some traits
to be used in the specification of a simple windowing system [43]. These
are preliminary versions of traits that would likely be expanded as the
specifications (including the interface parts) were devel oped.

The first three traits, Figure 7.13, declare the signatures of some basic
operators.

The proof obligations associated with these traits are easily discharged.
When LP's completion procedure is run on Coor di nat e, it terminates
without generating any critical pairs. Since Coor di nate has no
generated by or partitioned by clauses, thisissufficient to guaranteethatitis
consistent. When checking theinclusion of Regi on by Di spl ayabl e,
Regi on’s assumptionof Coor di nat e isdischarged syntacticaly, using
Di spl ayabl e’s assumption of the same trait.

7. Using LPto Debug LSL Specifications 147

Wndow(W: trait
assumes Coordi nate
i ncl udes Regi on, Displayabl e(W
Wtuple of cont, clip: R fore, back: Color, id: Wd
asserts v w. W cd: Coord
cd e w==cd € wclip
wcd] ==if cd € wcont then w fore el se w back
implies converts [], €:Coord, W~Boo

FIGURE 7.14. W ndow. | sl

TheW ndowtrait, Figure 7.14, defines awindow as an object composed
of content and clipping regions, foreground and background colors, and a
window identifier. The operator € isqualified by asignatureinthelast line
of the trait because it is overloaded, and it is necessary to say which € is
converted.

There are three proof obligations associated with this trait. The
assumptions of Coor di nate in Regi on and Di spl ayabl e are
syntactically discharged using W ndow's assumption. The converts clause
is discharged by LP without user assistance. The other proof obligationis
consistency. As discussed in the previous section, we use the completion
procedure to search for inconsistencies. Running it for a short time neither
uncovers an inconsistency nor proves consistency.

The Vi ewtrait, Figure 7.15, defines a view as an object composed of
windows at locations. There are severa proof obligations associated with
this trait. Once again, the assumptions of W ndow and Di spl ayabl e
are discharged syntacticaly by the assumption in Vi ew. Once again,
using the completion procedure to search for inconsistencies uncovers no
problems. However, checking the converts clause does turn up a problem.
The conversion of i nWand both €'s is easily proved by induction over
objects of sort V. However, the inductive base case for __[__] does not
reduce at all, because enpt yV[cd] isnot defined. This problem can be
solved either by defining enpt yV[cd] or by adding

exenpting V cd: Coord enptyV|cd]

to the converts clause. We choose the latter because there is no obvious
definition for enpt yV[cd] . With the added exemption, the inductive
proof of the conversion of __[__] goes through without further interaction.

When we attempt to provethefirst of theexplicit equationsin theimplies
clause of Vi ew, we run into difficulty. After automatically applying its

148 7.7. Extended example

View trait
assumes Coordi nate
i ncl udes W ndow, Displayable(V)
i ntroduces
enptyV: — V
addw V, Coord, W— V

__ € _: W V — Bool
inW V, Wd, Coord — Bool
asserts

V generated by enptyV, addwW
¥V cd, cdl: Coord, v: V, w, wl: W wid: Wd
-(cd € enptyV);
cd € addWv, cdl, w) ==
(cd - cdl) € w Vv cd € v;
-(w € enptyV);
w € addWv, cdl, wl) ==w.id = wl.id v w € v;
addWv, cdl, w)[cd] ==
if (cd - cdl) e w
then wWcd - cdl] else v[cd];
%In viewonly if in a w ndow, offset by origin
-inWenptyV, wid, cd);
i nWaddWv, cd, w), wid, cdl) ==
(wid =wd A (cd - cdl) € w
VvV inWv, wid, cdl)
i mplies
V¥V cd, cdl: Coord, v,vl: V, w W
% New wi ndow does not affect the appearance
% of parts of the view |lying outside the w ndow
—-inWaddWv, cd, w), wid, cdl)
= addWv, cd, w[cdl] = v[cdl];
% Appearance within newy added wi ndow is
% i ndependent of the viewto which it is added
i nWaddwWv, cdl, w), wid, cd)
= addWv, cdl, w[cd] = addWvl, cdl, w)[cd]
converts inW ¢: Coord, V—Bool, ¢:W V—Bool,
_[_1:V, Coord—Col or

FIGURE 7.15. Preliminary version of Vi ew. | sl

7. Using LPto Debug LSL Specifications 149

proof method for implications, L P reduces the conjecture to

if (cdlc - cdc) € we.clip
then if (cdlc - cdc) € wc.cont
then wc.fore el se we. back
el se vc[cdlc]
== vc[cdic]

and reduces the assumed hypothesis of the implication to
=((cdc - cdlc) € we.clip)

At this point, we ask ourselves why the hypothesisis not sufficient to
reduce the conjecture to an identity. The problem seems to be the order of
the operands of - . Thisleadsusto look carefully at the second equation for
i nWin trait Vi ew. There we discover that we have written cd - cdl
when we should have written cdl - cd, or, to be consistent with the
form of the other equations, reversed the role of cd and cd1 in the left
side of the equation. After changing this axiomto

i W addWv, cdl, w), wid, cd) ==
(w.id = wid A (cd - cdl) € w
vV inWyv, wd, cd)

the proof of the first implication goes through without interaction.
The second conjecture, after LP applies its proof method for implica-
tions, reduces to
if (cdc - cdlc) € we.clip
then if (cdc - cdlc) € we. cont
then we.fore el se we. back
el se vc[cdc]

if (cd - cdlc) € we.clip
then if (cdc - cdlc) € we. cont
then we.fore el se we. back
el se v'[cdc]

We resume the proof by dividing it into two cases based on the predicate
in the outermost i f ’s. When this predicateis true, the conjecture reduces
tot r ue; whenitisfalse, the conjecture reduces to

vc[cdc] == v'[cdc]
Sincev’ isavariable and vc a new constant, we know that we are not

going to be able to reduce thisto t r ue. This does not necessarily mean
that the proof will fail, since we could be in an impossible case (i.e, the

150 7.7. Extended example

current hypotheses could lead to a contradiction). However, examining the
current hypotheses,
inWvc, we.id, cdc) % Hypot hesi s of =
=((cdc - cdlc) € we.clip) % Case hypot hesi s

gives us no obvious reason to believe that a contradiction exists.

Thisleads ustowonder about thevalidity of the conjectureweare trying
to prove, and to ask ourselves why we thought it was true when we added
it to the trait. Our informal reasoning had been:

1. The hypothesisi nW addWv, cdl, w), w.id, cd) ofthe
conjecture guarantees that coordinate cd isin window winthe view
addWv, cdl, w).

2. If wis added at the same placeinv’ asinv, cd must aso bein
addWv’', cdl, w).

3. Furthermorecd - cd1 will be the same relative coordinate in w
inbothaddWv, cdl, w) andaddWv’', cdl, w).

4. Therefore the equation

addWV, cdl, V\I)[Cd ==
if (cd - cdl) e w
then W cd -cdl] el se v[cd]

intrait Vi ew should guarantee the conclusion.

Thefirst stepinformalizing thisinforma argument isto attempt to prove
i NWaddWv, cdl, w), wid, cd) = (cd - cdl) € w
as alemma. LP reduces the conclusion of thisimplication to
(cdc - cdlc) € we.clip

using the normalized implication hypothesis
(cdc - cdlc) € we.clip v inWvc, we.id, cdc)

Casing on the first digunct of the hypothesis reduces the conjecture to
f al se under the same implication and case hypotheses as above.

We are thus stuck in the same place as in our attempted proof of the
original conjecture. This leads us to question the validity of the first step
in our informal proof, and we discover a flaw there: when v contains a
window withthe samei d asw, theimplicationis not sound. The problem

7. Using LPto Debug L SL Specifications 151

isthat we implicitly assumed the invariant that no view would contain two
windows with the samei d, and our specification does not guarantee this.
There are severa ways around this problem, among them:

1. Trait Vi ew could be changed so that addWchooses a unique i d
whenever awindow is added.

2. Trait Vi ew could be changed so that addWis the identity function
whenthei d of the window to be added is aready associated with a
window in the view.

3. The preservation of theinvariant could be | eft to the interface level.

We choose the third aternative and weaken the second implication of
trait Vi ewto:

vV cd, cdl: Coord, v, Vv': V, w W

% Appearance within a newly added w ndow i s

% i ndependent of the viewto which it is added,

% provi ded that the windowid is not already

% present in the view

(—|(WE V) A —|(WE V')

A inWaddWv, cdl, w), wid, cd))
= addWv, cdl, w)[cd] = addWvVv', cdl, w)[cd]

which is proved with a small amount of user interaction after proving the
lemma
-(we€v) = =inWv, wid, cd)

by inductiononv.
Finally, we introduce a coordinate system.
CartesianView trait

i ncl udes Vi ew, Natural

Coord tuple of x, y: N

asserts V cd, cdl: Coord
origin==1[0, 0];
cd - cdl ==[cd.x & cdl.x, cd.y & cdl.y]

i mplies converts origin, -

LP usesthefacts of thetrait Nat ur al (see Appendix A) to automatically
discharge the assumption of Coor di nat e that has been carried from
level to level. LP requires no assistance to complete the proof that the
coordinate operators are indeed converted.

Of course, for expository purposes, we have used an artificialy
simplified example. We aso deliberately seeded some errors for LP to

152 7.8. Perspective

find. However, most of the errors discussed above occurred unintentionally
as we wrote the example, and we did not notice them until we actually
attempted the mechanical proofs.

7.8 Perspective

The Larch Shared Language includes several facilities for introducing
checkable redundancy into specifications. These facilities were chosen to
expose common classes of errors. They give specifiers a better chance of
receiving diagnostics about specifications with unintended meanings, in
much the same way that type systems give programmers a better chance
of receiving diagnostics about erroneous programs.

A primary goal of Larchisto provide useful feedback to specifierswhen
there is something wrong with a specification. Hence we designed LP
primarily as a debugging tool. We are not overly troubled that detecting
inconsistenciesisgeneraly quicker and easier than certifying consistency.

We expect to discover flawsin specifications by having attempted proofs
fail. LP does not automatically apply backwards inference techniques, and
it requires more user guidance than some other provers. Much of this
guidance is highly predictable, e.g, proving the hypotheses of deduction
rules as lemmas. Although it is tempting to supply LP with heuristics
that would generate such lemmas automatically, we feel that it is better to
leave the guidance to the user. At many pointsin a proof, many different
heuristics could apply. In our experience, choosing the next step in a proof
(e.g., acase split or proof by induction)—or deciding that the proof attempt
should be abandoned—often depends upon knowledge of the application.
LP cannot reasonably be expected to possess this knowledge, especialy
when we are searching for a counterexample to a conjecture, rather than
attempting to prove it. However, in some cases, the LSL Checker may
be able to use the structure of LSL specifications to generate some of the
guidance (e.g., using induction to prove a converts clause) that users must
currently provideto LP.

The checkable redundancy that LSL encourages in specifications also
supports regression testing as specifications evolve. When we change part
of a specification (e.g., to strengthen or weaken the assertions of one
trait), it is important to ensure that the change does not have unintended
side-effects. LP's facilities for detecting inconsistencies help us discover
grossly erroneous changes. Claims about other traits in the specification,
which imply or assume the changed trait, can help us discover more

7. Using LPto Debug LSL Specifications 153

subtle problems. If some of these claims have already been checked, LP's
facilities for replaying proof scripts make it easy to recheck their proofs
after achange—an important activity, but onethat islikely to be neglected
without mechanical assistance.

Chapter 8

Conclusion

Larch is still very much a “work in progress.” New Larch interface
languages are being designed, new tools are being built, and the existing
languages and tools are in a state of evolution. Most significantly,
specifications are being written.

But Larch has reached a divide, what Churchill might have called “the
end of the beginning.” Until now, most of thework on Larch has been done
by the authors of this book and their close associates. We hope that the
First Internationa Workshop on Larch [66] and the publication of thisbook
mark the beginning of the period when most Larch research, development,
and application will be done by people we do not yet know.

THE ESSENCE OF LARCH

Over the years, we have spent many pages describing Larch languages,
tools, and applications. However, the essence of Larch rests in a few
principles that have guided our efforts:

e The most important use for specification is as a tool for helping
to understand and document interfaces. Therefore, clarity is more
important than any other property.

¢ Specifications should not just describe mathematical abstractions,
but real interfaces supplied by programs. They should be written at
thelevel of abstraction at which clientsprogram. Thisusually means
sinking to the level of a programming language.

e Structuring specifications into two tiers, which we have called
the interface tier and the LSL tier, makes specifications easier to
understand and facilitates reuse of parts of specifications.

— Theinterfacetier describesthe observabl e behavior of program
components. Sincewhat aclient can observeislikely to depend
in fundamental ways on the client programming language,
much can be gained by designing interface specification lan-
guagesthat are optimized for specific programming languages.

8. Conclusion 155

Specifications in this tier can be rather simple, provided that
theright abstractions are provided inthe LSL tier.

— The LSL tier describes mathematical abstractions that are
independent of the details of any programming model. These
arethe principal reusable components of specifications. While
we have used only one language (L SL) to write specifications
in this tier, there is no fundamenta reasons other languages
could not be used. Languages used in this tier should have a
simple semantics; they need not deal with messy issues such
asruntimeerrors, which are better handled in the interfacetier.

e Specification languages should be carefully designed. Having an
elegant semantics is not enough. Careful attention to syntax and
static semantic checking is crucial.

e Tool support is vital. One of the great virtues of using a formal
notation is that tools can be used to help detect and isolate a variety
of errors. Whenever we have improved our tools to detect a new
classof errors, we have found more errors in existing specifications.

¢ Toolsfor checking interface specifications should be integrated with
other programming language tools, e.g., preprocessors that enforce
programming conventions.

e Specification must not be viewed as an isolated activity. It must
be integrated with good programming practice. The goal is not to
specify arbitrary programs, but to use specifications to help design,
implement, document, and maintain good programs. Specifications
can help in structuring these activities.

A CAUTIONARY NOTE

Throughout thisbook we have stressed waysin which formal specification
can be used to help in building high quality software. However, we have
tried not lose sight of the fact that formal specification is not a panacea.
Good engineering practice is essential. To quote an anonymous referee of
an early draft of this book,

... bullishness about forma methods must be strongly tem-
pered by the following important realization: Formalization
should be aimed at achieving conceptual clarity, rather than

156

8. Conclusion

as a mere exercise in encoding pieces of mathematics. No
notation or toolset, however fancy and elaborate, can be a
substitute for clear thought. At best, formalization can help
clarify ideas and concepts by making them more tangible. At
worst, poor or faulty formalization can cloud and confuse
issues beyond repair.

Appendix A
An LSL Handbook

A.1 Introduction

This handbook supersedes Piece IV of Larch in Five Easy Pieces[51] and
“A Larch Shared Language Handbook” [46].

READING THE HANDBOOK

This handbook contains a collection of traits written in LSL 2.4 that can
be studied to learn more about LSL. Many traits are also suitable for use
as specification components. They constitute a library for the LCL and
LM3 tools; we hope that they will save others from reinventing wheels—
especially polygonal ones. Other traitsare morelikely to be used as models
for the development of similar specialized specification components.

This handbook is representative rather than complete. The LSL tier
is open-ended because we believe that no handbook or library will ever
include everything that will be needed. Users are encouraged to augment
this handbook with additional traits, and to prepare their handbooks for
particular applications.

Thisisnot atextbook on discrete mathematics. If you already understand
acollection of concepts(e.g., integer arithmetic), their formalization should
make sense to you. If you don't, you should till be able to understand
precisely what the definitions say (or don’t say), but you probably won't
get many clues as to why the particular definitionsin (say) Latti ce or
Abel i anMonoi d are interesting and useful. Think of this handbook as
the*“ collected formulas’ that might appear as an appendix to amathematics
text.

There are many trade-offs in developing thiskind of handbook:

simplicity versus completeness,

structure (includetrait by reference) versus explicitness (copy trait),

brevity versus explicit indication of consequences,

CONCi se versus mnemonic names,

158 A.1. Introduction

e stylistic consistency versus anillustrative range of valid styles,

e standardization (for communication) versusflexibility (for efficiency
in particular cases),

¢ selection among competing notations and definitions for concepts,
e conceptual elegance versus practical utility.

We expect that, in the not-too-distant future, specification handbooks
will most often be used in their online forms, with browsing tools that
enabl e readers to make many of these choices dynamically, according to
their needs and preferences. Unfortunately, this book is still a hostage to
the tyranny of paper, sowe' ve had to make these choicesin advance. There
aregeneral tendenciesin the choices exhibited here, but we haven't applied
any of our own guidelines davishly. Many of the stylistic variations are
intentional, but there are probably others that we simply didn’t notice.

This handbook does not have to be read front-to-back. There is
no “correct” order in which to study the traits. Feel free to browse
and skip according to your interests and needs. Early sections tend to
deal with specific constructs that occur frequently in program interface
specifications, while later sections are somewhat more abstract, providing
mathematical building blocks that can be used to define, classify, or
generaize such constructs. When there didn’t seem to be any natural order
for things, we fell back on aphabetical order.

Traits in sections labeled data types or data structures are quite likely
to be used directly in interface specifications. Traits in sections labeled
assumptionsand implicationsor operator definitionsare morelikely to be
used in other traits.

Traitsarelisted intheindex. If you don’t know exactly what areferenced
trait contains, you can always look it up. However, we have tried to use
familiar names for familiar concepts. Particularly on first reading, it is
probably better to assumethat traitssuch asl nt eger and Tot al Or der
mean what you expect, than to flip continually from trait to trait and section
to section.

Ani npl i es clausedoesnot contributeto the meaning (i.e., thetheory)
of alegal trait. It is perfectly acceptable to ignore them, and it is often best
to do so on first reading. However, they do offer you a chance to check
your understanding, by giving examples of facts that are consegquences of
the definitionsin thetrait. They may a so include aternative (and perhaps

Appendix A. An LSL Handbook 159

more familiar) definitions, or show connections that may not be obvious
from looking at just the definitionsin the traits.

Both i ncl udes and assunes clauses add axioms from referenced
traits. They both have the same semantics within a trait in which they
appear, so it'sfine to ignore the distinction on first reading. Butassunes
clausesimposean additional proof abligationwhenever thetrait containing
themisreferenced in another trait, so they becomevery relevant when using
traits to compose specifications.

Many abstract types are defined in two traits, one of which defines only
the essentia operators that characterize the type, while the other includes
definitions for aricher set of operatorsin terms of the essential operators.
The former kind of trait tends to be used in assumnes and i npl i es
clauses; the latter, in i ncl udes clauses and in interface specifications.
Compare, for example, Set Basi cs and Set, or Rel ati onBasi cs
and Rel at i on.

Many traitsincludel nt eger andusesort| nt whereit might seemthat
Nat ur al and Nat would be more natural choices—and, in some cases,
would lead to somewhat simpler specifications. This is a consequence of
the decision in the interface languages to base al the whole-number types
onl nt. Thetrait | nt eger Pr edi cat es defines predicates to test for
severa commonly-used subsets of theintegers. The alternativewas alarge
amount of sort-conversion that would severely distract from the clarity of
interface specifications. So we pay asmall priceinthe LSL tier for greater
simplicity in the interface tier.

If a definition seems “unnatura” to you, you will find it instructive to
try to construct amore natural definition yourself. If you find one, you will
have gained some experience in writing LSL specifications; if you don't,
you may have gained some insight into the reason for the “unnatural”
definition.

Thetraitsin thishandbook have passed the scrutiny of the LSL Checker,
which parses, expands trait references, resolves overloading, and sort-
checks. Most of them have not yet been subjected to additional checking
of the kind described in Chapter 7.

The online version of thishandbook isstill evolving. The authorswould
appreciate all kinds of feedback from readers and users. Arethere errors or
sources of confusion? Have we omitted something that would be widely
useful? Are there better ways to define some of the concepts?

160 A.1. Introduction

NAMING AND LEXICAL CONVENTIONS

Sort names:

¢ Numeric types: | nt for integers, P for positive numbers, Q for
rationals, F for floating point, and N otherwise.

e Tif thereisonly one“interesting” sort in the trait.
e Container traits: E for elements, C for containers.
Operator names:

e o for agenericinfix operator and also for the composition of maps
and relations.

e o for ageneric relation.

For convenience in manipulating the online form of the handbook, we
have chosen a sequence of 1SO L atin characters to represent each non-1SO
Latin symbol used in the handbook. Some of them are chosen for visual
similarity (e.g., — iswritten as- > and < iswritten as <=); others have
been modeled on TeX's choices (e.g., o iswrittenas\circ and € is
written as\ i n). A completelistisgivenin Section C.

Each Larch interface language definesitsown notationfor literal s, based
on the programming language's notation; numerical types will generally
includethetrait schemaDeci nal Literal s.

Many traits have a si ze or count operator whose value is aways
non-negative. For reasons given in the previous section, except within
Section A.15, Number theory, we have giventheir range as| nt , from trait
I nt eger, rather than as N, from trait Nat ur al .

Appendix A. An LSL Handbook 161
A.2 Foundations

DATA TYPE: BOOLEAN

Bool ean: trait
% This trait is given for docunmentation only.
%It is inplicit in LSL.

i ntroduces
true, false: — Bool
—__: Bool — Bool
AN _, _NVN_, __= : Bool, Bool — Bool
asserts
Bool generated by true, false
Y b: Bool
- true == fal se;
- false == true;
true A b == b;
false A b == fal se;
true v b == true;
false v b == b;
true = b == b;
false = b == true
i mplies

AC (A , Bool),
AC (v, Bool),
Distributive (v for +, A for *, Bool for T),
Distributive (A for +, Vv for *, Bool for T),
I nvol utive (—~__, Bool),
Transitive (= for o, Bool for T)
Y bl, b2, b3: Bool
(bl A b2) == =bl v =b2;
(bl v b2) == =bl A =b2;
bl v (bl A b2) == bl;
bl A (bl v b2) == bl;
b2 v -b2;
(bl = b2) v (bl = b3) v (b2 = b3);
bl = b2 == -bl v b2

162 A.2. Foundations

OPERATOR DEFINITION: IF THEN ELSE

Conditional (T): trait
% This trait is given for docunmentation only.
%It is inplicit in LSL.

introduces if__then_ else : Bool, T, T —» T
asserts
VX, y, z: T
if true then x else y == x;

if false then x else y ==
inplies V b: Bool, x: T
if bthen x else x ==

Appendix A. An LSL Handbook 163
A.3 Integers

DATA TYPE
Integer (Int): trait
% The usual (unbounded) integers operators
i ncl udes
Decimal Literals (Int for N),
Total Order (Int)

i ntroduces
0, 1. — Int
succ, pred, -, abs: Int — Int
_+ -, _* tnt, Int — Int
div, mod, min, nax: Int, Int — Int
asserts
Int generated by 0, succ, pred
vV X, y: Int
succ(pred(x)) == x;
pred(succ(x)) == x;
-0 == ;
-succ(x) == pred(-x);
-pred(x) == succ(-Xx);
abs(x) == max(-x, X);
X + 0 == x;
X + succ(y) == succ(x + y);
x + pred(y) == pred(x + vy);
X -y =x+(-y);
X * 0 == ;
x*succ(y) == (x*y) + X;

x*pred(y) == (x*y) - Xx;
y > 0 = nmod(x, y) + (div(x, y) *vy) = x;
y > 0 = nod(x, y) > O;
y > 0 = mod(x, y) <Y,
mn(x, y) ==if x y then x el se vy;
max(x, y) ==if x y then y el se x;
X < succ(Xx)
i mplies

AC (+, Int),

AC (*, Int),

AC (nmin, Int),

AC (max, Int),

RingWthUnit (Int for T)

Int generated by 1, +, -_ :Int—Int

<
<

164 A.3. Integers

vV X, y: Int
X < y ==succ(x) < succ(y);
X <y ==x < succ(y)
converts
1, -_:Int—=Int, _ -_:Int,Int—lnt,

abs, +, *, div, mod, mn, max, <, >, <, >

LITERALS

Decinmal Literals (N): trait
% A built-in trait schema given here
% for docunmentation only

i ntroduces
0O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 %
. — N

succ: N — N
asserts equations

1 == succ(0);
2 == succ(l);
3 == succ(2);
% ... as far as needed for any literals

% of sort N appearing in the including trait

OPERATOR DEFINITIONS

IntegerPredicates (Int): trait

% Frequently used subranges of the integers

assunes | nt eger

i ntroduces
I nRange: Int, Int, Int — Bool
Natural, Positive, Signed, Unsigned: Int — Bool
maxSi gned, maxUnsi gned: — Int

asserts forall n, low high: Int

I nRange(n, low, high) ==low < n A n < high;
Natural (n) == n > O0;
Positive(n) == n > O;
Si gned(n) ==

I nRange(n, -succ(naxSigned), maxSigned);
Unsi gned(n) == I nRange(n, 0, maxUnsi gned)

implies V n: Int
Positive(n) = Natural (n);
Unsi gned(n) = Natural (n)

Appendix A. An LSL Handbook

A.4 Enumerations

Enunmeration (T): trait
% Enuner ation, conparison, and ordi nal position
% operators, often used with "enuneration of"
assumes | nt eger
i ncl udes DerivedOrders
i ntroduces
first, last: — T
succ, pred: T — T
ord: T — Int
val: Int —- T
asserts
T generated by first, succ
T generated by last, pred

vV x, y: T
ord(first) == 0;
X # last = ord(succ(x)) = ord(x) + 1
X # last = pred(succ(x)) = x;
val (ord(x)) == x;
X <y ==ord(x) < ord(y);
x < last

i mplies
Tot al Or der

T generated by val
T partitioned by ord
vV x: T
X # first = succ(pred(x)) = x;
X # last = x < succ(x);
first < x;
ord(x) > 0
converts
first: —»T, succ: T—T, pred: T-T, ord,
<:T,T—Bool, >:T, T—Bool,
<:T, T—Bool, >:T, T—Bool
exenpting succ(last), pred(first)

165

166 A.5. Containers
A5 Contaners

Throughout this section we use E for the element sort, and C for the
container sort. This simplifies comparisons among data structures and
makes it easier to write generic operator definitions that work for several
kinds of containers. Since variable names are local to traits, we imposed
no such uniformity on them.

UNORDERED DATA STRUCTURES

SetBasics (E, O: trait

% Essential finite-set operators

i ntroduces
{}: = C
insert: E,
_ € __ E

asserts
C generated by {}, insert
C partitioned by €
Vs: C e el e2: E

C—-2C
C — Bool

—(e € {});
el € insert(e2, s) == el = e2 v el € s
i mplies

InsertGenerated ({} for enpty)
Ve el e2: E s: C
insert(e, s) # {};
insert(e, insert(e, s)) ==insert(e, s);
insert(el, insert(e2, s)) ==
insert(e2, insert(el, s))
converts ¢

Appendix A. An LSL Handbook 167

Set (E, O: trait
% Conmon set operators

i ncl udes

Set Basi cs,

| nt eger,

DerivedOrders (C, C for <, D for >,

C for <, D for >)

i ntroduces

¢ _: E C — Boo

delete: E, C — C

{ _}:. E—=C

vy _, __n_, -_1C C-=0C

size: C — Int
asserts

Ve el e2: E s, s1, s2: C

e ¢ s == (e €s);

{ e} ==insert(e, {});
el € delete(e2, s) ==el # e2 A el € s;

e € (s1Us2) ==e e€sl v e € s2
e € (s1ns2) ==e €sl A ee€s2
e € (sl - 52) ==e € sl A e ¢ s2
size({}) ==0;

Si ze(lnsert(e s)

if e ¢ s then size(s) + 1 else size(s);
sl € s2 ==s1- s2 ={}

i mplies
Abel i anMonoid (U for o, {} for unit, Cfor T),
AC (n, O,

Join®p (U, {} for enpty)

MenberQp ({} for empty),

Partial Order (C, C for <, D for >,

C for <, D for >)

C generated by {}, {__}, U

Ve E s, s1, s2: C
sl C s2 = (e € s1 = e € s2);
size(s) > 0

converts
e, ¢, {__}, delete, size, U, n, -:C C-C,
GC 2 C D

168 A.5. Containers

BagBasics (E, O: trait
% Essential bag operators
i ncl udes I nteger
i ntroduces
{}: = C
insert: Ef C —» C
count: E, C — Int
asserts
C generated by {}, insert
C partitioned by count
Vb C e el e2: E
count (e, {}) == 0;
count (el, insert(e2, b)) ==
count(el, b) + (if el = e2 then 1 else 0)
i mplies
InsertGenerated ({} for enpty)
Ve E b C
insert(e, b) # {};
count(e, b) > 0
converts count

Appendix A. An LSL Handbook

Bag (E, O: trait
% Conmon bag operators
i ncl udes
BagBasi cs,

DerivedOrders (C, C for <, D for >
Cc for <, D for

i ntroduces
delete: E, C — C
{ }: E—=C
€, ¢ _: E C— Boo
size: C — Int
Jy, - C C—=C
asserts

Ve el e2: E b, bl b2: C
count (el, delete(e2, b)) ==

if el = e2 then max(0

el se count(el, b);
{ e} ==insert(e, {});

e € b ==count(e, b) > 0;
e ¢ b ==count(e, b) = 0;

size({}) == 0;

>)

count (el, b) -

size(insert(e, b)) ==size(b) + 1;

count (e, bl U b2) ==

count (e, bl) + count(e,

count (e, bl - b2) ==
max(0, count(e, bl) -
bl C b2 ==bl - b2 = {}
i mplies

b2);

count (e, b2));

Abel i anMonoid (U for o, {} for unit, C for

JoinOp (U, {} for enpty)
MenberOp ({} for enpty),

Partial Order (C, C for <, D for >

c for <, D for

Ve el e2: E b, bl, b2: C

insert(e, b) # {};

count (e, b) > O;

count (e, b) < size(b);

bl C b2 = count(e, bl)
converts count, €, ¢, {_}

delete, size, C, D, C,

<
D

>)

count (e, b2)

UI

-:C C-C

1)

7,

169

170 A.5. Containers

INSERTION ORDERED DATA STRUCTURES

StackBasics (E, O: trait
% Essential LIFO operators
i ncl udes I nteger
i ntroduces
empty: — C
push: E, C —» C
top: C — E
pop: C — C
asserts
C generated by enpty, push
Ve E stk: C
top(push(e, stk)) == e;
pop(push(e, stk)) == stk;
i mplies converts top, pop
exenpting top(enpty), pop(enpty)

Stack (E, ©: trait
% Common LI FO operators
i ncl udes StackBasics, |nteger

i ntroduces
count: E, C — Int
€ __: E C — Boo

size: C — Int
i sEnpty: C — Boo

asserts
Ve E stk: C
size(enpty) == 0;

si ze(push(e, stk)) == size(stk) + 1;
i SEnpty(stk) == stk = enpty
i mplies
Cont ai ner (push for insert, top for head,
pop for tail)

C partitioned by top, pop, isEnpty

V stk: C
size(stk) > O

converts top, pop, count, €, size, isEnmpty
exenpting top(enpty), pop(enpty)

Appendix A. An LSL Handbook

Queue (E, O: trait
% FI FO operators
i ncl udes I nteger
i ntroduces
empty: — C
append: E, C — C
count: E, C — Int
__ € _: E C— Boo
head: C — E
tail: C = C
len: C — Int
i sEnpty: C — Boo
asserts
C generated by enpty, append
Vg C e el E
count (e, enpty) == 0;
count (e, append(el, q)) ==
count(e, gq) + (if e = el then 1 else 0);
e € q==count(e, q) > 0;
head(append(e, q)) ==
if q = enpty then e el se head(q);
tail (append(e, q)) ==
if g = enpty then enpty
el se append(e, tail(q));

I en(enmpty) == 0;
I en(append(e, q)) ==len(q) + 1
i sSEnpty(q) == q = enpty
i mplies
Cont ai ner (append for insert)
C partitioned by head, tail, isEnmpty
vag C
len(q) > 0
converts head, tail, len

exenpting head(enpty), tail (enpty)

171

172 A.5. Containers

Deque (E, Q: trait
% Doubl e ended queue operators
i ncl udes I nteger

i ntroduces

empty: — C

414 _ E C—=C
__F_:C E-—>C
count: E, — I nt
€ __: E C— Boo
head, last: C — E
tail, init: C - C

len: C — Int
i sEnpty: C — Boo
asserts

C generated by enpty, F

Ve el e2: E d C
count (e, enpty) == 0;
count (e, el 4 d) ==

count(e, d) + (if e = el then 1 else

e € d == count (e, d) > O0;
e 1 enpty == enpty + e;
(el 4d) Fe2==¢el1 4 (dF e2);
head(e - d) == e;
last(d - e) == g;
tail (e 4 d) == d;
init(d - e) ==d;
| en(enpty) == 0;

len(d Fe) ==len(d) + 1
i SEnpty(d) ==d = enpty
i mplies

Stack (head for top, tail for pop
4 for push, len for size),
Queue (- for append, last for head,
init for tail)
C generated by enpty, A
C partitioned by |en, head, tai
C partitioned by len, last, init
vd C
d # enpty
= (head(d) 4 tail(d) = d
A init(d) F last(d) = d)
converts head, last, tail, init, len
exenpti ng head(enpty), last(enpty),
tail (enpty), init(enpty)

0);

Appendix A. An LSL Handbook

List (E, ©Q: trait
% Add si ngl eton and concat enati on
i ncl udes Deque
i ntroduces
{_}: E—-C
| ¢ Cc—C
asserts vV e: E Is, Isl, Is2: C
{e} == enpty F e;
Is || empty ==1s;

sl || (Is2Fe) ==(Isl || Is2) + e
i mplies
C generated by empty, {__}, ||
converts head, last, tail, init, len, {__}, ||

exenpting head(enpty), |ast(enpty),
tail (enpty), init(enpty)

String (E, Q: trait

% | ndex, substring

i ncl udes Li st

i ntroduces
_[_1:¢C Int - E
prefix: C, Int — C
renovePrefix: C, Int —» C
substring: C Int, Int —» C

asserts Ve: E s: C i, n: Int
tail (enpty) == enpty;
init(enpty) == enpty;
s[0] == head(s);
n >0 = s[n+ 1] =tail(s)[n];
prefix(enpty, n) == enpty;
prefix(s, 0) == enpty;

n >0

= prefix(e 4s, n+ 1) = e 4 prefix(s, n);
renovePrefix(s, 0) ==s;
n >0

= renovePrefix(s, n + 1)
= renovePrefix(tail(s), n);

substring(s, 0, n) == prefix(s, n);
i >0
= substring(s, i + 1, n)
= substring(tail(s), i, n)
i mplies

I ndexOp (- for insert)
Cpartitioned by len, _ [_]
converts tail, init

173

174 A.5. Containers

Sequence (E, O: trait
% Conpari son, subsequences
assumes StrictPartial Oder (>, E)

i ncl udes
Lexi cogr aphi cOr der,
String
i ntroduces
i sPrefix, isSubstring, isSubsequence: C, C — Boo

find: C C — Int
asserts vV e, el, e2: E s, sl1l, s2: C
i sPrefix(sl, s2) ==s1 = prefix(s2, len(sl));
i sSubstring(sl, s2) ==
i sPrefix(sl, s2) Vv isSubstring(sl, tail(s2));
i sSubsequence(enpty, s);
—i sSubsequence(e 4 s, enpty);
i sSubsequence(el 4 sl1, e2 4 s2) ==
(el = e2 A isSubsequence(sl, s2))

VvV isSubsequence(el 4 sl1, s2);
find(sl, s2) ==
if isPrefix(sl, s2) then O
el se find(sl, tail(s2)) + 1
i mplies
I sPO (isPrefix, O,
I sPO (isSubstring, O,
I sPO (i sSubsequence, Q)
Vs, s1, s2: C, i, n: Int
i sPrefix(prefix(s, n), s);
i sSubstring(substring(s, i, n), s);
i sSubstring(sl, s2) = isSubsequence(sl, s2)

converts
i sPrefix,

exenpting V s:

i sSubstring, isSubsequence, find
C, e E find(e 4 s, enpty)

Appendix A. An LSL Handbook

CONTENT ORDERED DATA STRUCTURES
PriorityQueue (>:E E—Bool, E, O: trait
% Enuner at e by order on el enments
assumes Total Order (E for T)
i ncl udes I nteger
i ntroduces
empty: — C
add: E, C — C
count: E, C — Int
€ __: E C — Boo
head: C — E
tail: C— C
len: C — Int
i sEmpty: C — Boo

asserts
C generated by enpty, add
C partitioned by head, tail, isEnpty

Ve el: E g C

count (e, enpty) == 0;

count (e, add(el, q)) ==
count(e, gq) + (if e = el then 1 else 0);

e € q==count(e, q) > 0;

head(add(e, q)) ==
if q =-enpty v e > head(q) then e
el se head(q);

tail (add(e, q)) ==
if g=-enpty v e > head(q) then ¢
el se add(e, tail(q));

| en(enpty) == 0;

len(add(e, gq)) ==len(q) + 1
i sEnpty(q) == q = enpty
i mplies

Cont ai ner (add for insert)
Ve el e2:. E q C
add(el, add(e2, q)) = add(e2, add(el, q));

len(q) > O;
add(e, q) # enpty
converts count, &, head, tail, len, isEnmpty

exenpting head(enpty), tail (enpty)

175

176 A.5. Containers

ChoiceSet (E, O: trait
% A set with a weakly-specified choose operator
i ncl udes Set
i ntroduces
choose: C — E
rest: C —- C
i sEmpty: C — Boo
asserts Ve, el: E s: C
s # {} = choose(s) € s;

s #{} = rest(s) = delete(choose(s), s);
i sEmpty(s) ==s = {}

i mplies
C partitioned by choose, rest, isEnmpty
Ve E s: C
s #{} = s = insert(choose(s), rest(s))

ChoiceBag (E, O: trait
% A bag with a weakl y-specified choose operator
i ncl udes Bag
i ntroduces
choose: C — E
rest: C - C
i sEmpty: C — Boo

asserts Ve, el: E b: C
b # {} = choose(b) € b;
b #{} = rest(b) = del ete(choose(b), b);
i sEmpty(b) ==b = {}

i mplies
Cont ai ner (choose for head,

{} for enpty)

C partitioned by choose,
Ve E b C

b #{} = b = insert(choose(b),

rest for tail
rest, isEmpty

rest (b))

Appendix A. An LSL Handbook

ASSUMPTIONS AND IMPLICATIONS

InsertGenerated (E, C): trait
% Cs contain finitely nmany E s
i ntroduces
empty: — C
insert: Ef C —» C
asserts
C generated by enpty, insert

Container (E, O: trait
% head and tail enunerate contents of a C
i ncl udes | nsert Generated, |nteger
i ntroduces
i sEmpty: C — Boo
count: E, C — Int

__ € _: E C— Boo

head: C — E

tail: C - C
asserts

C partitioned by isEnpty, head, tai
Ve el: E c: C
i SEnpty(enpty);
—i sEnpty(insert(e, c));
count (e, enpty) == 0;
count (e, insert(el, c)) ==
count(e, c) + (if e = el then 1 else 0);
e € ¢ == count(e, ¢c) > O0;
-i sEmpty(c) =
count (e, insert(head(c), tail(c)))
= count(e, c)
i mplies
vc: C
—i sEnmpty(c) = count(head(c), ¢c) > O;
converts isEnpty, count, €

177

178 A.5. Containers

OPERATOR DEFINITIONS

Menber Op: trait
assumes | nsert Gener at ed

i ntroduces
€ __, _ ¢ __: E C— Boo
asserts Ve, el, e2: E c: C
e ¢ c==-(e €c);
e ¢ enpty;
el € insert(e2, c) == el = e2 v el € ¢

inmplies converts ¢, ¢

JoinQp (X): trait

% Cont ai ner conbi ni ng oper at or
% e.g., union, concatenation
assumes I nsert Gener at ed
introduces _ X _: C C— C
asserts v e: E ¢, cl, c2: C

enpty X ¢ == c;

insert(e, cl) X c2 == insert(e, cl X c2)
i mplies

Associ ative (X, O

converts X

ReverseQp: trait
% An operator on lists commonly used
% to denpnstrate theorem provers.
assunes Li st
i ntroduces reverse: C —» C

asserts ve: E I, Il 2. C
reverse(enpty) == enpty;
reverse(e 4 1) ==reverse(l) + e
inplies Ve E I, 11 12: C
reverse(reverse(l)) ==1;
| # enpty = head(reverse(l)) = last(l);
| # enpty
= tail(reverse(l)) = reverse(init(l));
len(reverse(l)) ==1len(l);
reverse(l1l || 12) ==reverse(l2) | reverse(ll)

converts reverse

Appendix A. An LSL Handbook 179

I ndexOp: trait
% Select the i-th elenment in the container
% (i n enuneration order).
assunes | nteger, Container
introduces _[_]: C Int - E
asserts vc: C i: Int
c[0] == head(c);
i > 0 = cl[i+l] = tail(c)[i]

Coer ceCont ai ner (DC, RC) definesan operator to convert from
aterm of one container sort, DC, to aterm of another container sort, RC,
with the same el ementsinserted in the same order. For example, astack can
be mapped to aqueue. Moreinterestingly, alist can be mapped to abag, or
abag to aset; these mappingsloseinformation on order and on multiplicity,
respectively, so theinverse mappingswould introduce inconsistencies.

CoerceContainer (DC, RO): trait
% I nsert each elenent of DCin a new RC
assumnes
I nsert Generated (DC for O,
I nsert Generated (RC for Q)
i ntroduces coerce: DC — RC
asserts V dc: DC, e: E
coerce(enpty) == enpty;
coerce(insert(e, dc)) ==insert(e, coerce(dc))
i mplies converts coerce

Permutation (E, C: trait
% Test for having the sanme el ements
assunes Cont ai ner
i ncl udes
Bag (B for Q),
CoerceContainer (C for DC, B for RC
i ntroduces isPernutation: C, C — Boo
asserts V cl1, c2: C
i sPernutation(cl, c2) == coerce(cl) = coerce(c?2)
implies V e: E cl1, c2: C
i sPernutation(cl, c2)
= count (e, cl) = count(e, c2)

180 A.5. Containers

The following traits “promote” various operators on elements to
corresponding operators on containers.

El ement Test (pass, E, C, T): trait
%filter collects elenents accepted by pass
assumes | nsert Gener at ed
i ntroduces
pass: E, T — Boo
filter: CC T — C
all Pass: C, T — Boo
somePass: C, T — Boo
asserts Vv c: C e E t: T
filter(enpty, t) == enpty;
filter(insert(e, c), t) ==
if pass(e, t) then insert(e, filter(c, t))
else filter(c, t);
al | Pass(enpty, t);
al | Pass(insert(e, c), t) ==
pass(e, t) A allPass(c, t);
somePass(c, t) ==filter(c, t) # enpty
i mplies converts filter, sonePass, all Pass

Pai rwi seExtension (o, ®, E, O: trait
% | nduce a binary operator on containers
% froma binary operator on el enents.
assunes Container (E, O

i ntroduces
o __: E E—SE
@ _:C C—=2C

asserts Vv el, e2: E, cl1, c2: C
enpty © enpty == enpty;,
(cl # enmpty A c2 # enpty)
= ¢l ® c2 = insert(head(cl) o head(c2),
tail(cl) o tail(c2));
i mplies converts ®
exenpting V e: E c¢: C
enpty ® insert(e, c), insert(e, c) ® enpty

Appendix A. An LSL Handbook

Poi ntwi sel nage: trait
% Apply elenp to each el ement
assumnes
I nsert Generated (DE for E, DC for O,
I nsert Generated (RE for E, RC for O
i ntroduces
elenp: DE — RE
contai nerOp: DC — RC
asserts VvV dc: DC, de: DE
cont ai ner Op(enpty) == enpty;
cont ai ner Op(insert(de, dc)) ==
i nsert (el enp(de), containerOp(dc))
i mplies converts containerQp

ReduceCont ai ner (unit, o): trait
% Insert the operator in enuneration order
assumes Cont ai ner

i ntroduces
unit: — E
o : E E—E

reduce: C — E
asserts v c: C
reduce(c) ==
if ¢ = enpty then unit
el se head(c) o reduce(tail(c))
i mplies converts reduce

181

182 A.6. Branching structures
A.6 Branching structures

DATA STRUCTURES

Thefollowing trait defines the operators on alist (of sort C), each of whose
elements (of sort E) is either an atom (of sort A) or alist.

ListStructure (A E OQ: trait
% O assical LISP
i ncl udes Li st
E union of list: C, atom A

Bi naryTree (E, T): trait
% One of the many interesting tree structures

i ntroduces
[_]Z E > T
[, _1: T, T —>T

content: T — E
first, second: T —» T
isLeaf: T — Boo
asserts
T generated by [_], [__, _1]
T partitioned by content, first, second, isLeaf
Ve E tl1, t2. T
content([e]) == e;
first([tl, t2]) ==11,;
second([tl, t2]) ==1t2;
i sLeaf ([e]);
—isLeaf ([t1, t2])
i mplies converts islLeaf

Appendix A. An LSL Handbook 183

OPERATOR DEFINITIONS

ListStructureQps (A E O: trait
% Qperators frequently used in
% t heor em provi ng denonstrations.
assumes ListStructure
i ntroduces
flatten, reverseAll: C — C
count Atoms: C — Int
asserts va: A I, Il 2. C
flatten(enpty) == enpty;
flatten(atom(a) 4 1) == aton(a) - flatten(l);
flatten(list(l1l) 412) ==
flatten(l11) || flatten(l2);
reverseAl | (empty) == enpty;
reverseAll (atom(a) 4 1) ==
reverseAll (1) F atom(a);
reverseAll (list(ll) 412) ==
reverseAll (12) - list(reverseAll(l1));

count Atonms(l) ==len(flatten(l))
i mplies
vi, 11, 12: C
flatten(l1 || 12) ==flatten(l1) || flatten(l2);
flatten(flatten(l)) == flatten(l);
reverseAll (11 || 12) ==
reverseAll (12) || reverseAl(I1);

reverseAll (flatten(l)) ==
flatten(reverseAll(1));
reverseAll (reverseAl (1)) ==1;
countAtons(l1 || 12) ==
count Atons(l 1) + countAtons(l2);
count Atons(flatten(l)) == count Atons(l);
count Atoms(reverseAll (1)) == count Atonms(1)
converts flatten, reverseAll, countAtons

184 A.7.Maps
A.7 Maps

DATA STRUCTURES

Arrays are heavily-used data structures; programming languages often
provide alarge number of operators. The following definitions are only a
sample.

Arrayl (E, |, A: trait

% Basi ¢ one-di mensi onal array operators
i ntroduces

assign: A I, E— A

1A I - E
asserts

Va A i, j: 1, e E

assign(a, i, e)[j] ==
if i =) then e else a[j]

Array2 (E, 11, 12, A: trait
% Basi c two-di mensi onal array operators

i ntroduces
assign: A I1, 12, E— A
[, _1: A 11, 12 - E
asserts

Va A i1, jl. 11, i2, j2: 12, e: E
assign(a, i1, i2, e)[j1, j2] ==
if il=j1 Ai2=jj2then e else a[jl, j2]

ArraySlice2 (E, 11, 12, A: trait
% A two-di mensi onal array
%treated as a vector of vectors
i ncl udes

Arrayl (E, 12, Al),
Arrayl (A1, 11, A

i ntroduces
assign: A I1, 12, E— A
[, _1: A 11, 12 - E
asserts

Va A il 11, i2: 12, e: E
a[il, i2] ==(alil])[i2];
assign(a, il, i2, e) ==
assign(a, i1, assign(a[il], i2, e))

Appendix A. An LSL Handbook 185

Themapsof thefollowingtrait arefinitely generated by { } andupdat e.

FiniteMap (M D, R: trait
% An Mis a map fromDs to R s.
i ntroduces
{}: = M
update: M DL R - M
apply: M D — R
defined: M D — Boo
asserts
M generated by {}, update
M partitioned by apply, defined
vymM d, di, d2: D r: R
appl y(update(m d2, r), dil) ==
if d1 = d2 then r else apply(m dil);
—defined({}, d);
defi ned(update(m d2, r), dl) ==
dl = d2 v defined(m di)
i mplies
Arrayl (update for assign, apply for _ [1,
Mfor A, Dfor I, Rfor E)
converts apply, defined
exenpting V d: D apply({}, d)

OPERATOR DEFINITION
ConposeMaps (ML, M2, D, T, R: trait
%If ml is a map fromDto T
%and m2 is amp fromT to R
%n on2 is amp fromDto R
assumnes
FiniteMap (ML, T, R,
FiniteMap (M2, D, T)
i ncl udes FiniteMp
introduces __ o _: M, M — M
asserts Vv nil: ML, n2: M, d: D
apply(mtL o n2, d) == apply(nml, apply(n2, d));
defined(ml o n2, d) ==
defined(n2, d) A defined(ml, apply(n2, d))

186 A.8. Relations
A.8 Relations

DATA STRUCTURE

The following traits do not presume that the domain sort, E, is generated
by any fixed set of operators. Subsets of E are represented by subrel ations
of the identity relation.

Relation (E, R: trait
i ncl udes
Rel ati onBasi cs,
Rel ati onQps,
Rel ati onPr edi cat es

Rel ati onBasics (E, R: trait
%el (r)e2 neans el is related to e2 by r.

i ntroduces

_{_Y_: EE R E— Boo
1, T, I: = R

[, 1: EfE E—-R

-, __11 R — R

U _ R R—=R
asserts

R partitioned by __ (__) __
Ve el e2 e3 e4 E, r, rl, r2: R
-(el (L) e2);

el { T') ez;

el (|)e2= = ez2;

el { [e2, e3] > e4 == el = e2 A e3 = e4;

el (- > == =(el {r) e2);

el (r=1)e 2 == e2 (ry el

el (rlur2)e2==el(rl)e2 vel{(r2)e2
i mplies

Abel i anMonoid (L for unit, U for o, Rfor T),
Involutive (__ "% R,

Involutive (-__, R
equati ons
-1 == ;
-T == ;
J__l == 1;
T1==T

converts U, - -1

Appendix A. An LSL Handbook 187

OPERATOR DEFINITIONS

The skol em operator is introduced solely to get around the absence of
existential quantifiersin LSL.

Rel ati onOps: trait
% Useful non-primtive operators on rel ations.
assunes Rel ati onBasi cs
i ncl udes
DerivedOrders (R, C for <, D for >
C for <, D for >)

i ntroduces
€ _, __ ¢ __: E, R — Bool
set, dom range, _*, *: R— R
N o , - x R R->R

donRestri ct, rangeR_estrRt, imge: R, R — R
skolem E, R R E —» E

asserts
Ve el e2 e3 E r, rl, r2: R
ecr==e({r) e
ed¢r == (ecr);
set(r) ==r nI;

don(r) ==set(r o T);
range(r) ==set(T o r);
el (rlnr2)e2==el(rl)e2 Ael (r2) ez
(el (rl) e2 A e2 (r2) e3d)

=> el {(rlor2) e3
el (rlor2) e2

= (el (rl1) skolem(el, r1, r2, e2)

A skolem(el, r1, r2, e2) (r2) e2);

rt==r o (r*);
r*==1 U (rt);
(rl =1 Ur2 Ar2=r1orl) =

((r) €rl A (r%) Cr2);
ri-r2==r1n(-r2);
rl x r2 ==set(rl) o T o set(r2);
ricr2=r1-r2 = 1;
donRestrict(rl, r2) ==rl n (r2 o T);
i mge(rl, r2) ==set(rl) o r2;
rangeRestrict(rl, r2) ==r1l n (T o r2)

188 A.8. Relations

i mplies
Abel i anMonoid (T for unit, n for o, Rfor T),
Distributive (U for +, n for *, Rfor T),
Distributive (n for +, U for *, Rfor T),
| denpotent (set, R),
Monoid (I for unit, R for T),
Lattice (Rfor T, U for u, n for n,
C for <, D for >, Cc for <, D for >),
Partial Order (R C for <, D for >, C for <,

D for >)
Ve E r, rl r2: R
e €r ==e € set(r);
-(rlur2) =(-r1) n(-r2);
-(r1 nr2) ==(-r1) U (-r2);
(rlor2)=t=(r27Y o (r1 9
converts
€, ¢, set, dom range, __*, _* _ - | x,
U n, o -:R-R "1 C, D c, D

donRestrict, inmage, rangeRestrict

Set ToRel ation: trait

% Map a (finitely generated) set
%to the relation that represents it
assumes Set Basics, Rel ationBasics
i ntroduces

relation:. C — R
asserts

Ve E s: C

relation({}) == 1;

relation(insert(e, s)) ==[e, e] U relation(s)
i mplies
Ve E s: C
e cs==e {(relation(s)) e

converts relation

Appendix A. An LSL Handbook 189

The predicates in the next trait are closely related to the theories defined
in Section A.11, but they define the properties of relationstreated asvalues,
whereas Section A.11 defines properties of relations treated as operators.
Thisduplicationis a price of not using a higher-order logicin LSL.

Rel ati onPredicates: trait
% Tests for useful properties
% of individual relations.
assumes
Rel ati onBasi cs,
Rel ati onQps
i ntroduces
antisymetric, asymetric, equival ence,
functional, irreflexive, oneToOne, reflexive,
symmetric, total, transitive: R — Boo
into, onto: R R — Boo

asserts
vr, rl r2: R
antisymmetric(r) == (r n (r= b)) C I;
asymmetric(r) ==r n (r7Y) = 1;

equi val ence(r) ==
reflexive(r) A synmmetric(r) A transitive(r);

functional (r) == ((r7Y) or) C I;
irreflexive(r) ==r nl = 1;
oneTone(r) ==r1 o (r=Y) = I;
reflexive(r) ==1 C r;
symetric(r) ==r = r~1

total (r) == dom(r) = 1;
transitive(r) ==r = rt;

into(rl, r2) ==range(rl) C set(r2);
onto(rl, r2) == set(r2) C range(rl);
i mplies converts
antisymetric, asymetric, equival ence,
functional, irreflexive, oneToOne, reflexive,
symmetric, total, transitive, into, onto

190 A.9. Graph theory

A.9 Graph theory

Graph (N, G: trait
%nl (g)n2neans that there is
% an edge fromnl to n2 in g
includes Relation (Nfor E, Gfor R
i ntroduces
nodes, undirected: G — G
isPath: N, N, G — Bool
st rongl yConnect ed, weakl yConnected: G — Bool
asserts Vv nl, n2: N, g G
undirected(g) == g U (g™};
nodes(g) == don(g) U range(Q);
i sPath(nl, n2, g) ==nl {(g*) n2;
strongl yConnect ed(g) == g* = nodes(g) x nodes(Q);
weakl yConnect ed(g) ==
st rongl yConnect ed(undi rect ed(g))
i mplies
v nl, n2:. N g G
(strongl yConnected(g) A nl € nodes(Q)
A n2 € nodes(g))
= isPath(nl, n2, 9)

Appendix A. An LSL Handbook

A.10 Properties of single operators

Associative (o, T): trait
introduces __ o T, T —>T
asserts V x, y, z: T

(X oy) oz ==X o0 (y o 2)

Commutative (o, T, Range): trait

introduces __ o _: T, T — Range
asserts vV x, y: T
X oy ==Y oX

AC (o, T): trait
introduces __ o T, T —>T
asserts V x, y, z: T
(X oy) oz==X o0 (y o 2);
X oy ==Y oX
i mplies
Associ ative
Conmut ative (T for Range)

| denpotent (op, T): trait
introduces op: T — T
asserts V x: T

op(op(x)) == op(x)

Involutive (op, T): trait
introduces op: T — T
asserts V x: T

op(op(x)) ==

191

192 A.11. Properties of relational operators
A.11 Properties of relational operators

Compare with Rel ati onPr edi cat es, page 189

Antisymetric (o): trait
introduces __ o _: T, T — Boo
asserts vV x, y: T

(X oy Ay oX) =>X =Y

Asynmetric (o): trait
introduces __ o _: T, T — Boo
asserts vV x, y: T
X oy = =(y o X)

Functional (¢): trait
introduces __ o _: T, T — Boo
asserts v x, y, z: T
(X oy AXo2z) =>Yy =1z

Irreflexive (¢): trait
introduces __ o _: T, T — Boo
asserts vV x: T
—|(X Lo X)

OneToOne (o): trait
introduces __ o _: T, T — Boo
asserts v x, y, z: T
(X oy AXo2z) =>Yy =1z

(X oz AYy o©Zz) =>X =Y,
Refl exive (¢): trait
introduces __ o _: T, T — Boo
asserts vV x: T
X ¢ X
Symmetric (¢): trait
introduces __ o _: T, T — Boo
asserts vV x, y: T
X oy ==y ¢ X

i mplies Comutative (¢ for o, Bool for Range)

Appendix A. An LSL Handbook

Transitive (¢): trait
introduces __ o _: T, T — Boo
asserts V x, y, z: T
(X oy Ay oz) =>Xoz

Equi val ence: trait
i ncl udes
(Refl exive, Symretric, Transitive)(= for o)

Equality (T): trait
% This trait is given for docunmentation only.
%It is inplicit in LSL.
introduces __ = _, _ # _: T, T — Boo
asserts
T partitioned by =
VX, y, z: T

y == ~(x =)

X
X
(X =y Ay =2) => X =z
X
[Equi val ence (= for =)

n

implie

193

194 A.12. Orderings
A.12 Orderings

PARTIAL AND TOTAL ORDERS

IsPO (<, T): trait
% < is a partial order on T
introduces < : T, T — Bool
asserts v x, y, z: T
x < X;
(x <y Ay < z) =X z,
X <y Ay <x=x=
i mplies
Antisymetric (<),
PreCOr der,
Ref | exi ve (<),
Transitive (<)

T partitioned by <

<
y

Partial Order (T): trait
i ncl udes |sPO DerivedOrders
i mplies
Partial Order (> for <, < for
> for <, < for

StrictPartial Oder (<, T)

IsTO (L, T): trait
% < is atotal order on T
introduces < : T, T — Bool
asserts V x, y, z: T
X < X;
(x <y Ay <2)
y y =
X y y
inmplies IsPO Total PreOrder
Total Order (T): trait
i ncludes 1sTO, DerivedOrders
i mplies
Partial O der,

StrictTotal Order (<, T),
Total Order (> for <, < for >

x
ANIVAN

< X
< X

n < >

> for <, < for >)

T partitioned by <

>,
>),

Appendix A. An LSL Handbook

ASSUMPTIONS AND IMPLICATIONS

PreOder (<, T): trait
i ncl udes Reflexive (<),
implies V x, y, z: T
X < X;
(x <y Ay <2z) ==x <2

Transitive (<)

Total PreOrder (<, T):
i ncl udes PreOrder
asserts vV x, y: T

x <y vy <X

trait

StrictPartial Oder (<, T):
i ncludes Irreflexive (<),
i mplies
Asymmetric (<)
VX, y, z: T
(X < X);
(X <y ANy <z) =>x <1z

trait
Transitive (<)

StrictTotal Order (<, T): trait
i ncludes StrictPartial Oder
asserts VvV x, y: T

X <Yy VYy <XV X=Y

OPERATOR DEFINITIONS

DerivedOrders (T): trait

% Define any three of the conparison operators,

% gi ven the fourth

i ntroduces
_<__

asserts Vv x, y:
X y ==
X y ==
X ==
X y ==

i mplies
converts
converts
converts
converts

T, T — Bool

> ’ < ’ _>_

VIV A IA

< < X X

AIAIA A

X X< < H
> <
_|><
= |
=
=

INININ IV
VIV A A
ANV VYV

195

196 A.12. Orderings

MnMax (T): trait
assumes Tot al O der
i ntroduces
mn, max: T, T — T
asserts vV x, y: T

mn(x, y) ==if x <y then x else vy;

max(x, y) ==if x > y then x else vy
i mplies

AC (min, T),

AC (max, T)

converts mn, max

Lexi cographicOrder (E, ©O: trait
% "Dictionary" order on C
assumnes
Cont ai ner,
StrictTotal Order (<, E)
i ncl udes DerivedOrders (Q)
asserts V cl1, c2: C
cl < c2 ==
c2 # enpty
A (cl = enpty
v (if head(cl) = head(c2)
then tail(cl) <« tail(c2)
el se head(cl) < head(c2)))
i mplies
Total Order (C
converts <:C,C—Bool, >:C, C—Bool,
<: C, C—Bool, >:C, C—Bool

Appendix A. An LSL Handbook 197

A.13 Latticetheory

G eatestLowerBound (T): trait

i ntroduces
< _: T, T — Bool
_n__ , T — T
asserts V x, y, z: T

(x my) < x;
(x my) <v;
(z <xAz<y) =z < (xny)

Semilattice (T): trait
assunes Partial Oder
i ncl udes G eat est Lower Bound

i ntroduces
1l: - T
u T, T T
asserts V x, y, z: T
1 < x;

Abel i anMonoid (U for o, L for unit),
Abel i anSeni group (n for o)

Lattice (T): trait
assumes Partial O der
i ncludes Semlattice
introduces T: — T
asserts V. x: T
x < T
i mplies
Lattice (u for m, nmnfor u, T for 1, L for T,
< for >, > for <, < for >, > for <)

198 A.14. Group theory

A.14 Group theory

Semigroup: trait
introduces o : T, T —T
asserts v x, vy, z: T
(xoy) oz==xo0(yo 2
i mpl i es Associative

Leftldentity: trait

i ntroduces
o _ T, T —>T
unit: — T

asserts V x: T
unit o x == X

Rightldentity: trait

i ntroduces
o _ T, T —>T
unit: — T

asserts V x: T
X o unit ==

Identity: trait
i ncludes Leftldentity, Rightldentity

Monoi d: trait

i ntroduces
o T, T-—>T
unit: — T

asserts V x, y, z: T
(X oy) oz ==Xxo0(y o 2);
unit o x == Xx;
X o unit == x

i mplies Sem group, ldentity

Leftlnverse: trait
assunes Leftldentity
introduces "% T - T
asserts V x: T

(x71) o x == unit

Appendix A. An LSL Handbook

Ri ghtl nverse: trait
assunes Rightldentity

introduces "% T —» T
asserts V x: T
X o (x71) == unit

Inverse: trait
assunes ldentity, Sem group
i ncludes Leftlnverse, Rightlnverse
i mplies
Involutive (__~* for op)
vV x, y: T
unit~! == unit;
(x oy)~t==(y™) o (x7

Group: trait

i ntroduces
o T, T-—>T
unit: — T
__11 T —-T

asserts V x, y, z: T
(X oy) oz ==Xxo0(y o 2);
unit o x == Xx;
(x™H o x == unit;

i mpli es Monoid, |nverse

Abelian: trait

introduces __ o T, T —>T
asserts vV x, y: T
X oy ==Y oX

i mplies Comutative (T for Range)

Abel i anSem group: trait
i ncl udes Abelian, Sem group
i mplies AC

Abel i anMonoi d: trait
i ncl udes Abel i an, Mbnoi d

Abel i anGroup: trait
i ncl udes Abelian, Goup

199

200 A.14. Group theory

LeftDistributive (+, *, T): trait
i ntroduces
o+, T, T T
asserts V x, y, z: T
x* (y +2z) ==(x*y) +(x* 2)
RightDistributive (+, *, T): trait
i ntroduces
o+, T, T T
asserts V x, y, z: T
(y +2z) * x==(y * x) +(z* x)

Distributive (+, *, T): trait
i ncludes LeftDistributive, RightDistributive

Ring: trait
i ncl udes
Abel i anGoup (+ for o, 0 for unit, -__ for 1,
Semigroup (* for o),
Distributive (+ *, T)

RingWthUnit: trait
i ncludes Ring, Monoid (* for o, 1 for unit)

Field: trait

i ncl udes

Ri ngWthUnit,

Abelian (* for o)
introduces "% T - T

asserts V x: T
X #0 = x* (xY) =1

A.15 Number theory

Appendix A. An LSL Handbook 201

This section presents a series of traits dealing with operators on whole
numbers. The following section deals with operators on rational and

floating point numbers.

DATA TYPES

Natural (N):
% The usual
% starting fromO.

i ncl udes
ArithOps (N),
Deci mal Literal s,
Exponenti ation (N),

trait

operators on the natural

numbers,

M nMax (N),
Total Order (N)
i ntroduces
6 N N— N
asserts
N generated by 0, succ
vV x, y: N
succ(x) # 0;
succ(x) = succ(y) ==X =Y,
X < succ(Xx);
0 & x == 0;
X 6 0 == x;
succ(x) © succ(y) ==x 6 Y
i mplies
Nat ur al Or der
N generated by 0, 1, +
vV x, y: N
X 6 X == ;
x <y=x6oy =0
converts 1: —»N, +, o, *, div, nod,
**oomn, max, <, >, <, >
exenpting V x: N
div(x, 0), nmod(x, 0)

202 A.15. Number theory

Positive (P): trait
% Basi ¢ operators on natural nunbers,
% starting from1l
i ncludes DecinalLiterals (P for N), Total Order (P)
i ntroduces
1. - P
succ: P — P
_+ ., * P PP
asserts
P generated by 1, succ
vV Xx, y: P
X + 1 == succ(x);
X + succ(y) == succ(x + y);
X*1 == X;
x*succ(y) == x + (x*y);
X < succ(Xx)
i mplies
Natural Order (P for N, 1 for 0)
P generated by 1, +
converts +, *, <, >, <, >

Appendix A. An LSL Handbook 203

IntCycle (first, last, N): trait
% A finite subrange of the integers that includes O,
% and wraps at succ(l ast)
i ncl udes
ArithOps (N),
Deci mal Literal s,
M nMax (N),
Total Order (N)
i ntroduces
first, last: — N
pred, - _, abs: N —> N
- N N—= N
asserts
N generated by 0, succ
vV x, y: N
succ(last) == first;
pred(succ(x)) == x;
succ(pred(x)) == x;
-0 == ;
-succ(x) == pred(-x);
abs(x) ==if x < 0 then -x else x;
X -y =x+(-y);
X # last = X < succ(x)
i mplies
Distributive (+, *, N,
RingWthUnit (N for T)
N generated by 0, pred
¥V x: N
pred(first) == 1last;
first < x;
x < last;
-(-X) ==
converts
pred, -_:N-N, abs, - N N-—=N,
1: =N, + *, max, mn, <, >, <, >
Si gnedl nt (maxSigned, N): trait
% Typi cal nmachine arithnetic, signed conplenent.
i ncludes I ntCycle (m nSigned, maxSi gned, N)
asserts equations
succ(m nSi gned) == - maxSi gned
i mpl i es equations
m nSi gned + naxSigned == -1,
abs(m nSi gned) == m nSi gned

204 A.15. Number theory

Unsi gnedl nt (naxUnsigned, N): trait
% Typi cal nachine arithnetic, unsigned.
i ncludes IntCycle (0, nmaxUnsigned, N)

ASSUMPTIONS AND IMPLICATIONS

Enunrer abl e requiresonly that each value of sort Nmust be reachable by
applying succ to 0 afinitenumber of times. | nf i ni t e requiresthat the
values yielded by succ are al distinct. The inclusion of Tot al O der
inNat ur al Or der ensuresthat succ(x) isaways greater than x, and
hence that there are infinitely many distinct values of sort N.

Enunmerable (N): trait
i ntroduces
0. — N
succ: N — N
asserts
N generated by 0, succ

Infinite (N): trait
i ntroduces
0. — N
succ: N — N
asserts vV x, y: N
succ(x) # O;
succ(x) = succ(y) ==x =y

Natural Order (N): trait
% The natural nunbers with an ordering
i ncl udes
Enunerable (N),
Total Order (N)
asserts VvV x: N
X < succ(x)

i mplies
Infinite (N
vV x, y: N
0 < x;
X < succ(y) ==x < v,
succ(x) < succ(y) ==x <y

converts <, >, <, >

Appendix A. An LSL Handbook 205

OPERATOR DEFINITIONS
Addition (N): trait
% Define the operator + in terms of 0 and succ
i ncl udes AbelianMonoid(+ for o, 0 for unit, Nfor T)
i ntroduces
0. — N
succ: N — N
_+ ¢ NN N— N
asserts Vv x, y: N
X + 0 == x;
X + succ(y) == succ(x +vy)

Mul tiplication (N): trait
% Define the operator * in terms of 0, succ, and +
i ncl udes
Abel i anMonoid (* for o, 1 for unit, Nfor T),
Addi tion (N)
i ntroduces
1. - N
_* N N—=N
asserts VvV x, y: N
1 == succ(0);
X * 0 ==0;
X * succ(y) == x + (X *vy)

ArithCps (N): trait
% Defines operators div and nod relative to + and *
% for positive denom nators
assunes Total Order (N)
i ncludes Multiplication (N
i ntroduces
div, nmod: N, N— N
asserts Vv x, y: N
y >0
= (0 < mod(x,)
A mod(x, y) <y
A (mod(x, y) + (div(x, y) *y)) = X)

206 A.15. Number theory

Exponentiation (T): trait
% Repeatedly apply an infix * operator
assumnes
Enunerabl e (N),
Monoid (* for o, 1 for unit)

introduces _** : T, N— T
asserts vV x: T, y: N

X**0 == 1,

x**succ(y) == x * (x**y)
inmplies vV x: T

x**succ(0) == x

I nteger AndNatural (Int, N): trait
% Conversi ons between Int’s and Ns
i ncl udes

Integer (Int),
Nat ural (N)
i ntroduces
int: N — Int
nat: Int — N
asserts v .n: N
int(0) == 0;
i nt (succ(n)) == succ(int(n));
nat(int(n)) ==

I nt eger AndPositive (Int, P): trait
% Conver si ons between Int’'s and P's
i ncl udes

Integer (Int),
Positive (P)
i ntroduces
int: P — Int
pos: Int — P
asserts vV p: P
int(l) == 1,
i nt (succ(p)) == succ(int(p));
pos(int(p)) ==p

Appendix A. An LSL Handbook 207
A.16 Floating point arithmetic

Thetrait Rat i onal providesenough of atheory of rational arithmeticto
specify the properties of floating point arithmetic.

Rational : trait
% For use in the trait FloatingPoint.
i ncl udes
Exponentiation (Q for T, P for N,
I nt eger AndPositive (Int, P),

M nMax (Q),
Total Order (Q
i ntroduces
/: I nt, P—>Q
0, 1: —>Q
-, 71 abs: Q- Q
_* _*_1 e _/_: Qr Q_> Q
asserts
Q generated by _/_ :Int,P—Q
Vi, i1, i2: Int, p, pl, p2, p3: P, g, g1, g2: Q
O/p == 0;
int(p)/p == 1;
il/pl =i2/p2==il*int(p2) =i2 * int(pl);
-(i/p) == (-i)/p;

(int(pl)/p2)~t ==int(p2)/pl;

(-a) 7' ==-(a7h);

abs(i/p) == abs(i)/p;

(illp) + (i2/p) == (i1 +i2)/p;

(il/pl) * (i2/p2) == (i1 * i2)/(pl * p2):
ql - 92 ==ql + (-92);

ql/g2 == ql * (q279);

(il/p) < (i2/p) ==il < i2
i mplies
AC (+, Q,
AC (*, Q,
Field (Qfor T)
Vi, i1, i2: Int, p, pl, p2, p3: P, g Q
q+ 0==aq;
-q:: - q,
(il/p) - (i2/p) ==(il - i2)/p;
q* 0 == ;
q* 1==aq;
q~' == 1/q;

(i/pl)/(int(p2)/p3) == (i * int(p3))/(pl * p2)

208 A.16. Floating point arithmetic

converts
0:—-Q 1:.-Q -:Q—=Q ~! abs:Q —Q
+: Qv Q_>Q1 - Qv Q_>Q1 * Qv Q_>Q1 /: Qv Q_>Q1
**1QP-Q mn:QQ-Q nmax:Q Q-Q
<:Q Q—Bool, >:Q Q—Bool,
<:Q Q—Bool, >:Q Q—Bool
exenpting 0°1

The following traits define a theory of floating point arithmetic that is
weak enough to be satisfied by many floating point implementations, yet
strong enough to allow reasoning about floating point arithmetic. Careful
analysis of any particular floating point system should lead to tighter
bounds on the errors due to inexact arithmetic, and might even lead to
some useful identities, such as (f1 + f2) + fa = fi + (f2 + f3).

The basic idea is this: Every floating point number exactly represents
some rational number, returned by the operator r at i onal . Each floating
point operator approximates a corresponding rational operator, but cannot
aways be be exact. The exact answer may not even be representable.
Furthermore, floating point arithmetic does not generally guarantee to
produce even the closest representable value. So each floating point
operator may introduce an error that depends on:

¢ the magnitude of the operand(s),
¢ the magnitude of the exact and approximate results,
¢ properties of the floating point representation used.

Three parameters characterize the representation: smal | est and
| ar gest denote the least and the greatest representable positive values,
respectively, and gap, the largest relative difference between any pair of
consecutive representable positive values. FPAssunpt i ons specifies
relations that must hold among these parameters and the operator
rati onal (which convertsfloating point numbersto their exact rational
values) in order for Fl oat i ngPoi nt to characterize a valid floating
point number system.

Appendix A. An LSL Handbook 209

FPAssunptions (snallest, |argest,
gap, rational): trait
i ncl udes Rati onal
i ntroduces
snal l est, largest, gap: — Q
rational: F —» Q
float: Q — F
0, 1. —- F
asserts V f: F
smal l est > O0;
| argest > snallest;
rational (0) == 0;
rational (1) == 1;
rational (f) # 0 = abs(rational (f)) > smallest;
rational (f) < largest;
gap > O;
float(rational (f)) == f;

210 A.16. Floating point arithmetic

Thepredicateappr ox(f, g, t) comparestheresultf of afloating
point operation to the exact rationa value q of that operation; the predicate
is true if the result is “close enough” to the exact value (i.e., within a
tolerancet), or if the exact vaueistoo big to be represented.

We have not axiomatized the properties of the IEEE standard’s non-
numeric floating point values (NaN’s). We leave that as an exercise for
numerical analysts, in the expectation that an accurate characterization is
separable from the numerical properties. It might be more complex than
anything we have specified in this handbook.

Fl oati ngPoi nt (smal |l est, | argest,
gap, rational): trait
assunes FPAssunptions
i ncl udes
Rat i onal ,
Total Order (F)
i ntroduces
mg: F — Q
approx: F, Q Q — Bool
-__, abs, L F - F

o+, -, __tF F-=F
asserts
F generated by fl oat
vif, f1, f2. F, q, t: Q
fl1 < f2 ==rational (fl) < rational (f2);
mag(f) == abs(rational (f));
approx(f, q, t) ==
abs(q) < largest
= abs(rational (f) - Q)
< (smallest +
(gap*(nmag(f) + abs(q) +t)));
approx(-f, -rational (f), 0);
f # 0 = approx(f~% rational (f)~% 0);
approx(abs(f), mag(f), 0);
approx(fl + f2, rational (f1) + rational (f2),
mag(f1l) + mag(f2));
approx(fl1 * f2, rational (f1) * rational (f2), 0);
approx(fl - f2, rational (f1) - rational (f2),
mag(f1l) + mag(f2));
f2 £0
= approx(f1/f2, rational (f1)/rational (f2), 0)

Appendix B

| mplementations of Example LCL
| nterfaces

This appendix contains the implementations of the interfaces erc,
enpset , and dbase specified in Chapter 5. We present them here not
because they areintrinsically interesting, but for compl eteness.

ERC.H

#i f !defined(ERC_H)
#define ERC_H

#i ncl ude "eref.h"

typedef struct _elen{eref val; struct _elem *next;} ercE em
t ypedef ercEl em *erclLi st

typedef struct {ercList vals; int size;} erclnfo;

typedef erclnfo *erc

typedef ercList *erclter

#i nclude "erc.lh"

#define erc_size(c) ((c)->size)
#define erc_choose(c) ((c->vals)->val)
#define erc_initMd()\
do {bool _initMd(); enployee_initMd();\
eref_initMd();} while (0)
#define erc_iterFinal (it) (free(it))
#define erc_iterReturn(it, result)\
do {erc_iterFinal (it); return result;} while (0)
#define for_ercEl ens(er, it, c)\
for(er = erc_yield(it = erc_iterStart(c));\
leref _equal (er, erefNL);\
er = erc_yield(it))
#endi f

212 Appendix B. Implementations of Example LCL Interfaces

ERC.C

#i ncl ude "erc. h"

erc erc_create(void) {
erc c;
¢ = (erc) nalloc(sizeof(erclnfo));
if (c == 0) {
printf("Malloc returned null in erc_create\n");
exit(1);

c->val s
c->size
return c;

}

void erc_clear(erc c) {
ercList elem
erclLi st next;
for (elem= c->vals; elem!= 0; elem = next) ({
next = el em >next ;
free(elen;

= 0;
= 0;

0;
0;

c->val s
c->size

}

void erc_final (erc c) {
erc_clear(c);
free(c);

bool erc_nenber(eref er, erc c) {
erclLi st tnpc;
for (tnpc = c->vals; tnpc !'= 0; tnpc = tnpc->next)
if (tnmpc->val == er) return TRUE
return FALSE;
}

void erc_insert(erc c, eref er) {
ercLi st newEl em
newkEl em = (ercElem *) mall oc(si zeof (ercEl em));
if (newkElem == 0) {

printf("Malloc returned null in erc_insert\n");
exit(1);
neweEl em >val = er;

newEl em >next = c->val s;
c->val s = newEl em
C->Si ze++;

}

bool erc_delete(erc c, eref er) {
ercList elem

Appendix B. Implementations of Example LCL Interfaces

erclLi st prev;

for (prev = 0, elem = c->vals;

elem!= 0;

prev = elem elem = elem>next) {
if (elem>val == er) {

if (prev == 0)

c->val s = el em >next;
el se {prev->next = el em >next;}
free(elem;
c->si ze--;
return TRUE
}

}
return FALSE;
}

erclter erc_iterStart(erc c) {

erclter result;

result = (erclter) malloc(sizeof(ercList));

if (result == 0) {
printf("Malloc returned null in erc_iterStart\n");
exit(1);

}

*result = c->vals;

return result;

}

eref erc_yield(erclter it) {
eref result;
if (*it == 0) {
return eref N L;
free(it);

result = (*it)->val;
*(it) = (*it)->next;
return result;

}

void erc_join(erc cl1, erc c2) {
erclLi st tnpc;
for(tmpc = c2->vals; tnpc != 0; tnpc = tnpc->next)
erc_insert(cl, tnpc->val);

}

char * erc_sprint(erc c) {
int len;
eref er;
erclter it;

char *result;
result = (char*)mal |l oc(erc_size(c)

*(enpl oyeePrint Si ze+1) +1) ;
if (result == 0) {

213

214 Appendix B. Implementations of Example LCL Interfaces

printf("Malloc returned null in erc_sprint\n");
exit(1l);

}

len = 0;

for_ercEl ems (er, it, c) {
enpl oyee_sprint (&(result[len]), eref_get(er));
I en += enpl oyeePrintSi ze;
result[len++] ="'\n’;

result[len] ="\0";
return result;

EMPSET.H

#if !defined(EMPSET_H)
#defi ne EMPSET_H

#i nclude "eref.h"
#i ncl ude "erc. h"
#i ncl ude "ereftab. h"

typedef erc enpset;
ereftab known;

/*
Abstraction function, toEnmpSet:
e \in toEmpSet(s) ==
exists er (count(er, s.val) =1
/\ get ERef (known, e) = er)

Rep invariant:
forall s: enpset
(forall er: eref (count(er, s.val) <= 1)
/\ s.activelters =0
/\ forall er: eref (count(er, s.val) =1
=> in(known, er)))
*/

#i ncl ude "enpset.|h"

#define enpset_create() (erc_create())
#define enpset_final(s) (erc_final(s))
#defi ne enpset _nenber (e, s)\
(!'(eref_equal (_enpset _get(e, s), erefNL)))
#define enpset_size(es) (erc_size(es))
#define enpset_choose(es) (eref_get(erc_choose(es)))
#define enpset_sprint(es) (erc_sprint(es))
#endi f

Appendix B. Implementations of Example LCL Interfaces 215
EMPSET.C
#i ncl ude "enpset.h"
static bool initDone = FALSE;

eref _enpset_get (enpl oyee e, erc s) {

eref er;
erclter it;
enpl oyee el;

for_ercE ens(er, it, s) {
el = eref _get(er);
if (enpl oyee_equal (&1, &e))
erc_iterReturn(it, er);
}

return eref N L;

}

voi d enpset _cl ear(enpset s) {
erc_clear(s);

}

bool enpset_insert(enpset s, enployee e) {
eref er;
if (leref_equal (_enpset_get(e, s), erefNIL)) return FALSE;
enpset _i nsertUni que(s, e);
return TRUE
}

voi d enpset _i nsert Uni que(enpset s, enployee e) {
eref er;
er = ereftab_| ookup(e, known);
if (eref_equal (er, erefNIL)) {
er = eref_alloc();
eref _assign(er,e);
ereftab_insert(known, e, er);

}
erc_insert(s, er);
}
bool enpset_del ete(enpset s, enployee e) {
eref er;
er = _enpset_get(e, s);

if (eref_equal (er, erefNIL)) return FALSE;
return erc_delete(s, er);

}

enpset enpset _di sj oi nt Uni on(enpset sl1, enpset s2) {
erc result;

erclter it;
eref er;
enpset tnp;

result = erc_create();
if (erc_size(sl) > erc_size(s2)) {

216 Appendix B. Implementations of Example LCL Interfaces

tnp = s1;
sl = s2;
s2 = tnp;

}
erc_join(result, sl);
for_ercEl enms(er, it, s2)
enpset _i nsertUni que(result, eref_get(er));
return result;

}

enpset enpset _uni on(enpset sl1, enpset s2) {
eref er;
erclter it;
erc result;
enpset tnp;
result = erc_create();
if (erc_size(sl) > erc_size(s2)) {

tnp = s1;
sl = s2;
s2 = tnp;

}

erc_join(result, s2);

for_ercEl ens(er, it, si)

if (!enpset_menber(eref_get(er), s2))
erc_insert(result, er);

return result;

}

void enpset _i ntersect (enpset sl1, enpset s2) {
eref er;
erclter it;
erc toDel ete;
toDelete = erc_create();
for_ercEl ens(er, it, si)
if (!enpset_nenber(eref_get(er), s2))
erc_insert(toDel ete, er);
for_ercEl ens(er, it, toDelete)
erc_del ete(sl, er);
erc_final (toDel ete);

}

bool enpset_subset (enpset sl1, enpset s2) {
enpl oyee e;
eref er;
erclter it;

for_ercEl ens(er, it, si)
if (!enpset_nenber(eref_get(er), s2))
erc_iterReturn(it, FALSE);
return TRUE
}

voi d enpset _initMod(void) {

Appendix B. Implementations of Example LCL Interfaces

if (initDone) return;

bool _init Mod() ;

enpl oyee_ini t Mod();

eref _initMd();
erc_inithd();
ereftab_initMd();

known = ereftab_create();
i ni tDone = TRUE;

DBASE.H

#i f !defined(DBASE_H)
#def i ne DBASE_H

#i ncl ude "eref.h"
#include "erc. h"

#i ncl ude "dbase. |l h"

#endi f

DBASE.C

#i ncl ude <strings. h>
#i ncl ude "dbase. h"

#define first ERC mMGERS
#define | ast ERC f NON
#define numERCS (lastERC - firstERC + 1)

typedef enum {nMERS, fMERS, nNON, fNON} enpl oyeeKi nds;
erc db[nunERCS] ;
bool i nitDone = FALSE;

void db_initMd(void) {
int i;
if (initDone) return;
bool _ini t Mod() ;
enpl oyee_i ni t Mod();
eref _initMd();
erc_inithd();
enpset _i nit Mod();
for (i = firstERC, i <= lastERC i++)
db[i] = erc_create();
initDone = TRUE;
}

eref _db_ercKeyGet(erc c, int key) {
eref er;

217

218 Appendix B. Implementations of Example LCL Interfaces

erclter it;
for_ercE ens(er, it, c¢)

if (eref_get(er).ssNum == key) erc_iterReturn(it,
return eref Nl L;

}

eref _db_keyGet(int key) {
int i;
eref er;

for (i =firstERC i <= lastERC i++) {
er = _db_ercKeyGet (db[i], key);
if (leref_equal (er, erefNIL)) return er;

return eref N L;

}

int _db_addEnpls(erc ¢, int |, int h, enpset s) {
eref er;
erclter it;
enpl oyee e;
int numAdded;
numAdded = O;
for_ercEl ems (er, it, c) {
e = eref_get(er);
if ((e.salary >=1) && (e.salary <= h)) {
enpset _i nsert(s, e);
numAdded++;
}

return nunAdded;
}

db_status hire(enpl oyee e) {
if (e.gen == gender_ANY) return gender ERR;
if (e.j == job_ANY) return jobERR
if (e.salary < 0) return sal ERR
if (leref_equal (_db_keyGet (e.ssNun), erefNL))
return dupl ERR
uncheckedH re(e);
return db_CX;

}

voi d uncheckedHi re(enpl oyee e) {
eref er;
er = eref_alloc();
eref _assign(er, e);
if (e.gen == MALE)
if (e.j ==)
erc_insert (db[MMCRS], er);
el se erc_insert(db[mNON], er);
else if (e.j == MR
erc_insert(db[fMERS], er);

er);

}

Appendix B. Implementations of Example LCL Interfaces

else erc_insert(db[fNON], er);

bool fire(int ssNum {

}

int i;
eref er;
erclter it;

for (i = firstERC, i <= lastERC i++)
for_ercEl ens(er, it, db[i])
if (eref_get(er).ssNum == ssNum) ({
erc_iterFinal (it);
erc_del ete(db[i], er);
return TRUE

}
return FALSE;

bool pronote(int ssNun) {

}

eref er;

enpl oyee e;

gender g;

g = MALE;

er = _db_ercKeyGet (db[MNON], ssNum);

if (eref_equal (er, erefNIL)) {
er = _db_ercKeyGet (db[fNON], ssNum;
if (eref_equal (er, erefNIL)) return FALSE
g = FEMALE;

}
e = eref_get(er);
e.] = MR
eref _assign(er, e);
if (g == MALE)
erc_del et e(db["NQN], er);
erc_insert (db[MMCRS], er);

el se {
erc_del et e(db[fNON], er);
erc_insert(db[fMERS], er);

}
return TRUE;

db_status setSalary(int ssNum int sal) {

eref er;

enpl oyee e;

if (sal < 0) return sal ERR

er = _db_keyGet (ssNum ;

if (eref_equal (er, erefNIL)) return m ssSERR
e = eref_get(er);

e.salary = sal;

eref _assign(er, e);

return db_CX;

219

220 Appendix B. Implementations of Example LCL Interfaces

int query(db_q q, enpset s) {
eref er;
enpl oyee e;
i nt numAdded;
int | h;

h
switch(qg.g) {
case gender _ANY:
switch(qg.j) {
case j ob_ANY:
numAdded = O;
for (i = firstERC, i <= lastERC i++)
numAdded += _db_addEnpl s(db[i], |, h, s);
return numAdded;
case MCR
nunmAdded = _db_addEnpl s(db["MERS], |, h, s);
numAdded += _db_addEnpl s(db[fMERS], |, h, s);
return numAdded;
case NONMER
numAdded = _db_addEnpl s(db[mMNON], |, h, s);
numAdded += _db_addEnpl s(db[fNON], |, h, s);
return numAdded;

}
case MALE
switch(qg.j) {
case j ob_ANY:

numAdded = _db_addEnpl s(db[MMERS], |, h, s);
numAdded += _db_addEnpl s(db[mNON], |, h, s);
return numAdded;
case MCR
return _db_addEnpl s(db[MMGRS], |, h, s);
case NONMER
return _db_addEnpl s(db[MNON], |, h, s);
}
case FEMALE:
switch(qg.j) {
case j ob_ANY:
numAdded = _db_addEnpl s(db[f MERS], |, h, s);
nunmAdded += _db_addEnpl s(db[fNON], |, h, s);
return numAdded;
case MCR
return _db_addEnpl s(db[fM3RS], |, h, s);
case NONMER
return _db_addEnpl s(db[fNON], |, h, s);
}
}
}

void db_print(void) {
int i;

Appendix B. Implementations of Example LCL Interfaces 221

char * printVal;

printf("Enpl oyees:\n");

for (i =firstERC i <= lastERC i++) {
printVal = erc_sprint(db[i]);
printf("%", printVal);
free(printval);

+
Appendix C

Lexical Formsand Initialization Files

The Larch languages were designed for use with an open-ended collection
of programming languages, support tools, and input/output facilities, each
of which may haveitsown lexical conventionsand capabilities. To conform
toloca conventionsand to exploit locally avail able capabilities, character
and token classes are extensible and can betailored for particular purposes
by initializationfiles.

In this appendix we give the LSL and LCL initialization files used for
theexamplesinthisbook. We al so givethe | SO L atin codes used for typing
the special symbols appearing in specificationsin this book.

The book was produced using IATeXwith aLarch stylefile. That allowed
us to type specifications using the 1SO Latin codes given here, and have
them appear in the text as special symbols.

LCL init file

coment Sym //

opChar T #$&?@

sel ect Sym

synonym \'and I\
synonym \or \/
synonym \inplies =>
synonym \ mar ker -
synonym \eq ==
synonym \ neq =
synonym \ not !
synonym \ not not
synonym \ not -
synonym \pre -
synonym \ post

synonym \'arrow ->

synonym \arrow \ra

Appendix C. Lexical Formsand Initialization Files

LSL init file

comrent Sym

i dChar
opChar
si ngl eChar

openSym
cl oseSym
sel ect Sym

sinpleld

synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym

% Fol | owi ng

synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym
synonym

%
)

"1 #$82@

[{ \<\langle
] } \>\rangle

\ bot \top

\ and /\
\ and &
\or \/
\or |
\inplies =>
\ not !

\ not not
\ not
\eq =
\ neq =

\ neq =
\arrow ->

\ mar ker

\equal s ==
\forall forall
\ egsep ;

used for checking LCL

Bool bool

I nt i nt

I nt si gned_char

I nt unsi gned_char

I nt short _int

I nt ong_i nt

I nt unsi gned_short _i nt
I nt unsi gned_i nt

I nt unsi gned_| ong_i nt
doubl e f1 oat

doubl e | ong_doubl e

223

224 Appendix C. Lexical Formsand Initialization Files
SO Latin codes for special characters

— iswrittenas - >

< iswrittenas <=

> iswrittenas >=

iswrittenas ~=

- iswrittenas ~

V iswrittenas \ /

A iswrittenas /\

= iswrittenas =>

Y iswrittenas \ f oral |
d iswrittenas \ exi st's
* iswrittenas \ any

* iswrittenas \ *

* iswrittenas \ +

-1 jswrittenas \'i nv

(iswrittenas \ <

) iswrittenas \ >

€ iswrittenas \i n

¢ iswrittenas \ notin
N iswrittenas \ |

U iswrittenas \ U

C iswrittenas \ subset
C iswrittenas \ subset eq
D iswrittenas \ supset

D iswrittenas \ supset eq
- iswrittenas - |

F iswrittenas | -

|| iswrittenas | |

- iswrittenas \ cdot

o iswrittenas \circ

- iswrittenas \ pr ecat

F iswritten as \ post cat
L iswrittenas \ bot

T iswrittenas \ t op

M iswrittenas \ gl b

LI iswrittenas \ | ub

© iswrittenas \ om nus

o iswrittenas \rel

X iswrittenas \ ti nes

Appendix D

Further Information and Tools

This appendix contains alist of currently available Larch tools.

Readers interested in keeping up with new devel opments should sub-
scribetotheelectronicmailinglist] ar ch-i nt er est @r c. dec. com
Thislistisused for announcementsand queriesof general interest. Requests
tobeaddedto (or deleted from) thislist, aswell asmorespecialized queries,
shouldbesenttol ar ch-i nterest-request @rc. dec. com

All informationinthissectioniscurrent as of October 1992. An updated
version will bekept onlineon theinternet host gat ekeeper . dec. com
It will be available for anonymousftp as

/ pub/ DEC/ Lar ch/ I nf or mati on. t ex

1. Id. Larch Shared Language Checker. Syntax and sort checks LSL
specifications. Trandlates LSL into Ip input. Contact: Stephen
Garland, MIT.

2. Icl. Syntax and type checker for LCL. Interfaces with Isl. Contact:
Stephen Garland, MIT.

3. Im3. Syntax and type checker for Modula-3 interface specifications
writtenin LM3. Interfaces with Isl. Contact: Kevin Jones, DEC.

4. Ip. Larch Prover. Proof checker for fragment of first-order logic with
equality. Contact: Stephen Garland, MIT.

5. gcil. Generic Concurrent Interface Language (GCIL) Checker.
Syntax and type checks GCIL specifications. Interfaces with Idl.
Contact: Jeannette Wing, CMU.

6. Penelope. Verification tool for Larch/Ada specifications and Ada
programs. Contact: M. Stillman, ORA.

7. Larch/Smalltalk Browser. Syntax and sort/type checker and
browser for Larch/Smalltalk and LSL specifications. Contact: Gary
Leavens, ISU.

226 Appendix D. Further Information and Tools

CONTACT ADDRESSES

MIT/LCS

Dr. Stephen J. Garland

M assachusetts I nstitute of Technology
Laboratory for Computer Science

545 Technology Square

Cambridge, MA 02139, USA
Internet:gar | and@ cs. nit. edu

DEC/SRC

Dr. James J. Horning

Dr. Kevin D. Jones

Digital Equipment Corporation

Systems Research Center

130 Lytton Avenue

Palo Alto, CA 94301-1044, USA

Internet: hor ni ng@r c. dec. com kj ones@r c. dec. com

ISU/DCS

Professor Gary Leavens

229 Atanasoff Hall

Department of ComputerScience

lowa State University

Ames, lowa 50011-1040, USA

Internet: | eavens@s. i ast at e. edu.

ORA

M. Stillman

Odyssey Research Associates
301A Harris B. Dates Drive
Ithaca, NY 14850-1313, USA.

Appendix D. Further Information and Tools 227

CMU/SCS

Professor Jeannette M. Wing

Carnegie Mélon University

School of Computer Science

Pittsburgh, PA 15213-3890, USA

Internet: Jeannett e. Wng@s. chu. edu

Appendix E
Classified Bibliography

This bibliography was started by Jeannette Wing and augmented by
Yang Meng Tan. It is available by anonymous f t p from Internet node
larch.lcs. mt.eduas/pub/larch-bib/larch-bib.tex.
Suggested additions for the online version should be sent to
yntan@cs. mi t. edu. Full citationsfor all references are given in the
next section.

Papers about Larch

CURRENT WORK

Reports about the current status of severa Larch-related projects are
contained in [66].

LARCH LANGUAGES

Larch Interface Languages: generic [16, 53, 61, 88]; Ada[37]; C[26, 80];
C++[60]; CLU [86]; ML [93]; Modula-3[55, 56, 57]; Smaltalk [17].
Larch and other methods: [95].

LARCH TOOLS

LP, the Larch proof assistant: [30]; a beginner’s strategy guide [81]; an
extension [83]; [5, 11, 18, 19, 76, 84].
For LSL [7, 59]; for LCL [26]; for LM3[57].

Example specifications

Apple MAC Toolbox: [13].

Avalon built-in classes, examples (queue, directory, counter): [92], [89],
and [61].

Display: [43].

Finite element analysislibrary: [3, 1].

Garbage collection: [22].

Appendix E. Classified Bibliography

|OStreams: [55].

Larch/Ada: [15, 37].

Library: [87].

Miro languages and editor: [94, 99].

Thread synchronization primitives: [6, 69].

Using specifications to search software libraries: [73].

Proofs using LP

Adaprograms: [38]

Avalon queue example: [92, 35, 91].
Circuit examples: [18, 32, 78, 75, 79].
Mathematical Theorems: [65].
Temporal Logic of Actions: [25].

229

References

* Entries marked with an asterisk have been superseded by material in this

book;

[1]

[2]

(3]

[4]

(3]

6]

[7]

(8]

they are included for historical reference only.

JW. Baugh, J. “Formal specification of engineering anaysis
programs,” Expert Systems for Scientific Computing, E.N. Houstis,
JR. Rice, and R. Vichnevetsky (eds.), North-Holland, 1992.

John W. Baugh, Jr. “Is engineering software amenable to formal
specification?,” in [66].

JW. Baugh, Jr., and D.R. Rehak. Computational Abstractions
for Finite Element Programming, TR 89-182, Dept. of Civil
Engineering, Carnegie Mellon University, 1989.

Michel Bidoit. Pluss, un langage pour le développement de
spécifications algébriques modulaires. These d' Etat, Université de
Paris-Sud, Orsay, May 1989.

Michel Bidoit and Rolf Hennicker, “How to prove observational
theoremswith LB” in [66].

A.D. Birrdl, J.V. Guttag, J.J. Horning, and R. Levin. “Synchro-
nization primitives for a multiprocessor: a formal specification.”
Operating Systems Review 21(5), Nov. 1987. Revised version in
[69].

Robert H. Bourdeau and Betty H.C. Cheng. “An Object-oriented
Toolkit for Constructing Specification Editors,” Proc. COMP-
SAC 92: Computer Software and Applications Conf., Sept. 1992.

Robert S. Boyer and JS. Moore. A Computational Logic, Academic
Press, 1979.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

References 231

Robert S. Boyer and J S. Moore. A Computational Logic Handbook,
Academic Press, 1988.

Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on
Software Engineering, Addison-Wesley, 1975.

Manfred Broy. Experiences with Software Specification and Veri-
fication Using LP, the Larch Proof Assistant, TR 93, DEC/SRC,
Oct. 1992.

R.M. Burstal and JA. Goguen. “Semantics of CLEAR, a speci-
fication language,” Proc. Advanced Course on Abstract Software
Foecifications, D. Bjorner (ed.), Springer-Verlag, LNCS 86, 1980.

C.T. Burton, SJ. Cook, S. Gikas, JR. Rowson, and ST. Som-
merville. “ Specifying the Apple M acintosh tool box event manager,”
Formal Aspects of Computing 1(2), 1989.

Karl-Heinz Buth. “Using SOS definitionsin term rewriting proofs,”
in[66].

SR. Cardenas and H. Oktaba Formal Specification in Larch
Case Study: Text Manager. I nterface Specification, |mplementation,
in Ada and Validation of Implementation, TR 511, Instituto
de Investigaciones en Matematicas Aplicadas y en Sistemas,
Universidad Nacional Autonomade Mexico, 1988.

Jolly Chen. The Larch/Generic Interface Language, S.B. Thesis,
Dept. of Electrical Engineering and Computer Science, MIT, 1989.

Yoonsik Cheon. Larch/Smalltalk: A Specification Language for
Smalltalk, M.Sc. Thesis, lowa State University, 1991.

Boutheina Chetali and Pierre Lescanne. “An exercise in LP: the
proof of a nonrestoring division circuit,” in [66].

Christine Choppy and Michel Bidoit. “Integrating ASSPEGIQUE
and LR” in [66].

O.-J. Dahl, D.F. Langmyhr, and O. Owe. Preliminary Report on
the Specification and Programming Language ABEL, Research
Report 106, Institute of Informatics, University of Oslo, Norway,
1986.

232

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

References

Ole-Johan Dahl. \erifiable Programming, Prentice Hal Interna
tiona Seriesin Computer Science, 1992.

David L. Detlefs. Concurrent, Atomic Garbage Collection, Ph.D.
Thesis, Dept. of Computer Science, Carnegie Mellon University,
TR CS-90-177, Oct. 1990.

H.-D. Ehrich. “Extensions and implementations of abstract data
type specifications,” Proc. Mathematical Foundations of Computer
Science, Zakopane, Sept. 1978. Springer-Verlag, LNCS 64.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification
1. Equations and Initial Semantics, EATCS Monographs on
Theoretical Computer Science, vol. 6, Springer-Verlag, 1985.

Urban Engberg, Peter Grgnning, and Leslie Lamport. “Mechanical
verification of concurrent systems with TLA,” Proc. Workshop on
Computer Aided Verification, 1992. Revised version in [66].

G. Feddman and J. Wild. “The DECspec project: tools for
Larch/C,” Prac. Fifth Int. Workshop on Computer-Aided Software
Engineering, Montreal, Jul. 1992. Revised version in [66].

Stephen J. Garland and John V. Guttag. “Inductive methods for
reasoning about abstract data types,” Proc. 15th ACM Symp.
Principles of Programming Languages, Jan. 1988.

Stephen J. Garland and John V. Guttag. “An overview of LP, the
Larch Prover,” Proc. Third Intl. Conf. Rewriting Techniques and
Applications, Chapel Hill, 1989. Springer-Verlag, LNCS 355.

* Stephen J. Garland and John V. Guttag. “Using LP to debug
specifications,” Proc. |FI1P Work. Conf. Programming Conceptsand
Methods, Tiberias, Apr. 1990. North-Holland.

Stephen J. Garland and John V. Guttag. A Guideto LP, The Larch
Prover, TR 82, DEC/SRC, Dec. 1991.

* Stephen J. Garland, John V. Guttag, and James J. Horning.
“Debugging Larch Shared Language specifications,” IEEE Trans.
Software Engineering 16(9), Sept. 1990.

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

References 233

S.J. Garland, J.V. Guttag, and J. Staunstrup. “Verification of VLSI
circuits using LP” Proc. IFIP Work. Conf. Fusion of Hardware
Design and \erification, North Holland, 1988.

Narain Gehani and Andrew McGettrick (eds.). Software Specifica-
tion Techniques, Addison-Wesley, 1986.

JA. Goguen, JW. Thatcher, and E.G. Wagner. “An initial algebra
approach to the specification, correctness and implementation of
abstract data types,” Current Trends in Programming Methodol ogy
IV: Data Sructuring, R. Yeh (ed.), Prentice-Hall, 1978.

C. Gong and J.M. Wing. Raw Code, Specification, and Proofs of
the Aval on Queue Example, Carnegie Mellon University, TR CMU-
CS-89-172, Aug. 1989.

David Gries. The Science of Programming, Springer-Verlag, 1981.

David Guaspari, Carla Marceau, and Wolfgang Polak. “Formal
verification of Ada” IEEE Trans. Software Engineering 16(9),
Sept. 1990.

David Guaspari, Carla Marceau, and Wolfgang Polak. “Formal
verification of Ada programs,” in [66].

John V. Guttag. “ Dyadic specification and its Impact on reliability,”
in Three Approaches to Reliable Software: Language Design
Dyadic Specification, Complementary Semantics, J.E. Donahue,
J.D. Gannon, J.V. Guttag, and J.J. Horning, University of Toronto,
TR CSRG-45, Dec. 1974.

John V. Guttag. The Specification and Application to Programming
of Abstract Data Types, Ph.D. Thesis, Dept. of Computer Science,
University of Toronto, 1975.

John Guttag. “Notesontypeabstraction,” Proc. Conf. Specifications
of Reliable Software, 1979. Reprinted in [33].

JV. Guttag and J.J. Horning. “The Algebraic Specification of
Abstract Data Types,” Acta Informatica 10(1), 1978.

John Guttag and J.J. Horning. “Formal Specification as a Design
Tool,” Seventh ACM Symp. Principlesof Programming Languages,
Las Vegas, Jan. 1980. Reprinted in [33].

234

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

References

* J.V. Guttag and J.J. Horning. “An Introduction to the Larch Shared
Language,” Proc. IFIP Ninth World Computer Congress, Paris,
Sept. 1983.

* JV. Guttag and J.J. Horning. “Report on the Larch Shared
Language,” Science of Computer Programming 6(2), Mar. 1986.

* JV. Guttag and JJ. Horning. “A Larch Shared Language
Handbook,” Science of Computer Programming 6(2) Mar. 1986.

* JV. Guttag and J.J. Horning. LCL: A Larch Interface Language
for C, TR 74, DEC/SRC, Jul. 1991.

* John V. Guttag and James J. Horning. “A Tutorial on Larch
and LCL, a Larch/C Interface Language,” Proc. VDM91: Formal
Software Development Methods, S. Prehn and W.J. Toetenel (eds.),
Délft, Oct. 1991. Springer-Verlag, LNCS 551.

* John V. Guttag, James J. Horning, and Andrés Modet. Report
on the Larch Shared Language: Version 2.3, TR 58, DEC/SRC,
Apr. 1990.

* John V. Guttag, James J. Horning, and Jeannette M. Wing. “The
Larch Family of Specification Languages,” |IEEE Software 2(5),
1985.

* JV. Guttag, J.J. Horning, and JM. Wing. Larch in Five Easy
Pieces, TR 5, DEC/SRC, Jul. 1985.

Samud P. Harbison. Modula-3, Prentice Hall, 1992.

David Hinman. On the Design of Larch Interface Languages, SM.
Thesis, Dept. of Electrical Engineering and Computer Science, MIT,
Jan. 1987.

* JJ. Horning. “Combining Algebraic and Predicative Specifica-
tions in Larch,” Proc. Intl. Joint Conf. on Theory and Practice
of Software Development, TAPSOFT, Berlin, Mar. 1985. Springer-
Verlag, LNCS 186.

Kevin D. Jones. LM3: A Larch Interface Language for Modula-
3: A Definition and Introduction: Version 1.0, TR 72, DEC/SRC,
Jun. 1991.

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

References 235

Kevin D. Jones. “A semantics for a Larch/Modula-3 interface
language,” in [66].

Kevin D. Jones. LM3 Reference Manual, (in preparation).

Donad E. Knuth and Peter B. Bendix. “Simple word problemsin
universal algebras,” Computational Problemsin Abstract Algebra,
John Leech (ed.), Pergamon Press, Oxford, 1970.

Michael R. Laux, Robert H. Bourdeau, and Betty H.C. Cheng.
An Integrated Environment Supporting the Reuse of Formal
Joecifications, Michigan State University, Dept. of Computer
Science, TR MSU-CPS-ACS-70, Sept. 1992.

Gary T. Leavens and Yoonsik Cheon. “Preliminary design of
Larch/C++,” in [66].

Richard Allen Lerner. Specifying Objects of Concurrent Systems,
Ph.D. Thesis, Dept. of Computer Science, Carnegie Mellon
University, TR CS-91-131, May 1991.

Pierre Lescanne. “Computer experiments with the REVE term
rewriting system generator,” Proc. Tenth ACM Symp. Principles
of Programming Languages, 1983.

Barbara Liskov and John Guttag. Abstraction and Specification in
Program Devel opment, MIT EECS Series, MIT Press, 1986.

D.A. McAllester. Ontic: A Knowledge Representation System for
Mathematics, MIT Press.

U. Martinand T. Nipkow. “ Automating Squiggol,” Proc. |FIP Work.
Conf. Programming Concepts and Methods, Tiberias, Apr. 1990.
North-Holland.

U. Martin and JM. Wing. Proc. First Intl. Workshop on Larch,
Dedham, Jul. 1992, Springer-Verlag.

Niels Mélergaard and Jargen A. Staunstrup. “Generating proof
obligationsfor circuits,” in [66].

James H. Morris, Jr. “Types are Not Sets,” First ACM Symp.
Principles of Programming Languages, Boston, Oct. 1973.

236

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]
[78]

[79]

[80]

References

Greg Nelson (ed.). Systems Programming with Modula-3, Prentice
Hall, 1991.

D.L. Parnas. “Information distribution aspects of design methodol-
ogy,” Prac. IFIP Congress 71, Ljubljana, Aug. 1971.

Laurence C. Paulson. Logic and Computation: Interactive Proof
with Cambridge LCF, Cambridge University Press, 1987.

Gerdd E. Peterson and Mark E. Stickel. “Complete sets of
reductions for some equational theories,” J. ACM 28:2, Apr. 1981.

Eugene J. Rollinsand Jeannette M. Wing. “ Specifications as search
keys for software libraries,” Proc. Intl. Conf. Logic Programming,
Paris, Jun. 1991.

Donad Sannella and Andrzej Tarlecki. “On observational equiva-
lence and a gebraic specification,” Proc. Intl. Joint Conf. Theory and
Practice of Software Development, TAPSOFT, Berlin, Mar. 1985.
Springer-Verlag, LNCS 185.

James B. Saxe, Stephen J. Garland, John V. Guttag, and James
J. Horning. “Using Transformations and Verification in Circuit
Design,” in [66].

E. A. Scott and K. J. Norrie. “Using LP to study the language PL,”
in[66].

Joseph R. Shoenfield. Mathematical Logic, Addison-Wesley, 1967.

J. Staunstrup, SJ. Garland, and J.V. Guttag. “Compositiona
verification of VLS circuits,” Proc. Intl. Workshop on Automatic
\erification Methods for Finite State Systems, Grenoble, Jun. 1989,
Springer-Verlag, LNCS 407.

Jorgen Staunstrup, Stephen J. Garland, and John V. Guttag.
“Mechanized verification of circuit descriptions using the Larch
Prover,” Proc. IFIP Work. Conf. TheoremProversin Circuit Design:
Theory, Practice, and Experience, Nijmegen, Jun. 1992. North-
Holland.

Yang Meng Tan. “Semantic anaysis of Larch interface specifica-
tions,” in[66].

[81]

[82]

[83]

[84]
[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

References 237

David S. Taylor. A Beginner’'s Strategy Guide to the Larch Prover,
S.B. Thesis, Dept. of Electrical Engineering and Computer Science,
MIT, May 1990.

Mark T. Vandevoorde. “Optimizing programs with partial specifi-
cations,” in [66].

Mary A. Vogt. Extension of the Larch Prover by a Method of
Inference Using Linear Arithmetic, S.B. Thesis, Dept. of Electrical
Engineering and Computer Science, MIT, Sept. 1990.

Frederic Voisin. “A new front-end for the Larch Prover,” in [66].

M. Wand. “Final algebra semantics and data type extensions,”
Journal of Computer and System Sciences, Aug. 1979.

Jeannette Marie Wing. A Two-Tiered Approach to Specifying
Programs, Ph.D. Thesis, Dept. of Electrical Engineering and
Computer Science, MIT, TR MIT/LCSTR-299, May 1983.

Jeannette M. Wing. “A Larch specification of the library problem,”
Proc. Fourth Int. Workshop on Software Specification and Design,
Monterey, Apr. 1987.

Jeannette M. Wing. “Writing Larch Interface Language Specifica
tions,” ACM Trans. Programming Languages and Systems 9(1),
Jan. 1987.

JM. Wing. “Specifying recoverable objects,” Proc. Sxth Annual
Northwest Software Quality Conf., Portland, Sept. 1990.

JM. Wing. “Using Larch to Specify Avalon/C++ Objects,” Proc.
Intl. Joint Conf. Theory and Practice of Software Development,
TAPSOFT, Barcelona, Mar. 1989. Springer-Verlag, LNCS 352.
Revised version in [90]

Jeannette M. Wing and Chun Gong. Machine-Assisted Proofs
of Properties of Avalon Programs, Carnegie Méellon University,
TR CMU-CS-89-171, Aug. 1989.

Jeannette M. Wing and Chun Gong. “Experience with the Larch
Prover,” Proc. ACM Intl. Workshop on Formal Methodsin Software
Devel opment, May 1990.

238

[93]

[94]

[95]

[96]

[97]

[98]

[99]

References

JM. Wing, Eugene Rollins, and Amy Moormann Zaremski.
“Thoughtson a Larch/ML and a new application for LR” in [66].

Jeannette M. Wing and Amy Moormann Zaremski. “A formal
specification of avisua languageeditor,” Proc. Sxth Intl. Wor kshop
on Software Specification and Design, Como, Oct. 1991.

Jeannette M. Wing and A. Moormann Zaremski. “Unintrusive
ways to integrate formal specificationsin practice,” Proc. VDM91.
Formal Software Devel opment Methods, S. Prehn and W.J. Toetenel
(eds.), Ddlft, Oct. 1991. Springer-Verlag, LNCS 551.

M. Wirsing. Algebraic Specification, Technical Report MIP-8914,
University of Passau, Germany, 1989.

Katherine Anne Yelick. Using Abstractions in Explicitly Parallel
Programs, Ph.D. Thesis, Dept. of Electrical Engineering and
Computer Science, MIT, TR MIT/LCS/TR-507, Jul. 1990.

Katherine A. Yelick and Stephen J. Garland. “ A parallel completion
procedure for term rewriting systems,” Proc. 11th Intl. Conf.
Automated Deduction, Saratoga Springs, Jun. 1992. Springer-
Verlag, LNCS 607.

Amy Moormann Zaremski. A Larch Specification of theMiro Editor,
Carnegie Médlon University, TR CMU-CS-91-111, Feb. 1991.

| ndex

" (post-state value), 58, 61
" (pre-state value), 58, 61, 76
<(in C), 60

— (in signature), 8, 18, 36
=, 36, 47

==, 36, 75, 92

£, 47

[1 (LPbox), 33,139

[1 (inC), 58,60

<> (LPdiamond), 33, 139
= (logical implies), 10

3 (there exists), 10

Y (for dl), 10, 11

< (logica equivalence), 9
- (logical not), 10

v (logical or), 10

A (logical and), 10

Abel i an, 199
Abel i anG oup, 199
Abel i anMonoi d, 199
Abel i anSemi gr oup, 199
abstract field, 112
abstract invariant, 29, 78, 80
abstract type, 34, 15
assignment, 75
collection of related opera-
tions, 4, 21, 72, 92
constructor, 54
creation and finalization, 75
implementation, 4, 26-29,
72

inC, 58-60
in Modula-3, 104, 110, 119
reasoning about, 29
type checking, 59, 72
abstract value, 110
abstraction function, 26-29
abstraction relation, 112
abstractions, programming with,
1-5
AC, 191
action, 104
Addi tion, 205
addresses of Larch contacts, 225
adequate definition, 54, 122
algebra, 37
algebraic specification, 18, 35
aliasing, 77
ALL, 110
announcements, 225
Anti symmetri c, 192
Ari t hOps, 205
array, 60, 67, 68
Arrayl, 184
Array?2, 184
ArraySlice2, 184
asserts, 20
assignment, abstract type, 75
Associ ati ve, 191
associativity, 55, 131
assunes
discharge of, 125, 127, 137,
146

240 Index

examples, 51, 55, 78
purpose, 44, 124
vs.i ncl udes, 46, 125
assumptions, 44-47
Asymmretri c, 192
atomic action, 116
auxiliary specifications, 17, 57,
77

backward inference, 134
Bag, 169

bag, 86

BagO, 45

Bagl, 46

Bag2, 47

BagBasi cs, 168

based on, 21, 58, 104

basic value, 59

basis of induction, 28, 38, 135
Bi naryTr ee, 182
binding, 10

bool, type, 68

Bool ean, 161

bound and free variables, 10
break, 96

built-in operator, 36, 47-49

C and Modula-3, 102
.cfile, 57
cal by value, 60
Cartesi anVi ew, 151
case anaysis, 134
character set, 33, 222
checking
alocation failure, 77
assumption, 124-125, 127,
137
avoidance of, 83
based onredundancy, 18, 31,
4344, 152

completeness, 122
composition, 124-125
consistency, 127, 145
conversion, 123-124
defensive, 80, 99
examples, 146-152
generators, 142
hardware design, 30
implementation, 86
implication, 122-125, 137
interface specification, 17
LCLint, 57, 72, 80, 83, 92
LSL specification, 17, 43,
121-153
made easier, 128
of book, 62
precondition, 76
proof script, 30, 31
sort-, 18, 58, 61
specification, 7,17, 121
specifications, iii
theory containment, 137143
type-, 7, 18, 72, 104, 121,
125

understanding, 43, 80, 122

chemistry, 7

chess, 7

Choi ceBag, 176

Choi ceSet , 176

cl ai ns, 80, 83

client, 5, 22, 25, 57, 103

Coer ceCont ai ner, 179

combining
abstractions, 3
implementations, 3
solutions, 1, 2
specifications, 18, 39, 124

comments, 62

Conmut ati ve, 191

commutativity, 55, 131
comparison, of abstract typeval ue,
75, 92
completeness, 43, 54, 122
checking, 122
of deduction system, 12
of theory, 11
completion (Knuth Bendix), 139
completion (Knuth-Bendix), 134,
142, 145-146
ConmposeMaps, 185
composition of actions, 116
concrete value, 110
concurrency, 116
Condi ti onal , 162
conjunction, 10
consequences, 12-13
consistency, 12, 37, 43, 122, 127
checking, 126, 145-146
constants
inC, 57, 63, 66, 70
inLM3, 105
inLSL, 49
in Modula3, 104, 106, 107
logical, 9
mathematical, 21
new, 135, 139, 142
contact addresses, 225
Cont ai ner, 52, 177
container traits, 166-181
contradiction, 135
control object, 62
conventions, 4, 62, 75
lexical and typographic, 33—
34, 222-224
converts
checking, 142-143
purpose, 43
semantics, 43, 44, 123

Index 241

Coor di nat e, 146
correctness

of implementation, 4, 7, 25,

59, 101

of specification, 7, 41, 121
crash, 68
create function, 75
critical pairs, 134, 138, 145
cstring, 63,64

data abstraction, 34
data type induction, 28, 29, 83
dbase implementation, 100
dbase.c, 217-221
dbase.h, 217
debugging
L SL specifications, 121-153
proof, 30
Deci mal Literal s, 164
declaration
inC, 57,92
inLCL, 80
inLP, 129-130
inLSL, 18, 31, 36, 48, 146
in Modula-3, 102-104, 106,
110
decomposition, 1-3
deduction
rule, 12, 38, 132-134, 141
system, 12
default proof methods, 136
defensive programming, 68, 80,
99
definitional specifications, 5
Deque, 172
Deri vedOrders, 195
design
decision, 7, 70
of proof, 30
of software, 14

242 Index

determinism, 67, 77
disambiguation, 48, 49
discharging
assumption, 46, 101, 125,
127,137
proof obligation, 127
subgoal, 31
disunction, 10
Di spl ayabl e, 146
distinguished sort, 54
Di stributive, 200
domain, 8, 18, 36
driver program, 83

effective deduction system, 12
efficiency, 76, 77
El enent Test, 180
empset.c, 215217
empset.h, 214
ENSURES, 105, 109
ensur es, 22,62, 67, 68
Enuner abl e, 204
Enuner ati on, 165
enurmer ati on, 49
enumeration type, 107
environment, 58
Equal i ty, 193
equation, 9, 36

checking, 137-141

inLP, 130-131
equational specification, 35-37
equational theory, 37, 130, 145
Equi val ence, 193
equi val ence, 41
equi val encel, 40
equi val ence2, 40
erc.c, 212214
erc.h, 211
error

avoidance, 57

in specification, 43
examples

LCL, 22, 62-101

LM3, 22, 105-120

LSL,18,4042,51-55, 157—

210
checking, 146-152

proof, 31-33, 146152
EXCEPT, 108, 109
exception, 109
exenpti ng, 44,54, 55, 124
existential quantifier (3), 10
Exponenti ati on, 206
exposed fields, 113
exposed type, 21

in C, 58, 59, 66, 72, 80, 100

in Modula-3, 103, 106, 109
extension operators, 54
ext ern, 67,92

failure
of proof, 136, 147, 149-150,
152
of storage allocation, 77
Fi el d, 200
field specification, 119
field (in C), 59
final algebra, 37
Fi ni t eMap, 185
first-order logic, 8-13
first-order theory, 20, 37
FI oat i ngPoi nt, 210
forma method, 155, 156
formal parameter, 58, 60, 61, 66,
105
LSL, 41
formal specification, 67
formalization, caution, 155-156
formula, 9
forward inference, 133, 145

FPAssunpt i ons, 209
free and bound variables, 10
fresh, 75-77
function (in C)
prototype, 57, 66, 70, 72, 80
specification, C, 61-62
Functi onal , 192

gcce, 62

GCIL, 225

generated by, 37,51, 132
checking, 142

generator set, 54

generators, 142

generic
interface, 110, 112
operator, 51, 55

global state
inLM3, 104

global variable, 80, 104

G aph, 190

G eat est Lower Bound, 197

G oup, 199

group theory traits, 198-200

.hfile, 57,70
handbook, 63

errors, 159

LSL, 157-210

onling, 158, 159
hiding, 5, 21, 110, 113, 116
hierarchy, 3
history, iii—iv

. i 3file 102

| denpot ent , 191

I dentity, 198

if_then_else_ 20, 36, 37,
47,162

. i g file 102

Index 243

immutabletype, 59, 75, 80, 86
immutablevalue, 105
implementation
bias, 5
dependency, 72
notes, 99
of abstract type, 4, 26-29,
59, 72,99, 112
of function, 72, 92, 101
of interface, 57, 92, 100-102
of iterator, 96, 99
of procedure, 22, 25, 29
of software, 1, 3
of specification, 7, 25-29,
56-57
storage alocation, 77
implications, 41-44
implication (=), 10
i mplies, 43,51, 122,137
| MPORTS, 107
i mports, 72
i ncl udes, 18, 3940, 51, 124,
127
VS. assunes, 46, 125
inconsistency, 12, 131, 135, 145
detection, 4, 37, 134, 145,
147, 152
I ndexQp, 179
induction, 37, 55, 101, 132, 135,
138, 142-143
datatype, 83
hypothesis, 135
Infinite, 204
infix operator, 36, 37
information hiding, 5
inheritance, 115
initial algebra, 37
initialization, 70, 75, 76, 83
I nsert Gener at ed, 51, 177

244 Index

instantiation, 134
I nt Cycl e, 203
I nt eger, 163
I nt eger AndNat ur al , 206
I nt eger AndPosi ti ve, 206
I nt eger Pr edi cat es, 164
intended consequences, 4144
interface, 14, 57, 102-104
language, 14-18
specification, 20-22
Internet mailing lists, 227
i ntroduces, 18,36
invariant, 100, 151
abstract, 29, 78, 80
representation, 26-29, 76,
99-101
type, 113, 115, 117
I nverse, 199
I nvol utive, 191
Irreflexive, 192
I sPO, 194
IsTO 194
iterator, 92

Joi nQp, 178

knitting, 7
Knuth-Bendix completion, 134

| arch-interest, 225
Larch/Smalltalk Browser, 225
Lattice, 197
LCL, 1517, 2226, 56-101
and LM3, 102
and LSL, 57-58
LCL Checker, 62, 72
availability of, 225
Icl file, 57
LCLint, 57, 72, 80, 83, 92
LeftDi stributive, 200

Leftldentity, 198
Leftlnverse, 198
lemma, 128
lexical conventions, 33—34, 160,
222-223
Lexi cogr aphi cOr der, 196
Ihfile, 57, 62
Li near Cont ai ner, 123
Liskov, Barbara, iii
Li st, 173
Li st Structure, 182
Li st Structur eOps, 183
LM3, 22, 102-120
and LCL, 102
and LSL, 102-105
LM3 Checker, availability of,
225
loc, 21
local state, 105
logic, 8-13
logical consequence, 11, 12
logical system, 129
loose semantics, 37
LP, 29-33, 121
availability of, 225
LSL, 18-20, 35-55
and LCL, 57-58
and LM3, 102-105
debugging, 121-153
handbook, 157-210
semantic checks, 122-125
LSL Checker, 62, 125-133
availability of, 225
Idl file, 57

. nB file, 103
Machiavelli, 1
macros, 66, 72
max| ndex, 60, 68
Merber Op, 178

members (of structs), 59

method specification, 109, 112,
113, 115, 116

. ny file, 103

m nl ndex, 60

M nMax, 196

mixfix operator, 36, 41

MCDI FI ES, 105, 109

nodi fi es, 22, 61, 67, 68

Modula-3 and C, 102

module, 57, 102, 103

Monoi d, 198

monotonicity, 46

Mul tiplication, 205

music, 7

mutable type, 59, 60, 72, 92

sharing, 75
mutable value, 105

Nat ur al , 201

Nat ur al Or der, 204

negation, 10

non-atomic routine, 116-117

non-determinism, 67, 77, 112

non-equational specification, 37—
39

normal result, 109

normalization, 133, 134

null-terminated, 68

number theory traits, 201-206

object

field in Modula3, 109, 112

inC, 58-61

typein Modula-3, 109
observer set, 38, 54
OneToOne, 192
opaguetype, 110, 113, 119
operationa specifications, 5
operator

Index 245

inLSL, 18

interface language, 17, 21

LCL, 57-58, 63

LM3, 103, 104

logica, 8-9

LR, 129, 130

LSL, 18, 36-50, 54, 57-58,

103, 104, 122124

theory, 129, 131
OrderedString, 48
overloading, 4749, 147

Pai rwi seExt ensi on, 180

Pai rwi seSum 55

parameter, 41

parameterization, 2

partia revelation, 119

partialy opaque type, 113

Parti al Order, 194

partitioned by, 38, 132,
141

checking, 141-142

Penelope, 225

Per nut ati on, 179

pointer, 60

Poi nt wi sel mage, 181

Posi tive, 202

post-state, 22, 61, 62, 66, 104,
109

postcondition, 62, 66, 109

postfix operator, 36

PQueue, 53

pragma, 103

pre-state, 22, 61, 66, 104, 109

precedence, operator, 36, 37

precondition, 61, 66

predicate, 9-11, 68

predicate connective, 47

prefix operator, 36

PreCGrder, 195

246 Index

PriorityQueue, 175
procedure, 102
procedure header, 22
procedure specification, 2, 5, 21—
22, 26,29
program variable, 58-61, 104
proof, 12-13, 30
failure of, 136
mechanismsin LB, 133-137

obligation, 125-128, 143, 146

of converts, 142-143
of equation, 137-141

of gener at ed by, 142
of implication, 139

ofpartitioned by,141-

142
replay, 31
proof script, 139, 152
propositiona connective, 9
prototype, function, 57, 66, 70,
72,80

gualification of terms, 48
guantified predicate, 10, 11

query, 225
Queue, 171

RAlI SEVAL, 109

range, 8, 18, 36

Rat i onal , 207

ReduceCont ai ner, 181

redundancy, 18, 31, 43-44, 51,
122,152

Ref | exi ve, 192

refl exive, 40

Regi on, 146

regression testing, 152

Rel ati on, 186

relation, 8

Rel ati onBasi cs, 186

Rel ati onOps, 187
Rel ati onPr edi cat es, 189
renaming, 41
representation, 66, 72, 76—77, 86,
92, 100, 110
abstract type, 4, 21, 26-29
invariant, 26-29
representation invariant, 76, 99—
101
REQUI RES, 105, 109
requires, 22,61, 67, 68
result, 62, 68
return, 96
RETURNS, 109
reuse, 3, 39, 63
revelation, 106, 112, 119
Rever se(p, 178
rewriterule, 130-131
Ri ghtDi stri butive, 200
Ri ghtldentity, 198
Ri ght I nver se, 199
Ri ng, 200
Ri ngWt hUni t, 200
routine, 102
non-atomic, 116-117
routine specification, 104-105,
109

satisfaction, 7, 25, 26, 29, 145
satisfiable, 11, 77
scoping, 80
script file, LP, 139, 152
semantic checks

LSL, 122-125
semantic claim, 125
semantic domain, 7
semantics, 12, 17, 37, 109
Seni gr oup, 198
Sem | attice, 197
sentence, 11

Sequence, 174
Set , 167
set proof-methods, 136
Set Basi cs, 166
Set ToRel ati on, 188
sharing, 75, 99
shorthand, 49-50, 60, 110
side effect, 76, 83
signature, 8, 18, 36, 41, 48, 49,
129
Si gnedl nt, 203
sort, 8-10, 18, 21, 36, 48, 58, 66,
72,103, 104, 129
sound deduction system, 12
Spar seArr ay, 42
speciaization, 55, 113
specification
abstraction by, 2
dependency, 72, 107
equational, 35-37
field, 104, 110, 113, 119
for communication, 25
formal, 67
inheritance, 115
non-equational, 37-39
reuse, 63
rolesof, 4-5
styles, 56
type, 80, 100
variable, 80, 100, 104, 110
sprint, 63, 67, 72
squarerooat, 2, 5, 9
St ack, 170
St ackBasi cs, 170
state, 21, 66, 76
inC, 58-61
in Modula-3, 104-105
storage management, 76, 77
STRENGTHEN, 115

Index 247

strict partial order, 11
StrictPartial Order, 195
StrictTotal Order, 195
String, 173

string, 63

struct, 5961

structure, logicad, 9, 11
structured programming, 3
subtype, 113, 115

supertype, 115
Synmetric, 192
synmetric, 40

syntactic domain, 6

Tabl el, 35
target list, 22, 105, 109-110, 116
tautology, 11
term, 8-9, 17, 18, 20, 21, 36, 37,
103
termination, 22, 68
test harness, 86
theorem, 12, 128
theory, 11, 20, 124
assumption, 46
consistency, 12, 43
containment, 43, 122, 137—
143
equationa, 37, 130
implication, 43
inclusion, 39, 41, 46
non-equational, 37, 38
of atrait, 39
of trait, 3741
threads, 116
tools, iii, 225
Tot al Or der, 194
Tot al PreCOr der, 195
trait, 18, 35, 57-59, 63, 103, 104,
112
AC, 191

248

Index

Abel i anG oup, 199
Abel i anMonoi d, 199
Abel i anSemi gr oup, 199
Abel i an, 199

Addi ti on, 205
Antisymmetric, 192
Ari t hOps, 205
Arrayl, 184

Array?2, 184
ArraySlice2, 184
Associ ati ve, 191
Asymmetri c, 192
BagO, 45

Bagl, 46

Bagz, 47

BagBasi cs, 168

Bag, 169

Bi naryTr ee, 182

Bool ean, 161

Cartesi anVi ew, 151
Choi ceBag, 176

Choi ceSet , 176

Coer ceCont ai ner, 179
Conmut ati ve, 191
ConposeMaps, 185
Condi ti onal , 162
Cont ai ner, 52, 177
Coor di nat e, 146

Deci mal Literal s, 164
Deque, 172

Deri vedOr ders, 195
Di spl ayabl e, 146

Di stributive, 200

El enent Test, 180
Enuner abl e, 204
Enuner ati on, 165
Equal i ty, 193

Equi val ence, 193
Exponenti ati on, 206

FPAssunpt i ons, 209

Fi el d, 200

Fi ni t eMap, 185

Fl oat i ngPoi nt, 210
Functi onal , 192

G aph, 190

& eat est Lower Bound, 197
G oup, 199

| denpot ent , 191

I dentity, 198

I ndexQp, 179

Infinite, 204

| nsert Gener at ed, 51,177
I nt Cycl e, 203

I nt eger AndNat ur al ,206
I nt eger AndPosi ti ve, 206
I nt eger Pr edi cat es, 164
I nt eger, 163

I nverse, 199

I nvol utive, 191
Irreflexive, 192

I sPQO, 194

I sTO, 194

Joi nQp, 178

Lattice, 197

LeftDi stributive,200
Leftldentity, 198
Leftlnverse, 198

Lexi cogr aphi cOr der,196
Li near Cont ai ner, 123

Li st StructureQps, 183
Li st Structure, 182

Li st, 173

Menber Op, 178

M nMax, 196

Monoi d, 198

Mul ti plication, 205
Nat ur al Or der, 204

Nat ur al , 201

OneToOne, 192
OrderedString, 48
PQueue, 53

Pai rwi seExt ensi on,180
Pai rwi seSum 55

Parti al Order, 194

Per mut ati on, 179

Poi nt wi sel mage, 181
Posi tive, 202

PreCr der, 195
PriorityQueue, 175
Queue, 171

Rat i onal , 207
ReduceCont ai ner, 181
Ref | exi ve, 192

Regi on, 146

Rel ati onBasi cs, 186
Rel ati onOps, 187

Rel ati onPr edi cat es, 189
Rel ati on, 186

Rever se(p, 178

Ri ght Di stri butive,200
Ri ghtldentity, 198

Ri ght I nver se, 199

Ri ngWt hUni t, 200

Ri ng, 200

Seni gr oup, 198

Sem | attice, 197
Sequence, 174

Set Basi cs, 166

Set ToRel ati on, 188
Set, 167

Si gnedl nt, 203

Spar seArr ay, 42

St ackBasi cs, 170

St ack, 170
StrictPartial Order,195
StrictTotal Order,195
String, 173

Index 249

Synmetri c, 192
Tabl el, 35
Tot al Or der, 194
Tot al PreOrder, 195
Transitive, 193
Unsi gnedl nt , 204
Vi ew, 148
W ndow, 147
cstring, 63,64
equi val encel, 40
equi val ence2, 40
equi val ence, 41
refl exive, 40
synmetric, 40
transitive, 40
TRAI TS, 104
Transitive, 193
transitive, 40
tranglation, LSL to LP, 129-133
trashed, 76
truth, 9, 11
tuple, 61
tupl e, 49
two-tiered approach, iii, 14-18,
21, 25,57, 103
type, 4, 8, 21, 26
abstract, 34, 15, 58, 104,
110, 119
checking, 18, 59, 72, 104
constructor, 58, 104
exposed, 58, 104
in C, 58-61, 66
in Modula-3, 102-119
initialization, 75
invariant, 113, 115
opague, 110, 113, 119
specification, 80
subtype, 115
supertype, 115

250 Index

typedef, 66, 70, 72

typographic conventions, 33-34,
224

tyranny of paper, 158

UNCHANGED, 110

uni on, 50, 59

universal quantifier (v), 10-11
Unsi gnhedl nt, 204

user guidance, 138, 143, 152
uses, 58, 66, 72

valid, 11

value, 9, 21, 26, 37, 38, 58-60,
72,75, 104, 105, 110

variable, 129

bound or free, 10
entire, 104
global, 80, 104
logical, 9, 10
program, 58-61, 104
specification, 80
target, 109, 110, 116
vector, 61
Vi ew, 148

W ndow, 147
witness, 10

yield, 92

Zilles, Steve, iii

