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Abstract. ThelLarch Shared Languagefor the specification of abstract datatypes
has evolved over a number of years from a simple algebraic language to one that
is both more complicated and more useful. This talk reviews some of its major
design decisionsand then discussessome of the designissuesand remaining open
problems—most of which are consequencesof the samedecisionsthat contribute
to LSL'sgood properties.

1 Introduction

Larch [3], [5] is a multi-site? project exploring methods, languages, and tools for the
practica use of forma specifications. A distinctive feature of the Larch family of
languages is that they support a two-tiered style of specification. Each specification
has components written in two languages. one language that is designed for a specific
programming language and another language that is independent of any programming
language. The former kind are Larch interface languages, and the latter is the Larch
Shared Language (LSL).

The Larch Shared Language is similar to many of the algebraic specification lan-
guages discussed at this workshop. It has been relatively stable for severd years, and
we are reasonably happy with it in practice. However, there are still a number of areas
in which we see room for improvement. | am happy to share these opportunities with
thisgroup, since | am unlikely to tackle them any time soon. | would welcome your in-
volvement; it may be that some of your work could usefully be applied, and it may be
that some of the Larch work could be incorporated into your own research.

This will be a very Larch-centric talk. There have been continual interactions be-
tween members of the Larch Project and other members of the Abstract Data Type and
Formal Methods communities, but | won't document and discuss them here.

2 Major Decisonsin theDesign of LSL

Before discussing LSL's open problems, | will review some key design decisions that
made the language what it is today,? since they tend to constrain the space of possible
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solutions. Good language features are relatively easy to design in isolation, but a com-
bination of good features is not necessarily a good language, since language features
interact in subtle and hard-to-anticipate ways. In the words of Sannella and Wirsing,
“A specification language is a commitment to a compatible combination of choices.”
The devil isin the details.

2.1 Meta-decision: Avoid Research in M athematics When Possible

We repeatedly encountered opportunitiesto tackle new mathematical problems. We al-
most always chose to evade them instead, and apply the time saved to considering the
practical problems of writing and using specifications. So LSL lacks many cutting-edge
features found in other languages. But we have often been surprised by how well our
“low tech” substituteswork in practice for dealing with problems for which *high tech”
festures are advocated.

2.2 Decision: Use Algebrato Specify ADTs

| still have my notes from my introduction to abstract data types and to al gebraic speci-
fications. On October 3, 1973, at aworkshop organized by Barbara Liskov, Steve Zilles
gave atak in which he discussed separating the specification of what adata typemeans
from describing choices about itsrepresentation. The exampl e he used was I nteger Sets:

Qperators
Insert: Sets x Ints --> Sets
Renpve: Sets x Ints --> Sets

Has: Sets x Ints --> Bools
Nul | : --> Sets
Rel ati ons

if i
if i

Has(I nsert(s, i), j)
Has(Renove(s, i), j)
Has(Null, j) = Fal se

j then True €se Has(s,
j then Fal se dse Has(s,

i)
i)

He argued that anything that could reasonably be called a set would have these op-
erations and satisfy these equations, and conversaly, that anything that had these oper-
ations and satisfied these equations should be accepted as an implementation of a set,
regardless of the representation it used. He thoroughly convinced me—although there
are actualy some bugs (which | will discusslater) in this specification.

When | returned to the University of Toronto and shared thisideawith my students,
John Guttag took an immediate interest. We quickly saw that stacks were even easier to
specify than sets, and queues were a bit harder—but not much harder. And most of the
other data types and data structures that we looked at seemed to fall in that same range
of difficulty. Furthermore, John noticed that theleft hand sides of the equationswe were
writing all seemed to fal into a standard form: one operator applied to another. In fact,
if we partitioned the operators of an ADT into generators, extensions, and observers, it
seemed that we got an adequate set of equations by writing an axiom for each extension
or observer applied to each generator, equating that term toa“simpler” term.



Inthe case of Integer Sets, Nul | and | nsert are generators, Renpve isan exten-
sion, and Has isan observer.*

Inhisthesig 2], John proved that any ADT with computabl e operations can be spec-
ified by axioms in this standard form (if “hidden” operators are alowed), and explored
theissue of being “simpler” in some depth.

2.3 Decision: Loose Semantics

Another early decision wasto usewhat isnow called aloose semanticsfor the equations
in a specification. That is, the absence of an equation from a specification provides no
information about whether terms are distinct or equivalent. We realized that this meant
that specifications could have non-isomorphicmodel s, but we believed (and still believe)
that it is an advantage to alow them.

Restricting specifications to those with isomorphic models:

forces you to say too much,

over-restricts implementations,

makes specifications harder to extend, and
istoo error-prone.

For example, the Integer Set specification given above needs two more eguationsto
make the initial model be equivaent to ordinary sets (which iswhat Steve intended):

Insert(lnsert(s, i), i) =lInsert(s, i)
Insert(lnsert(s, i), j) Insert(lnsert(s, j), i)

Without these axioms, restriction to theinitial algebra rules out many useful implemen-
tations of integer sets and defines avery unusua datatype.® °©

So we decided not to give initial or final agebras any specia status. Instead, we
included explicit language constructs to make it possible to write specifications whose
models are all isomorphic when that is the specifier’s intent (generated by and parti-
tioned by).

24 Decision: Two-tiered Specification Strategy

We wanted to specify real programsin avariety of real programming languages. What
shouldit mean to say that aprogram “correctly implements’ a specification? Much work
on algebrai ¢ specification has ignored this question.

What did it mean for a program to satisfy the Integer Set specification? If we had
been interested only in asimple functional language, we might have required that each

* The equations above are not in the standard form, but it is an easy exercise for the reader to
write the corresponding standard form equations.

5 Work it out.
® One of the referees pointed out that | had forgotten two more necessary equations:
remove(null, j) = null

renove(insert(s, i), j) =
if i =] then renove(s, i) eseinsert(renmove(s, i), j)



equation hold when the program’s functions were substituted for the specification’s
operators. But this approach didn’'t seem to carry over to languages in which proce-
dures changed program variables. We needed another specification to describe how
the procedures changed program variables, in terms of the abstract values defined in
the Integer Set specification. Fortunately, the classical precondition/postcondition style
of procedure specification that had been devel oped for program verification seemed to
work very well. Predicates used in these specifications coul d incorporate operatorsfrom
ADT specifications.

This generd approach seemed fairly satisfactory. But to give a precise definition
of the relation program P satisfies specification S, we needed to take account of more
than just program variables. We had to deal with parameter passing modes, storageallo-
cation, aiasing, the type system, exception handling, concurrency, etc. This morass of
“details’—which simply could not beignored in practical specifications—quickly over-
shadowed the modest complexity of our ADT specification |anguage. And the challenge
of making it adeguate to handle severa real languages was truly daunting.

The answer was neither to give up on the approach nor to givein on complexity, but
to separate concerns. We separated the ADT tier, which could be purely mathematical
and abstract, from the interface tier, which would deal with specifying program inter-
faces (procedures, types, modules, etc.).

The ADT tier was totally independent of programming languages, so one language
was enough for thistier”™—its ADT specifications could be used with any programming
language—and we called it the Larch Shared Language (LSL). We wanted to put most
of the subtlety in the ssimplest language that would do the job, so thistier is where we
planned to put al the mathematically interesting stuff. Reusable specification compo-
nents are generally language-independent abstractions, so we expected to write most of
theminLSL.

Interface languages were designed to deal with state, types, parameter passing, flow
of control, errors, exceptions, and so on. Because programming languages differed in
their choices for these, we found it helpful to further separate concerns by using a dif-
ferent interface language for each programming language. This alowed both the syntax
and the semantics of each interface language to be closely matched to its programming
language. For example, the precise notion of type came directly from the correspond-
ing programming language. The collection of built-intypes and type constructors were
defined by a specia LSL trait particular to that programming language. The notion of
exception (or signal) was a so defined by the programming language. The possibility of
threads for concurrency could depend on the language or on the run-time library. The
interfacetier iswhere we put al the messy, boring stuff that happened to be essentid to
the specification of real programs.

From the perspective of thistalk, theimportant pointisthat LSL did not haveto dedl
with any complexities mandated by programming languages.

7 But there is no fundamental reason why multiple languages could not be used on thisttier, too.



25 Decision: Simple*“Putting Together” Operations

Reading specifications is important. And people read syntactic objects (texts), rather
than semantic objects (theories). So we generally thought of LSL’s combining operators
as operators on specifications, producing new specifications, rather than as operatorson
theories or models, producing new theories or models. To put it another way, we were
more interested in structuring specifications than in structuring theories.

LSL's unit of specification is the trait. We defined inclusion and parameterization
as syntactic operations on (the text of) traits. To us, this seemed easier to explain than
operations on theories. LSL's combining operations apply to simple, tangible objects;
all derived entities can be explicitly mechanically constructed and exhibited. Of course,
there are corresponding induced operations on the associated theories, but focusing on
the presentations made it easier to avoid such complications as parameterized theories
and theory parameters.

Even so, thehardest issuewastrait parameterization. Wetinkered with it many times.
Anearly versionof LSL had only explicit lambdaabstraction. We soon discovered that it
washard to get atrait’sformal parameter list “right.” If we kept it short, we often wished
to subgtitute for a sort or operator that did not appear in the list; if we made it longer,
we frequently didn’t need to change most of the potential parameters, and supplied the
formal names again for theactuals. Thisled ustoabolishexplicit parameter listsinalater
version; al renaming was of theform “namel for name2.” But therestrictionto explicit
renaming also proved cumbersome. So we compromised with a design that allows the
specifier to choose to rename either positionally or explicitly.

Although we originally allowed hiding as one of our operatorson traits, we eventu-
ally removed it from LSL. “Hidden” operators cannot be completely hidden, since they
must be read to understand the specification, and they are likely to appear in reasoning
based on the specification.

We decided to limit the combining operations on specificationsto the LSL tier; we
would use combinationsof LSL specifications in interface specifications, but we would
not use interface specifications within LSL specifications.

2.6 Decision: Designed-in Redundancy for Checking Tools

One of the things we have learned by bitter experience is that even carefully-written
specifications are at least as error-prone as carefully-written programs,® and that speci-
fications that have not been rigorously and mechanically checked are no morelikely to
be right than programs that have not been compiled. My rule of thumb is that a good
mechanical checking tool will find about one error per page of carefully hand-checked
specifications.

One of our goals in designing LSL was to include redundancy that could be used
to find more errors sooner. We felt that it would be important to check specifications
incrementally as they were devel oped, rather than all at the end, for severa reasons. we
wanted to reuse and extend existing specifications, we wanted to catch specification er-
rorsasearly as possibleduring devel opment; and we wanted to check specificationsthat

® This is one reason why it is probably not desirable to mechanically generate programs from
specifications, even if that ever becomestechnically feasible.



were intentionally incomplete.” So we designed LSL with checking toolsin mind, and
redesigned it as the development of toolsimproved our understanding of the issues.
Some of the features of LSL that contributeto checkability are

— mandatory declaration,

— gyntax and sort-checking,

— the requirement of consistency,'?

— explicit assumptions,

— optiona claims
o about the (degree of) compl eteness of the axioms,
o about implications of the axioms,

Much of thischecking requires theorem-proving, which led usto develop aproof assis-
tant (LP) specifically designed for thistype of checking.

Inearly versions of LSL, we included two other forms of redundancy (importsand
constrains clauses) to be used to assert that a theory was a conservative extension of
another. We found that these constructs were difficult to explain and to use effectively.
Furthermore, we did not know how to check them. (These reasons are probably all re-
lated.) So we dropped them from the language.

2.7 Decisions: Typesand Sorts

In each interfacelanguage, “type” must be consistent withwhat it meansin its program-
ming language. However, in LSL, we needed a more basic notion of “sort” that could
be used by al interface languages. More precisdly, each type would be based on a sort,
mesaning that, in any model, al values of the type would be members of the carrier of
the sort.!!

Wefirst tried the simplest non-trivial sort system we could think of: Sortswere dis-
tinct precisely when they had distinct names. We did not impose any structure on this
globa name space. There was no notion of sub- or super-sort. There was no notion of
structured sorts, but we often used the sort names as stylized comments (e.g., | nt Set
or Char Set ).

This simple scheme actually carried us quite away, and let us focus on more press-
ing problems early on. It served us well in the development of an LS. Handbook [6].
Whereit started to fed clumsy was inwriting interface specificationsthat involved type
constructors. | nt Set and | nt Ar r ay aren’'t too bad in an interface that involvesonly
the corresponding types. But in bigger interfaces, with more types involved, the strat-
egy of relying on mere conventions about the choice of names for sorts was less and
less satisfactory.

? And even specificationsthat are intended to be complete seldom are!

19 1f aspecificationimpliesthat t rue = f al se, wewould like to be warned; even though this
isdifficult to check in general, many such contradictions can be found in practice. Designersof
some other languages have decided that it is perfectly all right for a specification to imply that
thereis only one value of sort Bool.

1 The correspondenceis not one-one: Many types can be based on the same sort.



In our second try, we designed a simple structured name space, alowing sort terms,
suchas Set (I nt), Set (Char), Array(lnt),Pair(Stack(lnt), Bool).
However, we retained the simplicity of sort equivaence: Sorts were distinct precisely
when they were distinct terms, and sort names were still global. | will return later to
some of the problemsthisdid not solve.

Sorts are used for three fairly distinct purposesin LSL:

— To resolve operator overloading.

— To enable detection of many errorsin terms.

— To represent the carriers of the algebrain quantifiersand when specifying complete
sets of generators or observers.

Thinking about the first and second led us to make operator and variable declaration
(with sorts) mandatory. If we had been thinking more about the third, we would prob-
ably have made sort declaration mandatory, too. Sortsplay an important rolein proofs,
especialy proofsby induction. We cannot induct over arbitrary values, but only over the
values of aparticular sort.

2.8 Decision: True Functions

Because of itsa gebraic heritage, we assumed from the outset that any model of an LSL
specification would haveto interpret each operator as asingle-valued, total function. We
reject(ed) “non-deterministic functions’ on the grounds that a gebrai c equations do not
make sense in a system where equal's cannot be fredly substituted for equals.'?

Our decision to insist on total functions was probably more controversial. We
alowed operators to be underdetermined, and models to be non-isomorphic. But syn-
tactically correct terms were never “undefined” or “erroneous’ in the logic.'3

Having read and heard lengthy discussions of partial algebras and partid logics, |
have no regrets about evading this particular tar-pit. The requirement of totality can be
asubtle source of surprises, but they do not seem to be more numerous, more subtle, or
more dangerous, than the onesthat come with partiality. And total functionsare certainly
the easiest to explain to users.

Thereisacertain amount of mess that can be pushed around, but not eliminated. In
the words of Jim Thatcher (1977) “Mathematicians have not found an elegant way to
deal with division by zero in 400 years, and there is no reason to expect that computer
scientistswill do soin 40.”

2.9 Decision: First-Order Logicwith Equality

The standard form of algebraic specifications discussed in section 2.2—in which each
equation has aright hand side“less’ than the left' “—lendsitsalf naturally to interpreta-
tion as term rewriting systems. There is awell-devel oped theory of term rewriting sys-
tems, building on the K nuth-Bendix compl etion a gorithm. Weoriginal ly had high hopes

121t is till possible to specify relations by functionally defining their characteristic predicates,
thereby avoiding an abuse of functional notation.

13 Of course, a specification may include sorts with explicit values to represent “undefined” or
“error,” but these values have no special propertiesin the logic.

' 1n some ordering on terms.



of using thisfor proving thingsabout our specifications. However, athoughterm rewrit-
ingisuseful, wequickly learned that it i s not sufficient because 1) K-B doesn’t terminate
for many cases of practical interest, and 2) in practice compl eted systemsfor rich ADTs
(e.g., arithmetic or propositional logic) are neither efficient decision procedures nor use-
ful sources of diagnosticinformationwhen a proof attempt fails.'®

Similarly, our hopesfor “inductionlessinduction” were dashed when we discovered
that establishing the preconditionsfor its soundnessis usually as hard as doing ordinary
induction. Furthermore, we discovered that first-order quantification occurs naturaly in
many specifications. Skolemization can be used to transform quantified formulas into
equational form,'® but thisprocessismorelikely to obfuscate than to clarify. So we kept
generaizing LP. The current version (3.1) supportsfull first-order logic with equality.

First-order logic fits well with our use of ADT specifications in precondition/post-
condition specifications of procedures (in the interface languagetier), and is, of course,
the most familiar and widely used logical system.

2.10 Decision: Shorthands

We redlized early on that we were repeatedly writing some very stylized LSL traits—
amost cliches—for three common kinds of data structures: enumerations, labelled tu-
ples (records), and discriminated unions (variants). We initially argued there was little
harm in this, since the specifications were so easy to write, and to recognize and skip
while reading. But, over time, we recognized this “boilerplate’ as redundancy of the
worst sort:

The number of axioms could be non-linear in the size of the data structure.

It required the invention of too many names.

It invited careless writing that could introduce errors.

Errors were unlikely to be noticed and corrected, since the readers would be skip-
ping over the boilerplate.

— The mass of uninteresting detail obscured the interesting parts of specifications.

— It discouraged first-time readers and writers.

So we added special shorthandsfor thesethreeidioms.'” | will discuss later why the
shorthands are still sources of difficulty.

211 Decision: Configurable Lexical Conventions

We needed to use LSL traitsin interface specifications for programming languages that
havevery different lexical conventions(e.g., what constitutesastring?acomment? what
arethe operators?theidentifier characters? thereserved words, if any?). So we could not
“hardwire” any of these choicesinto LSL itsdlf.

15 Proof attempts practically all fail since 8 most things we try to prove aren’t true, and haveto
be debugged, and b) most proof sketches, even of valid theorems, must also be debugged.

18 Although this preserves satisfiability, it does not, in general, preserve models.

17 We have not reconsidered this decision since adding sort terms.



We designed atiny lexical customization language, and required the LSL toolsto
read acustomization (. i ni t) file before processing traits. In many respects, thiswork-
ed well, allowing usto write LSL traitsfor use with wildly incompatible programming
languages.

2.12 Decisions. Syntax

Designing the syntax of alanguage always seems to be more difficult and controversia
than designers expect.'® It seems that the semantics represents the most important part
of thelanguage, but the syntax iswhat everyone sees, and everyone has opinions. LSL
was no exception.

Most of the syntax was fairly straightforward. We reserved our keywords, punctu-
ated liberally, and developed a grammar that was easily parsed—both by humans and
by computers. The exception was the subgrammar for expressions (terms).

We had some ambitious goalsfor LSL's term syntax:

— Allow virtually all programming language expressions.
— Allow awide variety of (linear) mathematical expressions:
e infixia+y+z, e€sS.
o bracketed: {z,y,z}, z[y].
o mixfix:ifz < ythenx dsey, =z daz<y> y.
— Allow termsto be parsed without seei ng decl arations, which may bein other traits.!?

Experienced language designers will quickly realize that these goal s are incompatibl el
So the questions were: which should we sacrifice first? and how small could we make
the sacrifices?

We devised a rather elaborate syntax for terms, in which disambiguation depended
on “correct” token classification, relying on the token customization mechanism dis-
cussed in the previous section. | will have more to say about syntax in section 3.5.

3 Issuesand Open Problems

| have aready hinted a some of the problems that followed from our design choices
for LSL. Now | will discuss some of them in more detail, sketching possible solutions
that | have thought about. However, be warned: | know the problems are al practical
problems, but | do not know whether any of these solutionsare practical. Compromises
will undoubtedly be necessary tofit any solutionsmoothly intoLSL, and the cost of these
compromises should be carefully weighed.

3.1 Problem: Shorthandsvs. Renaming

Although we expected LSL's enumeration, tuple, and discriminated union shorthands
to eliminate much of the “boilerplate’ in specifications, in practice we have not found

18 Even designers who already know this.
19 Or the terms may bein interface specifications, with the declarationsin traits.



them as useful aswe expected. Althoughthe boilerplatewas very stylized, it didinclude
some variation, such as whether or not enumerationswere ordered. Every time we made
achoice when designing a shorthand, we ruled out some potential uses of the shorthand.
A more serious problemisthat LSL's shorthand mechanism clasheswith itsrenam-
ing mechanism. Automeatically generated operator names for enumerations, tuples, and
discriminated unionsmust be explicitly and individually renamed when the correspond-
ing components are.
For example,
C tupleof hd: E, tl: S
which seems rather tidy, expandsto

introduces
[, ]: EL S->C
. hd: C->E
_tl: C->E
set.hd: C E->C
settl: C S->C
asserts

C generated by [, _]

C partitioned by . hd, .t

Y e el: E s, sl1: S
([e, s]).hd == e;

([e, s]).tl ==s;
set _hd([e, s], el) == [el, s];
set tl([e, s], sl) == [e, sl];

agreat savings. However, to rename thefieldstof i r st andr est , we would have to
apply arenaming like
(. first for __.hd, __rest for __.tl,
set first for set_hd, set_rest for set_tl)
which greatly reduces the appeal of the shorthand.?®

This problem may be a result of the decision to use one simple mechanism (renam-
ing) for three purposes that many other languages ded with separately: parameteriza-
tion, fitting, and hiding.

Alternatively, perhaps the “need” for shorthands is a symptom of alack of expres-
sive power in the base language. Maybe we should have asked ourselvesinstead: What
would we have to add to the language so that we could just write traits for these three
shorthands?

3.2 Issue: Parameterizing Operator Names

When asort isrenamed, it might be desirable toimplicitly rename some of itsoperators,
in addition to adjusting their signatures.

20 One of the referees asks “Why not use a renaming of the form:
(tupleof (first, rest) fortupleof (hd, tl))
if thisis what you want?’ to which | can only respond that | have thought of renaming as*“the
substitution of one name for another” for so long that this form had never occurred to me.



“In Larch/C++ we treat = in assertions as a call to a trait function named
equal _as_T. For each type there is a point-of-view of equdity for that type. For
example, consider pairs of integers, | nt Pai r, and triples of integers, I nt Tri pl e.
If we want | nt Tri pl e to be a subtype of | nt Pai r, then we will need to de-
fine equal _as_l nt Pai r for combinations of I nt Tri pl e and | nt Pai r argu-
ments. We would aso define equal _as_I nt Tri pl e for I nt Tri pl e arguments.
Now suppose we've defined a trait like this, but in C++ the name of the type is
Pai r | nt instead of | nt Pai r . | want to rename | nt Pai r to be Pai r | nt by say-
ing I ntPairTrait(Pairlnt for | ntPair), buttha won't change the name
equal _as_I nt Pai r tobeequal _as_Pai r | nt ."—Gary Leavens

It may be that introducing structure into operator names, analogous to the structure
for sort names, would solve this problem. But it would obviously require some syntac-
tic invention; we cannot further overload parentheses to indicate structure in operator
names.

Thismay be closely related to the solution of the shorthand problem.

3.3 Issuel Conservative Extension

Originally, LSL had aconstruct (constrains) toindicatewhich operatorswerebeing“ de-
fined” (or whose constrai nts were being augmented) by a group of axioms. But we did
not know exactly what this*“should” mean, or how to check it.

LSL aso distinguished between atrait including another trait and importingit. The
intuitivenotionwas that we did not want to accidentally changethetheory of, say, Intsor
Bools, by axiomsinatrait that imported them. We dropped thisdistinctionwhen we dis-
covered that we did not have a preci se meaning to go with thisintuition. But theoriginal
intuition seems to have been vaid. We do need some checkable redundancy here.

“One of themost problematic user trapsin LSL isthe ease with which specifiers can
write inconsistent specifications. As we' ve learned, it's extremely hard to check con-
sistency [in general]. Hence it'simportant to provide specifiers with a means for mak-
ing claims (such as conservative extension) about consistency that introduce checkable
proof obligations. Some claims about conservative extension are easy to check syntacti-
caly (eg., extensionsby explicit or primitiverecursive definitions); others may require
user-supplied proofs(e.g., viatheory interpretation). Wetook checking conservative ex-
tension out of LSL because we thought it was too hard; we need to put something like
it back in because it istoo important to ignore.” —Steve Garland

Several languageshave a“ definitiond” or “shell” construct that allowsoperator def-
initionsto be introduced in away that guarantees that they do not introduce contradic-
tionsor alow the deduction of new properties of existing operators. Can thisfit neatly
intothe LSL framework? | do not see any obvious problems, but it may be that certain
restrictionswould have to be imposed, at least in contexts where these constructs were
used.?!

2! One of the referees points out that if the languageis restricted to the standard form of axioms
discussed in section 2.2, in many cases the semantic consistency of traits can be verified by
syntactic checks. And axioms can alwaysbe omitted without loss of consistency. “ Thusin many
(practical) casestrait consistency can easily be established...If the standard form is complete



3.4 Issue Arithmetic

Thereisnologica need to treat arithmetic types and operators specidly. We have writ-
ten handbook traits for them that are semantically adequate. But, particularly when it
comes to proving things, it would be good to exploit many of the special properties of
numbers that mathematicians have discovered over the centuries, just as we treat [ogi-
cal formulas specialy—primarily for efficiency. Steve Garland asks, “ Can we agree on
hardwiring one or more theories of arithmetic? Canwedoitin away that doesnot force
us to distinguish among O:N, O:Int, 0:Q, and 0:R?"

3.5 Issue Operator Precedence

Probably the least satisfying aspect of LSL is its syntax for operators in expressions.
We worked very hard to accommodate many of the most common mathematical and
programming language notations. But the result is both too complex and too restrictive.
Itisone of the hardest thingsto teach about the current version of the language. (“Why
do | need parentheses there ?”)

Thisisan issuethat did not surface whilewe were focusing on LSL, per se, and the
LSL handbook; terms in axioms do not tend to be complex enough for the restrictions
and the extra parentheses to be annoying. But it isa continual irritationin writing inter-
face specifications, where expressionstend to be more compl ex, and wherethe program-
ming language has already established expectations about the precedence of operators.
Interface specifiers should be thinking about the programming language interface, not
about the peculiaritiesof LSL.

As Steve Garland notes, “Users who want to reason about arithmetic will not be
happy having to type expressionslike

((3*(x"2)) - (4*(y"3))) < (10*(z/3))
instead of
3*x"2 - 4*y"3 < 10*z/3

— Should we fit some more symbolsinto the built-in precedence hierarchy?E.g, +, *,

— Should we give users control over precedence? If we do, the control needstoreside
inthetraits, notinan. i ni t file. The meaning of atrait should not changeif itis
parsed with adifferent. i ni t file

LucaCardelli hasdesigned an el egant method for syntax extensionthat israther gen-
era, dynamic (extensionscan beintroduced locally), well-scoped (including avoidance
of bound variable capture), and not too hard to implement [1]. The principal restriction
isthat the (extended) grammar must be LL(1); more precisely, the parse yiel ded will be
the first one found by recursive descent.

Perhaps we should define a much simpler LSL base grammar, and use Cardelli’ sex-
tension mechanism to allow each trait to introduce syntax for the operatorsit introduces

and each type introduced has a gener ated by clause and a proved partitioned by clause, then
semantic completeness follows; and any consistent extension is also a conservative extension.
Why not make use of [these properties] in the Larch framework?’



and axiomatizes. Thisshould makeit easy towriteeach traitinits"most natural” syntax.
However, I'm not sure how well such extensionswill composewhen traitsare combined
—especialy, the resulting operator precedence. And is it wise to alow informationin
traitsto control how expressionsin interface specifications are parsed?

Maybe it would be better to let each interface language define its own trand ation to
LSL termsfrom expressionsin itsown extension of itsprogramming language' s syntax.

3.6 Problem: Hidden . i ni t Files

Although. i ni t files solved aknotty problem for us, they aso turned out to be a sub-
tle source of problems that were hard to diagnose. An . i ni t file can, by reclassifying
tokens, completely change the interpretation of atrait, or turn avalid trait into one that
will not even parse. Thisis dangerous and can be very confusing, since, like most con-
figurationfiles, .init filestend to be ignored by both writers and readers.

Thisinformationislogically apart of each trait, but most of the timewe don’t want
tolook at it. Where should we put it?

3.7 Issuel Subsorting

LSL'streatment of sorts as digoint can be quite annoying when dealing with ADTs that
are “natural” subtypes of other types (e.g., Prime C Positive C Naturad C Integer C
Rationa). There has been alot of promising work on agebrai ¢ specifications with sub-
sorting, and it would be very attractiveto introduce subsortsinto LSL. Theissueishow
to do it without complicating sort-checking too much.

| have made asketchy proposal to deal with subsorting syntactically, based onasim-
plification of the Modula-3 type system. The key ideaisto introduce a partial order on
sorts(<: ), and anew kind of assertion,

subsort T<: U

Thiswould give three deduction schemata for

— operator signature subsorting on domain sorts:. for every U-operator, thereisimplic-
itly a corresponding T-operator,

— gquantifier subsorting: any U-variable can range over T, and

— widening: every T-termisaso a U-term.

It would, however, not give schemata for covariance on range sorts or for implicit nar-
rowing.

Operators, including constants, should be declared with their “smallest” range and
“largest” domain sorts. The schemata ensurethat itisalwayspossibleto useatermwitha
specific sortin acontext that expects oneof itssupersorts. An operator applicationwould
be given the signature with the sorts of the domains exactly matching the (syntactic)
sorts of its arguments—this would associate it with the strongest applicable theory for
an operator with that symbol.?2

The details have not been worked out. For example, perhaps we would need arule
that if an operator has two applicable overloadingsthat differ only in that the range of

22 |t is OK to require an exact match here, because of implicit operator signature subsorting.



oneisasubsort of the range of the other, then the subsort is chosen.?? The implications
for the rest of the language and for LP would need to be investigated.

Semantic (predicative) sortswould certainly be more powerful, allowing usto define
subsortslike Prime by characteristic predicates. But they turn sort checkingintotheorem
proving,?* and would undoubtedly make areal mess of term matching and rewriting.

3.8 Issue Total Functions

The decision to stick to total functions was made very early in the design of LSL. It
allowed usto evade a knotty set of problems, and concentrate our efforts on thingsthat
seemed more urgent. | am still not dissatisfied with it, but a lot of smart people have
suggested we should revisit thisissue.

Inatypical LSL specification of therationals, 1/ 0 isn’t undefined; the specification
just doesn't give any axiomsthat et you provethat 1/ 0 isequal to somefraction witha
non-zero denominator.?® We have rel egated theissue of partiaity (and what to do about
it) to the interface language tier. This choice is quite conventional in algebraand logic,
somewhat ess so incomputer science, where computability isan issue. Can we get away
with it?

At onelevel, the answer is surely Yes, because we know how to replace any partial
function with atotal relation.?® But there are pitfallsfor the unwary specifier here:

— Itiseasy to accidentally introduce an inconsistency. (Remember all the high school
algebra “paradoxes’ that depend on a hidden division by zero?)

— Thespecifier must be careful not to give agener ated by clause that doesn’'t generate
these non-standard terms.

— The verifier must take the “extra’ generators into account in proofs by generator
induction.

Of course, if we added subsorting, that would allow us to introduce functions that
aretotal over subsorts.

3.9 Issue; Composability

“The mechanisms for composing specifications in LSL are too primitive. They fail to
address issues such as information hiding or interfaces, which we know play important
roles in composing programs. Asaresult, it istoo easy to produce inconsistent specifi-
cations by composing consistent ones.

“For exampl e, two specifications may each define auxiliary operators (with common
signatures, but different properties) to simplify some complicated definitions. To avoid

2% One referee suggests that we could just require regularity, asin Order-Sorted Algebras.

24 At least, if weinsist on finding the semantically optimal sort.

2% TheLSL Handbook'sInteger trait doesnot specify adivision operator for integers. Thisoperator
will havedifferent semanticsin different programming languages—andnot just in thetreatment
of division by zero. Also, it would be awkward to deal with 1/ 0 asaseparategenerator in every
induction over the integers. However, in the rationals we cannot escape 1/ 0.

26 At a hideous notational cost!



introducing an inconsistency when composing these specifications, the specifier must
detect and resolve any name clashes between these operators. It would be better to hide
the existence of such operators by appropriate interface mechanisms.”—Steve Garland

3.10 Issue: Underlying Logic

“Many other specification and proof environments offer higher-order logics, order-
sorted logics, logics of partial functions, ... It is easier to write many specificationsin
these logics, but they are not as simple or as familiar as first-order logic. How do we
strikean appropriate balance that preserves simplicity, facilitates expression, lessensthe
likelihood of error, and permits effective proof support?’—Steve Garland

4 Concluding Remarks

Language designishard, and it’s certainly not finished until somebody el seimplements
your language, too.
The hardest problemsin language design come from interactions of features, so

— keep everything as simple as possible as long as you can,
— know what the tradeoffs are, and
— don't assume you can “just” add another feature.

One reason | gtill have hopefor LSL isthat it has not yet fallen into the clutches of
astandardization committee. : -)

Our most urgent problems do not concern refining our specification languages; they
concern getting people to use them.
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