

John C. Knight and E. Ann Mpyers
AN IMPROVED INSPECTION

TECHNIQUE

oftware reviews are not a new idea. They have been
around almost as long as software has. One of the most
natural ways to check if something is correct is to look
at it. Babbage and von Neumann regularly asked col-
leagues to examine their programs [6]. In the 1950s
and 1960s, large software projects often included some
sort of software review. By the 1970s, various
review methods had emerged with different names:
software reviews, technical reviews, formal reviews,
walkthroughs, structured walkthroughs, and code
inspections. Each review method had different forms
to fill out, different review team sizes and makeup, and
so on, but none suggested any approeach for reviewing
the software or other work product other than just
looking at it and discussing it.

One might wonder why reviews are used at all,
since most software is tested anyway. There are several
reasons for doing something other than testing.
Among these reasons are the expense and insuffi-
ciency of testing. Linger et al. state “It is well known
that a software system cannot be made reliable by
testing” [10]. Similarly, in support of inspections
in engineering, Petroski states in his text T Engineer Is FHuman:

Engineers today, like Galileo three and a half centuries ago, are not superhuman. They make
mistakes in their assumptions, in their calculafions, in therr conclusions. That they make
mistakes is_forgivable; that they catch them is imperative. Thus 1t is the essence of modern
engineering not only to be able lo check one’s awn work, but also to have one’s work checked
and to be able to check the work of others {13, p. 52].

Since independent inspections are routine in many other disciplines, such as
financial accounting and building construction, it is surprising that inspection
1s not a significant element of software development.

Empirical evidence has emerged showing that review methods based on
human examination of a paper version of 2 work product can have considerable
benefit, usually by lowering the number of errors in the software. Freedman and
Weinberg [5] report that in large systems, reviews have reduced the number of
errors reaching the testing stages by a factor of 10. They report that this reduc-
tion cut testing costs by 50 to 80% including review costs. Fagan, referring to
results compiled by Russell [14], states that ““65 to 90% of operational defects are
detected by inspection at Ys ta %3 the cost of testing and removed at /7 to Y2 the
cost” [4]. Despite their demonstrated performance, existing review methods are
far from universally accepted.

Although successful, existing review methods have some limitations. For
example, existing methods are not always carried out rigorously and there-

fore do not necessarily achieve their
full potential, This inconsistency
means that, although existing review
methods are cost-effective statistically
and generally beneficial to software
development, they do not ensure that a
particular work product has any clear
cut quality after review. In addition,
the usual dependence of reviews on
human efforts limits their effec
tiveness, Supplementing the review
process with computer resources per-
mits more efficient use of human time
and more complete coverage of items
that have to be reviewed.

In this article we describe an
enhanced technique for the inspection
of software work products called phased
inspections. This technique is designed
to permit the inspection process to be
consistently rigorous, tailorable, effi-
cient in its use of resources, and com-
puter supported. Phased inspections
examine the work product in a series
of small inspections termed phases,
each of which is designed to ascertain
whether the work product possesses
some desirable property. The skills
of the staff performing a phase are
tailored to the goals of the phase, and
the checking that is performed during
a given phase is defined precisely and
computer supported.

As well as describing an enhanced
review process for software engineers
to follow, we also present details of
a comprehensive toolset to support
phased inspections. The toolset con-
tains extensive facilities that assist the
inspector, thereby allowing inspections
to proceed rapidly. The toolset also
supports checking of the process,
thereby helping to ensure that inspec-
tions are carried out as required.

]

COMMUNICATIONS OF THE Acm November 1993/Vol 36, No.11 51

Since it is not sufficient merely to
claim benefits for a new process, we
also present a framework for evalua-
tion ol phased inspections and the
results of a prelimimary experimental
evaluation.

Existing Review Methods

In the 1950s and 1960s many large
projects included some
tform of review in the development
process, but it was not until the work
of Weinberg appeared in 1971 [18]
that the review of software in all
stages of development was advocated
and a method proposed. Since that
time, review methods have appeared

software

frequently in the literature. These
review methods can be placed into
one of three general categories char-
acterized by the strategy that drives
the review process:

Formal reviews. In a formal re-
view, the author of the work product
or one of the reviewers familiar with
the work product introduces it to the
rest of the reviewers. The flow of the
review is driven by the presentation
and 1ssues raised by the reviewers.

Walkthroughs. Walkthroughs are
usually used to examine source code
as opposed to design and require-
ments documents. The participants
do a step-by-step, line-by-line simula-
tion of the code. The author of the
code 1s usually present to answer par-
ticipants’ questions.

Inspections. In aninspecuon, a list of
criteria the software must satisty de-
termines the flow of the review.
While walkthroughs and formal re-
views are generally biased toward
error detection, inspections are often
used to establish additional proper-
ties such as portability and adherence
to standards [6]. A reviewer may be
supplied with a checklist of items, or

he or she may only be informed of

the desired property. Inspections are
also used to check for particular er-
rors that have been prevalent in the
past.

One of the most popular review
methods was developed by Fagan (2,
3] who wanted to create a new pro-
cess that would improve software
quality and increase programmer
productivity. His method, intormally
known as Fagan inspections, is a com-

bination of a formal review, an in-
spection, and a walkthrough. This
combination of review methods has
made Fagan inspections more formal
and therefore more effective than
previous methods.

Fagan's inspection method is a
tairly complex procedure that we can
only summarize here. In general, it
consists of five steps: overview, prep-
aration, inspection, rework, and
follow-up. In the overview, the au-
thor of the work product explains
the content to the inspectors. For a
source-code inspection, the overview
would cover the design and the logic
of the soltware. During preparation,
the inspectors study the work prod-
uct and any associated documenta-
ton to prepare for the inspection.
The inspection is a meeting that is
controlled by a moderator, who in
turn chooses a reader. The reader
guides the inspectors through the
work product i a detailed examina-
tion searching for errors. Again, for
a source-code inspection, every line
of the work product is examined. A
report of the inspection is prepared
and given to the author who corrects
the errors that were identified. The
follow-up step checks that the errors
were corrected.

Active design reviews are an impor-
tant advance in review methods in-
troduced by Parnas and Weiss [12].
The approach taken is to conduct
several brief reviews with each focus-
ing on a part of the work product
(usually some part of a design docu-
ment) rather than one large review,
thereby avoiding many of the diffi-
culties of conventional reviews cited
by Parnas and Weiss. In addition,
participants in active design reviews
arc guided by a series of questions
posed by the author(s) of the design in
order to encourage a thorough re-
view. Some of the ideas in active de-
sign reviews have been adapted for
phased inspections.

The cleanroom approach o soft-
ware development is far more than a
although
review of work products is a major
component of the technique [1, 16].
The cleanroom process requires the
author(s) to perform various reviews

review method, human

of a work product and does not per-
mit a software artifact to be executed
by its author(s). In some cases, even

52 November 19953/ Vol 56, Noll COMMUNICATIONS OF THE ACM

compilation of software by its au-
thor(s) does not occur. The approach
is designed to encourage cleanroom’s
human verification and careful sofi-
ware structuring that obviate the
need for unit testing.

The N-fold inspection method
[15] is a technique tailored toward
the analysis of user requirements
documents. In an N-fold inspection,
several formal inspections are car-
ried out in parallel under the control
ot a single moderator. The develop-
ers chose this approach because of
their observation that the results of
separate inspections tend not to
overlap. Thus performing several in
parallel is likely to improve the rate
of fault detection. Empirical evi-
dence of this effect was found in an
elegant experimental evaluation [15].

Deficiencies in the Application
of Existing Methods

Although existing methods are suc-
cessful, careful examination of their
application in practice reveals vari-
ous limitations. Many of the prob-
lems derive from poor or incorrect
application of a technique rather
than from the technique itself.
Clearly, no single method suffers
from all of the limitations we iden-
tify. We note specifically that actve
design reviews [12] suffer from rela-
tively few. The following is an accu-
mulation of hmitations from various
techniques:

e Existing methods tend o tocus on
error detection [2, 12] where error is
interpreted by most practitioners 1o
mean a defect that would lead to in-
correct output. Error
important, but correctness is not the
only desirable characteristic of sofi-
ware products. Maintainability, porta-
bility, and reusability are examples of
other characteristics with which a
review method might be concerned.
T'hese other characteristics are 1m-
portant since, for example, a soft-
ware product might have no errors
but its value might be drastically re-
duced if it is not maintainable. Such
characteristics are sufficiently com-
plex that their determination by in-
spection cannot be effected by a sin-
gle, general-purpose inspection, as is
attempted with existing methods.

detection 1s

e In general, existing review meth-

ods are not applied consistently. As
noted, although they are beneficial in
a statistical sense, presently applied
existing methods do not ensure that
a particular work product has any
specific quality after review. A proj-
ect manager can usually say only that
reviews improve the general quality
of his or her organization’s products.
However, managers should be able
to make assumptions about qualities
held by a particular product after
review.

® In order to make the results of re-
views dependable, it must be possible
to assert, either with certainty or with
high probability, that a product
which has been reviewed has certain
properties. This means the review
process must be applied rigorously.
Rigor permits conclusion to be
drawn about a property of a product,
and allows these same conclusions to
be drawn about every product that is
inspected. Equally important, rigor
also allows the same conclusions to be
drawn about a product irrespective
of who is performing the review.

¢ Existing methods do not make the
most effective use of human re-
sources. It is not uncommon for
highly paid software engineers par-
ticipating in a review to debate spell-
ing, comment conventions, and like
trivia. In addition, to the extent that
the review work is done in a meeting,
the reviewers cannot work in paral-
lel. We also note that reviews are
group activities and as such are sus-
ceptible to dominance by a single
strong-willed individual. Others
might have useful comments but are
inhibited in such situations. Finally, a
group activity in which there is no
detailed, required, active participa-
tion by each member permits indi-
viduals who failed to prepare to sit
quietly, not contribute, and for this
to go largely unnoticed.

® A software product may have
many different types of errors. With
source code, for example, there
might be errors in the logic, the com-
putations, or the tasking structure;
there might be unacceptable ineffi-
ciencies; or there might be errors in
the form of omitted functionality. In
an inspection that follows traditional
practice, the product is usually exam-
ined once, and it is expected that er-
rors of all types will be checked for

during this single examination. Al-
though the participants in a tradi-
tional inspection might be experts in
appropriate different areas, the in-
spectors are required to check for all
the different types of error simulta-
neously. Itis unlikely that they will be
able to meet this intellectual chal-
lenge.

e Existing review methods target
paper products for examination and
perform examinations typically in a
meeting. Little to no computer sup-
port is used, thereby making less
than optimal use of human resources
and exposing the process unneces-
sarily to human fallibility.

® Some aspects of existing methods
are not always used appropriately.
The overview step included in many
review methods, for example, is
often used as a technical summary.

This suggests the documentation of

the product being reviewed is defi-
cient in some way. If the documenta-
tion is complete and properly pre-
sented, a technical overview should
present no new technical informa-
tion.

reviews address
some of these issues. By addressing
these limitations systematically and
building on the positive elements of
existing methods, we aim to improve
inspection technology. As we docu-
ment later, we have been partially
successful. We also have clear indica-
tions of how to increase the degree of
improvement.

Active design

Phased Inspections
We believe the benefits of inspections
to be so great they should be a re-
quired component of the creation of
every work product in the software
life cycle. Further, we believe that for
inspections to achieve their maxi-
mum cost-effectiveness (and thereby
productivity), they must be applied
rigorously. Inspection should be a
precisely defined acuvity that
achieves a prescribed set of results.
These results, once achieved, should
be completely dependable, thereby
permitting other parts of the soft-
ware life cycle to be simplified, re-
duced, or streamlined.

Phased inspection is an enhanced
review method that is designed to
deal with the limitations noted in the

previous section and to provide the
benefits just outlined. The goals of
the method are that it be (1) possible
to always apply it rigorously so the
results are specific to a particular
product and repeatable, (2) tailorable
so that it can serve functions other
than error detection, (3) extensively
computer-supported so that human
resources are used only where neces-
sary, and (4) efficient so that maxi-
mum use is made of available re-
SOUrces.

Of these goals, rigorous applica-
tion is the most complex and difficult
to achieve. Rigor must be supported
in at least two areas—process defini-
tion and process assurance. From the
process definition, it must be possible
to know exactly what actions will take
place during an inspection so that
inspectors know exactly what is re-
quired of them and when. Assurance
is necessary in order to show that the
rigorous process definition has actu-
ally been followed in practice. Just as
inspections are required to check the
work of others, so the work of the
imspector must be checked.

A phased inspection consists of a
series of coordinated partial inspec-
tons termed phases. Each phase is
intended to ensure that the product
being inspected possesses either a
single specific property or small set
of closely related properties. The
property checked during a given
phase is chosen to be intellectually
manageable so that comprehensive
checking is a reasonable expectation.
If this is not possible, the property is
split so that multiple phases can be
used. The properties examined are
ordered so that each phase can as-
sume the existence of properties
checked in preceding phases. The
inspectors performing a given phase
are held responsible for assuring that
the properties defined for that phase
have been fully checked. Taken to-
gether, the set of phases constitute a
single phased inspection.

Phased inspections are tailorable
so they can be used to check for a
wide range of desirable characteris-

COMMUNICATIONS OF THE acMm November 1993/ Vol 36, No 1l 53

tics. They are not intended solely for
tinding errors. For example, they
can be used to ensure that a source-

code work product has certain im-
portant characteristics such as por-
tability, reusability, or maintainabil-
ity. The present level of understand-
ing of what is required to make soft-
ware truly portable, for example,
requires that the software comply
with an extensive set of design rules.
Inspection for compliance is a signif-
icant undertaking over and above
what might be needed to inspect for
errors, and warrants a separate in-
spection in its own right. Clearly,
multiple phased inspections can be
undertaken to establish several of
these desirable characteristics.

If a work product passes through
several phases and is found deficient
in a later phase, the work product
has to be corrected. This raises the
question of whether earlier phases
have to be repeated. We take the po-
sition that indeed earlier phases do
have to be repeated, at least in the
vicinity of the identified defect.
Without this repetition, it would not
be possible to claim the benefits we
seek.

The concept of phased inspection
has benefited from the work on ac-
tive design reviews [12]. Active de-
sign reviews focus on error detection
in designs, whereas phased inspec-
tions are intended to be used on any
work product including require-
ments, designs, and source code.
Additionally, the phases of a phased
inspection are orthogonal to the re-
views of which an active review
would be composed. A phase exam-
ines an entire product for compli-
ance with a specific property,
whereas a review in an active design
review examines part of the product.
There are other differences between
the two techniques especially in the
area of computer support.

Phases are designed to be as rigor-
ous as possible so that the work prod-
uct’s compliance with associated
properties is ensured, at least infor-
mally, with a high degree of confi-

dence. To achieve this, we define two
phase types—single-inspector and mul-
tiple-inspector—with ditferent for-
malts.

A single-inspector phase is a rig-
idly formatted process driven by a list
ot unambiguous checks. For each
check, the product either complies or
does not comply. The work product
cannot complete this type of phase
until it complies with all of the checks
in the list. As the name implies, the
intent is that the checks will be per-
formed by a single inspector working
alone.

Single-inspector phases are used
1o establish a wide variety of rela-
tively simple vet important proper-
ties. For example, they might be used
to check compliance with simple for-
matting properties in design docu-
ments or compliance with simple
programiming practices in source
code. Clearly, many simple qualities
of this type can be established with a
static analyzer. Our goal is to provide
an inspection technology for those
situations in which static analysis is
beyond the state of the art or a suit-
able analyzer does not exist.

A multiple-inspector phase is de-
signed to check for those properties
of the product that cannot be cap-
tured by a set of application-inde-
pendent, precise questions with yes/
no answers. Typically, such proper-
ties include completeness or
correctness issues for requirements
or functional correctness concerns
for implementations. In a multiple-
mspector phase, several inspectors
first examine the product indepen-
dently in a highly structured way and
then meet to compare findings. This
structure is essentially a Delphi pro-
cess [7].

The inspectors are provided at the
outset of the phase with the neces-
sary reference documentation for
the product and begin with an exam-
ination of this documentation. The
inevitable questions of clarification
they generate serve to improve that
documentation. The inspectors are
not provided with information that is
not generally available in documen-
tation as might occur in the overview
of a traditional inspection.

Using the reference documents as
necessary, the inspectors proceed
with independent inspections of the

work product. Their goal is establish-
ing that the work product has the
property defined for the phase.
These individual inspections are
driven by checklists that are in part
domain-specific and in part applica-
tion-specific. The goal of the check-
lists is to ensure that the inspectors
focus on the work product in a sys-
tematic way and with complete cov-
erage. As presently defined, the
checklists do not have yes/no answers
for the most part, but take more of
the form of asking the inspector to
check all instances of a certain aspect
of the work product.

The domain-specific checks re-
quire the inspector to look for known
areas of dittficulty in the associated
domain. For example, in inspecting
specifications for an embedded-
system domain, a check that ensures
correct mapping of output ports
might be required. Similarly, in
source-code inspections a check used
within many domains would be to
ensure that the relational operators
are used correctly. It is very difficult
to test for errors in which a < has
been used in place of a << =, but such
errors can be located by inspection.
Such a check also requires detailed
knowledge of the domain on the part
of the inspector.

The application-specific checklists
are designed to force a thorough
examination of the work product by
the inspector. Using the concept de-
veloped for active design reviews, the
checks take the form of a systematic
set of questions about the work prod-
uct itself developed by the author.
For example, in source-code inspec-
tions the questions take the form
“What is this statement for?” or
“What is this data type used fore”
Such questions are generated at a
fixed thousand lines of
source code and are of a predefined

rate per

form. The ability to answer such
questions successfully ensures that
the inspector checked the selected
item and understood the work prod-
uct well enough to be able to answer
such involved questions. Being un-
able to answer a question is an im-
portant multiple-
inspector phase since 1t indicates that

outcome of a

the work product was not sutficiently
documented or was not clearly writ-
ten. This is just the kind of informa-

54 November 1993/Vol.36, No.ll COMMUNICATIONS OF THE ACM

Phased inspections were developed to evreate a rigorous
and reliable review method /o7 software

tion that is essential for ensuring that
a work product will be amenable to
maintenance.

The separate inspections are fol-
lowed by a reconciliation in which the
individual inspectors compare their
findings. Since the goals of the vari-
ous checklist items in a multiple-
inspector phase are to force coverage
and consistency in the individual in-
spections, the inspectors’ findings
should be identical, but in practice
they will only be similar. The intent
of the reconciliation 1s to avoid the
personnel ditficulties found to occur
in typical group inspections.

The overall approach ot a mul-
tiple-inspector phase is ditferent
from a traditional inspection. There
is a procedural similarity between an
N-fold inspection and a multiple-
inspector phase, although the former
seeks different results from the sepa-
rate inspections and the latter seeks
similarity. Additionally, the reconcili-
ation step in a multiple-inspector
phase seems somewhat like a tradi-
tional inspection, but the goal of a
reconciliation is not to reveal any-
thing new about the work product.
In practice, of course, the benefits
observed with N-fold inspections
have been observed in multiple-
inspector phases and the benefits of
parallel inspections tend to occur.
Also, the synergy considered impor-
tant in traditional inspections has
been observed to occur in reconcilia-
tions so that new results have been
generated in this step. These topics
will be considered later.

Selection Of Inspectors

The staff used in the various phases
can be chosen so their qualifications
meet the needs of the phase. This
helps address the goal of making ef-
ficient use of human resources. For
example, in a source-code phased
inspection, a single-inspector phase
that is checking compliance with in-
ternal documentation standards
might be undertaken by a technical
writer, whereas a phase checking

work products.

programming practices might be
performed by a junior software engi-
neer.

A major benefit of this flexibility is
the possibility of using staft with par-
ticular skills as inspectors for phases
in highly specialized areas. This
would permit them to comment
about the work of their colleagues in
these specialized areas, and thereby
rapidly impart their skills onto the
product either by confirming the
quality of the product or suggesting
appropriate changes. This is a famil-
iar and valuable concept that is nei-
ther systematized nor exploited in
existing review methods.

Example of Phased Inspection

As an example, consider the goal of
checking source code for elementary
desirable characteristics considered
important in production software. A
simple phased inspection could con-
sist of six phases. Phase 1 would en-
sure compliance with required inter-
nal documentation checking format,
placement, spelling, and grammar at
the same tume. Phase 2 would exam-
ine the source code layout for com-
pliance with required format. Phase
3 would check the source code for
readability in areas such as meaning-
ful identifiers, use of abbreviations,
and compliance with local naming
standards. Production software has
been known to use meaningless
single-character identifiers, thereby
making the maintenance task much
more difficult. Checking for compli-
ance with good programming prac-
tices would be done in phase 4.
Checks in this phase might include
freedom from unnecessary “go to”
statements and appropriate use of
global variables. The checks per-
formed in phase 5 would assure the
correct use of various programming
constructs, such as updating the vari-
ables controlling while statements
and explicitly closing files that are
successfully opened. Finally, phase 6
would be a multiple-inspector phase
aimed at checking functional correct-

ness.

Clearly, phases 1 and 2 might be
obviated by a formatting tool that
enforces local standards. Similarly,
phases 4 and 5 might be supple-
mented or obviated by static analyz-
ers. Where these phases are per-
formed by human inspection, phases
I and 2 could be performed by a
technical writer, phase 3 by a junior
engineer, phases 4 and 5 by a soft-
ware engineer, and phase 6 by senior
software engineers.

Computer Support

Phased inspections are well suited 1o
computer support, and a prototype
toolset (InspeQ') has been devel-
oped. The overriding goal of the
toolset is to provide the highest level
of support possible for human in-
spectors. Naturally, this takes the
form in many cases of fairly straight-
forward bookkeeping aids. However,
elimination of these functions from
human concerns changes the charac-
ter of inspections dramatically and
improves the overall performance
because details do not “drop through
the cracks.” The secondary goal of
computer support, that of assurance,
is almost transparent to the conscien-
tious inspector, yet provides a great
deal of support for project manage-
ment.

Features provided by the toolset to
support inspection are in the general
categories of work product naviga-
tion and display, documentation dis-
play, and comment recording. Spe-
cific tools include the following:

Work product display. The work
product display is a general tool for
looking at the work product and is
the primary facility the inspector
uses during an inspection. The tool
permits display, scrolling, reposition-
ing, and searching the text. Multiple
instances of the display window can
be used to permit inspection of re-
lated but separate areas of the work
product.

'Inspecting software in phases to ensure quality

COMMUNICATIONS OF THE ACM November 1993/ Vol 36, No.li

Checklist display. The checklist
display shows the checklist associated
with the current inspection phase. It
ensures that the inspector is in-
formed of exactly what checks are
involved in a given phase. The dis-
play also accepts mput from the in-
spector indicating the status of the
various required checks, thereby fa-
cilitating compliance. The inspector
can indicate for each checklist item
cither that the product complied, did
not comply, was not checked, or that the
check was not applicable.

Standards display. The standards
display shows the standards that the
checklists are designed to check in-
cluding compliant examples for illus-
tration.

Highlight display. The highlight
display allows the inspector to iden-
ufy certain syntactic categories of in-
terest in the work product by menu
selection. Instances of the selected
syntactic category are extracted and
displayed one at a time in a separate
window. The intent of this display is
to help the inspector quickly find and
isolate specific syntactic features that
relate to inspection checklist items.

Isolating features in a separate
window allows the inspector to con-
centrate on narrow sections of the
product if desired, avoiding distrac-
tion by the feature’s surroundings.
In a source-code inspection, for ex-
ample, if the inspector is checking a
switch statement in a C program he
or she does not need to check how
the control variable for the switch
statement is used before or after the
statement.

The highlight facility is usetul in a
number of ways. For example, it al-
lows the inspector to highlight all of a
particular syntactic structure in the
product, and sequentially check each
one until they have all been checked.
A checklist item in a source-code
phased inspection might require the
inspector to check that all while
statements terminate. Without this
facility, the inspector would have to
locate the statements of interest ei-
ther manually or using some gen-
eral-purpose editor, and would have
to monitor compliance manually.

The highlight facility does not
support all desired syntactic elements
of all possible work products. It re-
quires syntactic information about

the product produced by a syntax
analyzer. A general syntax analyzer is
provided tor C source code permit-
ung highlighting of statements, func-
tions, expressions, and operators. A
limited syntax analyzer for Ada has
also been developed.

Comments display. The comments
display provides an editable text dis-
play for an inspector to record any-
thing in the work product with which
he is not satisfied. The commands
controlling this display are roughly
equivalent to Emacs text editor com-
mands.

In order to provide context for the
inspector’s typed comments, sections
of text or just the associated line
numbers from any text display can
be pasted into the comments. Pasting
text from the work product being
examined can be useful when it is
difficult to explain a problem but
easy Lo show by example. The inspec-
tor can paste a copy of the noncom-
pliant text and then edit his com-
ments. Another useful technique is
Lo paste two copies of the noncompli-
ant text and edit one to show how a
correction can be made. This is
sometimes an easy way of explaining
a complex idea to the author. InspeQ
formats the inspector’s comments in
a file for submission to the author.

Assurance facilities provided by
the toolset are in the general catego-
ries of explicit process support and
monitoring. Support for the process
includes (1) tracking the assignment
of personnel to phases, (2) tracking
associated files, (3) permitting files to
progress through phases only as each
phase is completed, and (4) ensuring
the correct order of phases.

Monitoring 1s limited to maintain-
ing the checklist and phase status of
any particular inspection. During
imspection, an inspector is believed if
he or she marks a checklist item. Pro-
gression between phases is disabled
for incomplete checklists. A planned
future mmprovement of the toolset’s
support for assurance will associate
specific types of product features
with checklist items. Thus, an inspec-
tor will not be able to mark a checklist
item until he has examined every
feature of the types associated with
the checklist item. For example, if a
checklist item in a source-code in-
spection requires an inspector to

check that every while statement in a
program terminates, InspeQ will
ensurc that every while statement
was at least examined in isolation in
the highlight display.

Preliminary Evaluation

Phased inspections were developed
to create a rigorous and reliable re-
view method for software work
products. We expect phased inspec-
tions to reduce the cost and effort of
some other stages of development
also. For example, both system test-
mg effort and maintenance effort
might be reduced by phased inspec-
tions of requirements, designs, and
code. It is not sufficient, however, to
claim these benefits based purely on
the insight (or perhaps fantasy) of
the developers of the method. A sys-
tematic evaluation is required to de-
termine whether phased inspections
fulfill these expectations. Funda-
mentally, an evaluation has o answer
the most important question: “Are
phased inspections cost effective?”
No matter how reliable or rigorous
phased inspections are, it they are
not cost-effective, they will not be
used.

Cost-effectiveness in this case is
almost impossible 10 model analyti-
cally in a convincing way. Its deter-
mination can only be achieved by
experimentation using industrial
work products as targets, operating
in an industrial environment, run-
ning multiple replicated experiments
to permit statistical variance to be es-
timated, and comparing with full-
scale controls using existing meth-
ods. Such experimentation is imprac-
tical without an investment of
substantial industrial resources over
many years. No industrial organiza-
tion is likely to support this level of
experimentation unless there is good
reason to believe the outcome will be
favorable, and 1t is not feasible in an
academic environment.

This does not mean, however, that
experiments with phased inspections
should not be conducted. Quite the
contrary, constrained experiments
might not produce conclusive results,
but they might provide good indica-
tions of the relative utility of phased
inspections. Thus we have followed
the traditional path of acquiring ex-
perimental data through volunteer

56 November 1993/Vol 36, No.ll COMMUNICATIONS OF THE ACM

graduate students.

In this section, we outline an eval-
framework and report the
of two evaluation experi-
The experiments were de-
signed to answer as many questions
from the framework as possible.
They supplied a number of sur-
prises.

uation
results
ments.

Evaluation Framework

The purpose of developing an evalu-
ation framework was to define the
way in which the long-term process
of experimentation might proceed so
as to evaluate phased inspections
thoroughly. The framework breaks
the problem of evaluation into five
areas; feasibility, performance, re-
sources used, consistency achieved,
and utility of computer support.
Examples of the concerns in these
five areas are as follows:

® Feasibility

1. Is phased inspection a workable
process?

2. Is significant computer support
feasible?

® Performance
1. Does the performance achieved

depend on the particular type of

work product? For example, are
phased inspections more effective on
source code than test plans or re-
quirements specifications?

2. Does the notation in which the
work product is written affect per-
formance? For example, are phased
inspections of source programs more
useful on programs written in C than
those written in Ada? One might
expect so, given the difference in the
philosophies of the two languages.
3. Does the performance achieved
depend on the experience and spe-
cific skills of the inspectors?

® Resources

1. Can ispectors with lesser skills be
used in phases involving only simple
checks, and does this produce the
expected savings?

2. How long do inspections take and
what is the variance in inspection
times? Does the time taken depend
on inspectors’ skills and background?

® Consistency

1. Do different groups of inspectors
implementing the same instantiation
of phased inspection on the same

work products consistently achieve
the same results?

2. Does a phased inspection permit
useful conclusions to be drawn about
a specific work product after inspec-
tion as desired?

® Computer Support

1. Does computer support reduce
the resources needed to perform an
inspection?

2. Does computer support improve
the rigor or quality of the inspection
process or the work products being
inspected?

Experiment One

Early in the development of phased
mspections, a limited experimental
evaluation was performed for soft-
ware source code written in C with
parts of the toolset as the target. The
goal of this first experiment was to
get early feasibility assessments. The
single- and multiple-inspector phases
were applied to separate files and
were treated as separate partial ex-
periments.

The inspectors involved in the first
experiment had degrees of experi-
ence with C, industrial software de-
velopment, and software reviews that
they individually described as vary-
ing from “none” to “extensive.” In
the single-inspector phases, the work
product was 643 lines long including
comments and the rate of inspection
was about 470 lines per hour with lit-
tle variance. The multiple-inspector
phase in the first experiment was di-
rected at a work product that was
1,015 lines long including comments.
Each inspector spent approximately
one hour on documentation review,
two hours actually inspecting the
product, and an hour in the reconcil-
iation meeting, again with litle vari-
ance.

The primary results of the experi-
ment were an indication of the over-
all feasibility of the process and a list
of suggested improvements to the
toolset. Other observations were that
rate of inspection climbed as inspec-
tors became familiar with the check-
lists and that knowledge of C was, as
expected, the major factor atfecting
inspection rate. Major changes to the
process and to the toolset were made
as a result of the first experiment.

Experiment Two

After the changes suggested by the
first experiment had been eftected, a
second more elaborate experiment
was undertaken. Detailed feasibility

and performance results were
sought. The phases used were im-
proved versions of those used in the
first experiment and the target was,
once again, the support toolset. Be-
cause of our hmited resources,
phases 1 and 2 were omitted in the
second experiment. Phases 3, 4, and
5 were single-inspector phases check-
ing source code readability, local
programming practices, and XWin-
dows related qualities, and involving
11, 25, and 10 checklist items respec-
tively. Examples of the checklist
items were:

Phase 3—Are all constants values
identified by defined symbolic con-
stants?

Phase 4—1s there a default choice in
all switch statements? If the default
choice is not used for error detection,
is there a comment explaining why?
Phase 5—If a dialogue widget
XmNautoUnmanage resource is
FALSE, is it unmapped before pop-
ping down its parent?

Phase 6 was a multiple-inspector
phase checking functional correct-
ness. For this experiment, there were
two inspectors in phase 6. The phase
6 checklist contained 7 domain-
specific checklist items and varying
numbers of application-specific
checklist items, depending on the
specific file. An example of domain-
specific checklist items is:

Phase 6—Do expressions compute
the desired value? Are < and <=
used properly? Are > and >= used
properly? Are parentheses used
where precedence rules may make
the expression difficult to under-
stand?

Eight files were inspected, con-
taining a total of approximately
4,345 lines with the shortest file con-
taining 219 lines and the longest con-
taining 1,320, Two inspection teams

COMMUNICATIONS OF THE AcM November 1993/Vol 36, No.1i 57

were used in phases 3, 4, and 5 so
that two inspections could be under-
taken in parallel. Thus each inspec-
tor in phases 3, 4, and 5 of each in-

spection team inspected a total of

four files. Phase 6 was further dupli-
cated so that each pair of inspectors
involved in phase 6 examined similar
amounts of software. This also per-
mitted four phase 6 inspections to be
carried out concurrently. With these
replications, a total of 14 inspectors
performed the inspections. The in-
spection structure used in the second
experiment s
Figure 1.

In order to obtain some quantita-
tive information, the work products
supplied to the inspectors were delib-
erately seeded for each phase with
deficiencies that should have been
found by that phase. The seeding
rate was approximately four defi-
ciencies per 1,000 lines of com-
mented source text. The inspectors
were not aware that the seeded defi-
ciencies were present.

For phases 3 and 4, the seeded
deficiencies were synthetic and
merely represented instances of the

summarized in

Flgure 1. Organization of teams,
files, and phases in Experiment
TWO.

Phase 3

Files
1 through 4

Phase 3

Files
5 through 8

kind of situation the inspectors
should be able to locate. Phase 5 con-
sisted of specific coding standards
directed toward the correct use of
the XWindow system.? Apparently
simple mistakes are easily made in
programs using XWindows and
these mistakes are often very difficult
to locate. The checklist for phase 5
was developed after having to deal
with many of these difficult debug-
ging situations. The seeded deficien-
cies installed in the inspection target
files prior to phase 5 were based on
experience and therefore were more
realistic. The deficiencies seeded
prior to phase 6, the functional-
correctness phase, were also based on
experience and were similarly realis-
tic.

Tables 1, 2, and 3 summarize the
performance data obtained from
phases 3, 4, and 5. In the columns
headed “Seeded found/number
seeded,” the first number refers to
the seeded deficiencies that were
found and the second number refers
to those present in the file. As the
tables show, performance at locating
the seeded deficiencies was high.

The columns headed “Indigenous
found” reports the numbers of in-
digenous deficiencies the inspectors
found. These deficiencies were un-
known to the authors prior to the
inspection. Since the software that
was inspected has been in use for an

“Since some files did not contain X-specific
code, no faults were seeded in those files for

phase 5.

Phase 4

Files
1 through 4

Phase 4

Files
5 through 8

Phase 5

Files
1 through 4

Phase 5

Files
5 through 8

extended period and was carefully
written, the location of these defi-
ciencies was a pleasant surprise.

The times shown are the total time
taken for the various phases as mea-
sured by a real-time clock. The times
include all idle time accrued during
inspection, whether or not the idle
time occurred because the inspector
was actively looking at the work
product. The times were obtained
from the system clock and did not
rely on any form of human record-
ing, and the inspectors were not con-
strained by any enforced deadlines.

Tables 4 and 5 summarize the re-
sults obtained in phase 6. In this case,
indigenous deficiencies were de-
tected in three major categories;
those which affected functionality,
those viewed as significant deficien-
cies in internal documentation, and
those considered stylistic deficiencies
of sufficient significance that they
would affect long-term product
maintenance.

The deficiencies documented in
Table 4 are broken down further
into those that were found during
the inspection step and those found
during the reconciliation step. The
multiple-inspector phase format was
designed with the goal of all defects
being detected during the inspection
step. In practice, defects were found
during reconciliation (though far
fewer than during inspection) and
the reconciliation steps turned into
highly focused discussions of the
functional correctness of the associ-

Phase 6 (Team 1a)

Files 1 and 3

Phase 6 (Team 1b)

Files 2 and4

Phase 6 (Team 2a)

File 5

Phase 6 (Team 2b)

Files 6 through 8

B8 November 1993/V01. 36, No.ll COMMUNICATIONS OF THE ACM

ated work product. That several de-
ficiencies were detected during rec-
onciliation indicates that additional
work needs to be done on the mul-
tiple-inspector phase concept, per-
haps by modifying the reconciliation
step to promote controlled synergis-
tic discussion.

It is important to keep in mind
when reviewing these results that
they were obtained with essentially
untrained volunteers. In a post-
experiment questionnaire, the in-
spectors were asked to rate their own

performance without knowledge of

the data that had been obtained. The
inspectors’ assessments of themselves
corrclated strongly with the number
of seeded deficiencies that had been
found.
environment in which inspectors are

In a more traditional work

paid and have a degree of loyalty to
their employer and product, the per-
formance might be better than the
results we obtained.

Some of the results obtained from
the second experiment cannot be
tabulated. These results are derived
from various kinds of observations
and comments by the inspectors.
Specifically:

e Certain checks in early phases did
not have the degree of completeness
that was expected. For example, a
required check in phase 3 is to exam-
ine every identifier to determine
whether it is meaningful. Although
work products pass this phase, in-
spectors in phase 6 found that identi-
fiers thought to be meaningful dur-
ing the simple phase 3 check were, in
fact, not as meaningful as they could
be once an understanding of the
software was achieved. This effect
occurred with comments also. Com-
ments are checked for syntax, gram-
mar, and superficial content in phase
1, but the serious content cannot be
checked until phase 6. This problem
suggests several revisions to the vari-
ous checklists.

¢ A small part of the source code was
compliant with most of the standards
demanded by the phased inspection
process but was considered to be
generally poorly written. We were
pleased to discover that this situation
was immediately obvious to the in-
spectors in phase 6, who unani-
mously rejected the associated files

Table 1. Phase 3 results

Length Seeded found/ Indigenous
(lines) number seeded found
File 1 828 0/2 4
File 2 517 1/2 2
4h33m
File 3 219 1/1 0
File 4 475 212 2
File 5 1320 1/1 3
File 6 317 1/1 2
4h14m
File 7 401 212 1
File 8 268 /1 1
I'otal 4345 9/12 15 8h47m

Table 2. Phase 4 results

Length Seeded found/ Indigenous
(lines) number seeded found
File 1 828 1/2 0
File 2 517 0/2 0
2h51m
File 3 219 0/1 3
File 4 475 2/2 3
File 5 1320 3/3 3
File 6 317 1/1 3
10h10m
File 7 401 2/2 5
File 8 268 1/1 1
Total 4345 10/14 21 13h01m

and suggested that they be totally
rewritten.
® Some inspectors chose to expend
far more effort than was required by
the process with both good and bad
results. A positive example was an
inspector who chose to rewrite a
complete function to show how it
could be improved. A negative ex-
ample was an inspector in an early
phase who essentially undertook sev-
cral phases at once, thereby supply-
ing a lengthy and very confusing
report. The conclusion in that case
was that the inspector was essentially
overqualified for the relatively sim-
ple checks in the phase.

In terms of the questions raised by

the evaluation framework, the results
are as follows: In the area of feasibil-
ity, the conduct of these two experi-
ments have revealed that the process
is feasible and computer support is
achievable. More significantly, in
postexperiment questionnaires, the
inspectors were uniformly enthusias-
tic about the merit of the process and
the toolset. In the area of perfor-
mance, we have no data on the effect
of the type of work product or on the
notation used, since all of the targets
used in the experiments were source
text written in C. However, we do
have strong evidence that substantial
checking of relatively large volumes
of" source code can be achieved in

COMMUNICATIONS OF THE AcM Novermber 1993/Vol. 36, No.11 59

tmes we consider reasonable for the
benefit gained. In the area of re-
sources, we used mspectors with es-
sentially equivalent backgrounds
because that was the pool available to

us. However, as menuoned, we do

Table 3. Phase 5results

have preliminary data on the ume
required to perform inspections and
the associated variance. By matching
times with preexperiment question-
naire data on background and expe-
rience, we have confirmed that in-

Length Seeded found/ Indigenous
(lines) number seeded found
File 1 828 /2 2
File 2 517 0/0 0
2h48m
File 3 219 0/0 0
File 4 475 212 0
File 5 1320 1/3 1
File 6 317 0/0 0
2h27m
File 7 401 0/0 0
File 8 268 0/0 0
Total 4345 a7 3 Shlim

Tuble 4. Phase 6 deficiency detection results

spection rate is heavily influenced by
language experience. We also con-
firmed and the inspectors reported
again that inspection rates improved
with increasing familiarity with the
checklists.

Although we have no statistical
control with which to compare the
experimental data, 1t 1s interesting to
compare the results achieved, at least
informally, with those observed by
others. Russell [14] reported a defect
detection rate of slightly more than
one per man-hour of inspection time
with an average saving of 33 hours of
subsequent mamtenance effort. This
performance was achieved at an in-
spection rate of between 150 and 750
lines per hour. Although there are
many differences i the situations,
our observed range of inspection
rates is similar (110 to 875 lines per
hour), but our defect detection rate
seeded defects) varied
between 1.5 and 2.75 defects per

(including

hour.
I'he area of consistency is perhaps
the most important in the frame-

Indigenous

Length Seeded found/ Functionality Documentation Significant Style

(lines) number seeded Insp. Recon. Insp. Recon. Insp. Recon.
File | 828 1/2 1 0 1 1 1 0
File 3 219 1/1 2 0 1 1 1 5
File 2 517 1/2 0 1 1 0 5 0
File 4 475 0/2 1 0 0 0 1 0
File 5 1320 1/2 0 1 1 0 0 1
File 6 3517 1/1 2 0 2 0 1 2
File 7 401 1/1 0 0 1 0 3 0
File 8 268 0/1 2 2 3 0 2 0
T'otal 4345 6/12 8 1 10 2 14 8

Table 5. Phase 6 timing results

l'otal lines 1,047

992 1,320 986

6h01m

lotal inspection time

4hH5m 3h00m 7h31m

Reconciliation time 1h45m

2h00m 3h40m 1h30m

Go November 1993/Vol 46, No.ll COMMUNICATIONS OF THE ACM

work. The results in this area are
mixed and suggest that the process as
presently defined is not achieving the
degree of consistency we desire. An
indication of this is that seeded defi-
ciencies were not always caught and
deficiencies were located during the
phase 6 reconciliation steps. How-
ever, the fact that many important
indigenous faults were discovered in
software thought to be tully compli-
ant is a strong indication that the
process s achieving considerable
thoroughness.

In the area of computer support,
we have no data on whether it re-
duces the resources required or im-
proves inspection quality, since we
have no statistical controls. Evidence
from the postexperiment question-
naires indicates that the inspectors
found the toolset, for the most part,
either useful or very useful.

Conclusion

We believe inspection is one of the
most valuable tools the software en-
gineer has available, but the technol-
ogy is not being exploited to its full
potential. We have defined an en-
hanced inspection technique called
phased inspection that addresses the
deficiencies of existing inspection
techniques. The most important goal
of phased inspection is rigor, so that
engineers can trust the results of a
specific inspection and inspection
results are repeatable. We have also
presented details of a toolset that
supports phased inspection by pro-
viding the inspector with as much
compulter assistance as possible and
by checking for compliance with the
required process of phased inspec-
tion.

Experimental evaluations of
phased inspections lead us to con-
clude that the goals are being par-
tially achieved and that further re-
finement of the checklists used and
process structure will permit further

improvements in inspection effi-
ciency.
Acknowledgments

It is a pleasure to acknowledge the
many graduate students in computer
science at the University of Virginia
who volunteered for the evaluation
experiments and spent many hours
of their own time learning about

phased inspections, the toolset, and
performing the inspections while
being monitored. We also thank
Keith Miller and Gina Bull. This
work was funded in part by NASA
under grant numbers NAG-1-1073
and NAG-1-1123, in part by SAIC
Inc., in part by the MITRE Corpora-
tion, and in part by the Virginia Cen-
ter for Innovative Technology grant
number CAE-92-003. 3

References

1. Dyer, M. A formal approach o soft-
ware error removal. J. Syst. Softw. 7
(1987), 109-114.

2. Fagan, M.E. Design and code inspec-
tions to reduce errors in program
development. IBM Syst. [. 15, 3
(1976), 123—148.

3. Fagan, M.E. Advances in software
inspections. [EEE Trans. Softw. Eng.
SE-12, 7 (July 1986), 744-751.

4. Fagan, ML.E. and Knight, J.C. Testing
is not the best means of defect detec-
tion and removal. Achieving Quality
Software—A National Debate, Soci-
ety for Software Quality, San Diego,
Calif. (Jan. 1991).

5. Freedman, D.P. and Weinberg, G.M.
Handbook of Walkthroughs, Inspections,
and Technical Reviews. Little, Brown,
Boston, Mass., 1982,

6. Freedman, D.P. and Weinberg, G.M.
Reviews, walkthroughs, and inspec-
tions. IEEE Trans. Softw. Eng. SE-10,
1 (Jan. 1984).

7. Helmer-Hirshberg. Social Technology.
Basic Books, New York, 1966.

8. Kernighan, B.W. and Plauger, P.J.
The Elements of Programming Style. Sec-
ond ed., McGraw Hill, New York,
1978.

9. Kernighan, B.W. and Ritchie, D.M.
The C Programming Language. Pren-
tice-Hall, Englewood Cliffs, N.J.,
1988.

10. Linger, R.C., Mills, H.D. and Wit
B.1. Structured Programming: Theory
and Practice. Addison-Wesley, Read-
ing, Mass., 1979.

11. Myers, E.A. Phased inspections and
their implementation. M.S. Thesis,
University of Virginia, May 1991.

12. Parnas, D.W., Weiss, D.M. Active de-
sign reviews: Principles and practices.
In Proceedings of ICSE "85 (London,
England, Aug. 28-30), IEEE Com-
puter Society, Los Alamitos, Calif.,
1985, pp. 132—136.

13. Petroski, H. To Engineer Is Human:
The Role of Failure in Successful Design.
St. Martin’s Press, New York, 1985.

14. Russell, G.W. Experience with inspec-
tion in ultralarge-scale developments.

IEEE Softw. 8, 1 (Jan. 1991), 25-31.
15. Schneider, G.M., Martin, J. and Tsai,
W.T. An experimental study of fault
detection in user requirements docu-

ments. ACM Trans. Softw. Eng.
Method. 1, 2 (Apr. 1992), 188-204.

16. Selby, R.W., Basili, V.R. and Baker,
F.T. Cleanroom software develop-
ment: An empirical evaluation. IEEE
Trans. Softw. Eng. SE-13, 9 (Sept,
1987), 1027-1037.

17. Software Productivity Consortium.
Ada Quality and Style: Guidelines For
Professional Programmers, Van Nos-
trand Reinhold, New York, 1989,

18. Weinberg, G.M., The Psychology of
Computer Programming. Van Nostrand
Reinhold, New York, 1971.

CR Categories and Subject Descrip-
tors: 1).2.2 [Software Engineering]: Tools
and Techniques; D.2.4 [Software Engi-
neering|: Program Verification; D.2.5
[Software Engineering|: Testing and
Debugging

General Terms: Verification

Additional Key Words and Phrases:
Formal inspections, reviews, walk-
throughs

About the Authors:

JOHN C. KNIGHT is a protessor of com-
puter science at the University of Vir-
ginia. His research interests are in the
area of dependable computing. Author’s
Present Address: Dept. of Computer Sci-
ence, University of Virginia, Thornton
Hall, Charlottesville, VA 22903; fax: 804-
982-2214; email: knight@virginia.edu

E. ANN MYERS is a software engineer
and systems administrator in NOAA's
paleoclimatology ~ program. Author’s
Present Address: National Geophysical
Data Center, National Oceanographic
and Atmospheric Administration, 325
Broadway E/GC, Boulder, CO 80303

Permission to copv without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission

© ACM 0002-0782/93/1100-050 $1.50

COMMUNICATIONS OF THE AcMm November 1993/Vol 36, No.t 6'

