
This is a revised version of a paper appearing in Proceedings of the Third European Conference on
Computer Supported Cooperative Work, Milan, Italy, September, 1993.

Improving Software Quality through
Computer Supported Collaborative Review

Philip M. Johnson
Danu Tjahjono
Department of Information and Computer Sciences
2565 The Mall
University of Hawaii
Honolulu, HI. 96822 U.S.A.

Formal technical review (FTR) is a cornerstone of software quality assurance. However, the labor-
intensive and manual nature of review, along with basic unresolved questions about its process
and products, means that review is typically under-utilized or inefficiently applied within the
software development process. This paper introduces CSRS, a computer-supported cooperative
work environment for software review that improves the efficiency of review activities and supports
empirical investigation of the appropriate parameters for review. The paper presents a typical
scenario of CSRS in review, its data and process model, application to process maturation,
relationship to other research, current status, and future directions.

1. Introduction

Formal technical review (FTR) is a cornerstone of software quality assurance. While other
techniques, such as measures of program size and complexity, or software testing can help
improve quality, they cannot supplant the benefits achievable from well-executed FTR. One
reason why review is essentially irreplacable is because it can be carried out early in the
development process, well before formal artifacts such as source code are available for
complexity analysis or testing. Another reason is because no automated process can yet
provide the two-way quality improvement in both product and producers possible through
review.

However, the full potential of review is rarely realized in any of its current forms. Three
significant roadblocks to fully effective review are the following:

2

Review is extremely labor-intensive. Typical procedures for FTR involve individual
study of hard-copy designs or source listings and hand-generated annotations, followed by
a group meeting where the documents are paraphrased line by line, issues are individually
raised, discussed, and recorded by hand, leading eventually to rework assignments and
resulting changes. For one approach to FTR called code inspection (Fagan, 1976),
published data indicates that an entire man-year of effort is needed to review a 20KLOC
program by a team of four reviewers (Russel, 1991). Unfortunately, little automated
support for the process and products of review is available. What support is available
typically supports only a single facet of review (such as the review meeting), or is not
integrated with the overall development environment.

 Review is not compatible with incremental development methods. Because of their
labor-intensive nature, most organizations cannot afford to review most or even many of
the artifacts produced during development. Instead, review is deployed as a "hurdle" to be
jumped a small number of times at strategic points during development. While this may be
a reasonable tactic for development in accordance with a strict waterfall lifecycle model,
more modern incremental and maintenance-intensive development methods prove
problematic: there is no effective way to optimally position a small number of review
hurdles in the development process.

No methods or tools exist to support the design of prescriptive review methods adapted
to an organization's own culture, application area, and quality requirements. Research on
review tends to fall into two categories, which we will term "descriptive" and
"prescriptive". The descriptive literature describes the process and products of review
abstractly, advocates that organizations must create their own individualized form of
review, but provides little prescriptive support for this process (Schulmeyer, 1987; Dunn,
1990; Freedman, 1990). Such work leaves ill-defined many central questions concerning
review, such as: How much should be reviewed at one time? What issues should be raised
during review, and are standard issue lists effective? What is the relationship between time
spent in various review activities and its productivity? How many people should be
involved in a review? What artifacts should be produced and consumed during a review?
The prescriptive literature, on the other hand, takes a relatively hard line stance on both the
process and products of review (Fagan, 1976; Fagan, 1986; Russel, 1991). Such literature
makes clear statements about the process (Meetings must last a maximum of 2 hours; each
line of code must be paraphrased; lines of code must be read at rate of 150 lines per hour;
etc). The data presented in this literature certainly supports the claim that this method, if
followed precisely, can discover errors. However, the strict prescriptions appear to
suggest that organizations must adapt to the review method, rather than that the review
method adapt to the needs and characteristics of the organization.

3

This paper introduces CSRS1, a computer-supported cooperative work system that is
designed to address aspects of each of these three roadblocks to effective formal technical
review.

First, CSRS is implemented on top of EGRET, a multi-user, distributed, hypertext-based
collaborative environment (Johnson, 1992) that provides computational support for the
process and products of review and inspection. This platform allows an essentially
"paperless" approach to review, supports important computational services, and facilitates
integration with existing development environments. In combination with an adapted
review process model, CSRS provides computational support that significantly decreases
the labor intensive nature of review.

Second, CSRS is designed around an incremental model of software development.
While simply lowering the cost helps integrate review into incremental models, CSRS also
provides an intrinsically cyclical process model that parallels the iterative nature of
incremental development.

Third, CSRS exploits the use of an on-line, collaborative environment for review to
collect a wide range of metrics on the process and products of review. Such metrics
generate historical data about review process and products for a given organization,
application, and review group that can provide quantitative answers to many of the
questions concerning the basic parameters for review raised above.

The remainder of this paper illustrates our approach to FTR and the CSRS environment
in more detail. Although our approach can be applied to FTR of a wide range of artifacts
produced during software development, we currently concentrate on support for code
review, and this paper reflects this orientation. Section 2 introduces CSRS through selected
snapshots from a recent review experience. Sections 3 and 4 provide a broader perspective
by detailing the CSRS data and process models. Section 5 outlines both formal and
informal applications of CSRS to software process maturation. The paper concludes by
comparing CSRS to other systems for review in Section 6, and discussing its current status
and future directions in Section 7.

2. Review using CSRS

To get the flavor of review using CSRS, this section presents excerpts from a recent
review, including illustrative screen shots and metric data. A more complete presentation
of both data and process model is provided in Sections 3 and 4.
This review cycle focussed on a object-oriented class implementation called "nbuff" (short
for node-buffer) in the generic-interface subsystem of EGRET. Nbuff defines an
abstraction that bridges and combines the hypertext "node" abstraction provided by lower-

1An acronym for Collaborative Software Review System.

4

Figure 1. A summary window illustrating the state of review for one reviewer.

level subsystems in EGRET and the textual "buffer" abstraction provided by higher,
application-specific subystems such as those comprising CSRS. The portion of nbuff
under review consisted of approximately 500 of the 1100 lines of Lisp macros, functions,
and variables in the entire nbuff class.

 In CSRS, each program object, such as a function, procedure, macro, variable or data
type declaration is retrieved from a source code control system and placed into its own node
in a hypertext-style database. After an orientation session to familiarize each review
participant with the system under study, a private review phase begins. During private
review, each member individually reviews the source code without access to the review
commentary of others, although non-evaluative questions and answers about requirements
and so forth are publically accessable. CSRS provides facilities to summarize the state of
review for the reviewer, such as the window displayed in Figure 1. At this point, the
reviewer has partially completed private review, as indicated by the fact that some of the
source-nodes are reviewed, some have been read but have not been completely reviewed,
and some have not even been seen. The total cumulative time spent on each node by this
reviewer is also displayed.

5

Figure 2. A source node illustrating one of the functions under review.

By double-clicking on a line or through menu operations, the reviewer can traverse the
hypertext network from this screen to a node containing a source object under review, as
illustrated in Figure 2. In this case, the object under review is the operation
gi*nbuff*make. Both pull-down and pop-up menus facilitate execution of the most
common operations during this phase, such as creating an issue concerning the current
source node under review, or proposing a specific action to address an issue. Once the
reviewer is finished with a source object, he explicitly marks the node as "reviewed".
Since this is the private review phase, only the issues created by this reviewer are
accessable.

6

Figure 3. An issue node containing an objection to an aspect of gi*nbuff*make.

CSRS assumes that typical programming environment tools are available to the
reviewer, such as static cross-referencing and dynamic behavior information, and thus does
not attempt to duplicate that functionality. Part of the benefit of an EMACS-based platform
is ease of integration with external programming environment tools (for example, the
C/C++ environments XOBJECTCENTER and ENERGIZE, as well as Common Lisp
environments by Lucid and Franz provide EMACS front-ends.)

A "standard_issues" menu supports an organization and/or application-specific set of
specific issues to raise during private review. CSRS exploits the exploratory type system
facilities provided by EGRET to allow reviewers to extend the set of issue types
dynamically. In the gi*nbuff*make source node, this reviewer has generated 3 issues.
One of them is illustrated in Figure 3.

Once the source nodes have been privately reviewed, the public review phase begins,
where reviewers now read and react to the issues and actions raised by others. Each
reviewer responds to the issues and actions raised by others through the creation of new
issues or actions, creation of confirming or disconfirming evidence nodes to extant issues
or actions, and by voting for one or more actions to be taken during the rework phase. In

7

the nbuff review, over 100 nodes of type issue, action, and comment were created by the
moderator and four reviewers during the private and public review phases.

Following public review, the moderator uses CSRS to consolidate the review state.
Consolidation involves the condensing of information generated during review into a
tightly focussed, written consolidation report that delineates the proposed actions,
agreements, and unresolved issues resulting from the private and public review phases.
CSRS provides automated support to the moderator in traversing the hypertext database
and generating a LaTeX document containg the consolidated report.

If all issues arising from the on-line phases are satisfactorily resolved, this consolidation
report constitutes the final report and rework activities based upon it can be scheduled
immediately. If the consolidation process yields areas of continued debate, a face-to-face
meeting is then required to resolve these issues. In the nbuff review, the total of 104 issue
and comment nodes were consolidated down to 19 action proposals, of which only 6 were
controversial and necessitated a group meeting to resolve. The final resolution of these
issues required 35 minutes of group meeting time. (CSRS has not yet been extended to
same-place same-time CSCW, and thus was not used in the group meeting.)

The consolidation report constitutes the first-order benefit of CSRS: automated,
collaborative support for detection, analysis, and response to defects in a software
development artifact. At least as important as this, however, is a second-order benefit of
CSRS: support for analysis and improvement of the FTR process itself. CSRS supports
this process maturation through automated collection of metric data during review. For
example, Figure 4 illustrates a spreadsheet (whose data was imported directly from an
ASCII file generated by CSRS) that provides just one of the many interesting perspectives
on the process and products of this FTR. This important application of CSRS will be
explored in more detail in Section 5. The next sections provide more detail on the data and
process models of CSRS.

8

Source code name S i z e Reviewer 1 Reviewer 2 Reviewer 3 Reviewer 4
Time I s s Time I s s Time I s s Time I s s

gi*nbuff*read 25 2:28:47 3 0:49:08 2 0:28:39 0 0:40:43 1
gi*nbuff!pack-buffer 57 0:08:59 0 0:41:33 2 0 0:08:35 1
gi*nbuff!copy-and-pack 51 0:24:18 1 0:29:07 3 0 0:02:37 0
gi*nbuff!init-local-variables 19 0:09:06 1 0:16:57 1 0:02:49 0 0:24:00 0
gi*nbuff!unpack-field 46 0:10:19 1 0:32:28 0 0 0:08:22 0
gi*nbuff*make 20 2:04:44 5 0:36:18 2 0:14:50 0 0:13:38 1
gi*nbuff!make-link-label 34 0:01:39 0 0:40:45 1 0:00:22 0 0:04:15 0
gi*nbuff!unpack-buffer 26 1:46:29 3 0:03:42 0 0:04:22 0 0:17:22 2
gi*nbuff!make-field-label 18 0:00:42 0 0:25:39 0 0 0:03:06 0
gi*nbuff*write 33 0:06:50 1 0:09:54 2 0:07:48 0 0:14:38 0
gi*nbuff!delete-field-label 18 0:00:34 0 0:25:56 1 0:03:44 1 0:02:38 0
gi*nbuff!unpack-link 12 0:20:09 1 0:00:40 0 0:01:48 0 0:06:09 1
gi*nbuff*nbuff-p 12 0:05:11 0 0:01:08 0 0:04:16 0 0:04:15 0
gi*nbuff*node-ID 12 0:00:23 0 0:02:20 0 0:04:40 0 0:08:12 0
gi*nbuff!delete-link-label 31 0:02:08 1 0:02:08 0 0 0:02:38 0
gi*nbuff*read-hooks 5 0:00:11 0 0:07:53 1 0:00:32 0 0:00:35 0
position 12 0:00:50 0 0:00:12 0 0:03:12 1
gi*nbuff!node-ID 4 0:00:20 0 0:00:08 0 0:00:49 1 0:00:13 0
Tota l 4 3 5 7 : 5 1 : 3 9 1 7 5 : 2 5 : 5 6 1 5 1 : 1 7 : 5 1 3 2 : 4 1 : 5 6 6

Figure 4. An Excel spreadsheet illustrating a portion of the metric data collected during the nbuff review.

3. The CSRS Data Model

The CSRS data model consists of a set of typed nodes and links, where the nodes (in code
review applications) correspond to source code under review and related artifacts generated
during review, and the links represent relationships among the nodes. Source nodes are
further classified into specific program objects such as function, macro, structure, etc. The
exact set of program objects is language-specific: for Ada, CSRS would provide a
"package" program object, for C++, a "class" object, and so forth. Review nodes are
classified into issue, action, comment and evidence. Figure 5 shows the basic relationship
among the CSRS nodes and links.

As illustrated in the previous section, any suspected problems or defects in the source
are documented in issue nodes. Any questions about the source are recorded in comment
nodes. Once issues are identified, action nodes are used to represent their resolution, either
by proposing specific solutions, by proposing that the issue be ignored, or by indicating
that no solution is known. Similar to source nodes, one may request clarification about
issues or actions posted by others through comment nodes, and obtain responses by
following respond-to links. The resulting comment may further suggest new issues or
actions. Disagreement about specific issues or actions are represented through evidence
nodes that disconfirm the corresponding issues or actions. Similarly, support for issues or
actions is represented by following a confirming link to an evidence node.

9

Consoli-
 dated
 Issue

C
on

so
li-

 d
at

ed
 A

ct
io

n

Source

Issue

Action

Comment

Evidence

respond-to

confirm
disconfirm

question

question
suggest

confirm
disconfirm

modify

derive derive

consolidate

consolidate

resolve

similar
augment

similar
augment

resolve

Figure 5. The CSRS data model.

Private review inevitably leads to redundant issue generation, as individuals discover the
same problems. During public review, such similarities can be made explicit through the
creation of similar-to links. Elaboration of issues or actions can be represented through
augment links.

Finally, related issues are summarized into a single consolidated issue, and related
actions into a single consolidated action. Actual rework activities are based upon a single
consolidated action, rather than by reference to the individual issues and actions raised
during public and private review.

10

Source
node

generation

Orientation

Private
review

Public
review

Consolidation

Group
review

meeting

External
development Unreviewed

source
nodes

 Source
nodes to
review

Unresolved
issues

All
nodes
approved

All
nodes
reviewed

Consolidated
review

Unreviewed
source
material

 All
nodes
approved

All
nodes
approved

Rework
specified

Figure 6. The CSRS process model.

4. The CSRS Process Model

The CSRS process model involves seven phases, as illustrated by the state-transition
diagram in Figure 6. The process model constrains the data model by specifying what
nodes and links can be legally manipulated during any given phase. The process model also
defines specific participant roles similar to the ones defined in Fagan's formal inspection
method (Fagan, 1976). The roles include moderator, producer, and reviewer, but
eliminates the scribe role.

The next paragraphs describe the phases in CSRS process model, each of which appear
as states in Figure 6. Certain administrative procedures such as calling the meeting,
selecting participants, and so forth are omitted from this description. For illustrative
purposes, the process model is presented in the context of code review, though review of
other development artifacts follows the same general procedure.

Source node generation. In this phase, the source code producer with the assistance
of the moderator generates source nodes from provided source files. The files are
programmatically split into source nodes and annotated as necessary with supplemental
information. When the nodes contain source code that has been previously reviewed,
backlinks to the consolidated action nodes from the prior review can be created. These links
help reviewers check whether prior rework requests have been properly implemented.

11

 Orientation. In this phase, review participants are prepared for private review.
Depending upon the nature of review (new review or re-review) and/or group makeup
(participants' skills and familiarity with the product), this phase may range from a formal
overview meeting with a presentation by the producer about the system structure and
behavior, to an informal notification through e-mail noting the presence of new nodes ready
for review using CSRS.

Private review. In this phase, reviewers inspect source nodes privately. They create
issue, action and/or comment nodes. Issue and action nodes are not publicly available to
other reviewers at this time, but comment nodes (clarification about the logic/ algorithm of
source nodes) are publicly available. Normally, the producer or moderator responds to
comment nodes posted by reviewers. Reviewers must explicitly mark each source node as
reviewed, which allows them greater flexibility in their internal review process.

While reviewers do not have access to each other's state during private review, the
moderator does. This allows the moderator to monitor the progress of private review.
While private review normally terminates when all reviewers have marked all source nodes
as reviewed, the moderator may move on to public review at any time.

Public review. In this phase, review participants (including the producer) react to all
generated issue and action nodes. Reviewers can create new issue, action or comment
nodes based upon existing nodes. They may create similar links between two issue or
action nodes upon reading the content of the nodes. They may create new issues or actions
that augment the existing ones. They may also post evidence nodes which confirm or
disconfirm particular issue, action or other evidence nodes. They can also indicate their
agreement about existing actions by voting; this information is used as a consensual
indicator among participants about the most appropriate action to take on the issue. This
phase normally concludes when all issue, action and evidence nodes have been marked as
reviewed by all reviewers. However, control over when public review ends is ultimately in
the hands of the moderator.

Consolidation. In this phase, the moderator creates a consolidated representation of
the state of review thus far, oriented around the set of actions required based upon review.
CSRS supports the moderator in the preparation of a written report containing this
information.

 Group review meeting. If the consolidated report identifies areas of continued
controversy, a group meeting is required. In the meeting, the moderator presents the
unresolved issues or actions and summarizes the differences of opinion. After discussion,
the group may vote to decide them, or the moderator may unilaterally make the decision.
The moderator notes the decision in the written report. The moderator may also declare
issues unresolved if no consensus can be reached: this can either imply that informal
discussion should proceed after the review or the final resolution will be decided at some
later point. Finally, the moderator may also decide to reinspect some source nodes during
the meeting as a group (e.g., the nodes that are difficult to understand by the majority of

12

reviewers). The producer will lead this later activity; the reviewers raise issues and
proposed actions verbally, and the recorder records only the consensual issues or actions.

External development. In this phase, actions decided upon by the review process are
carried out, as well as any other development activities motivated by non-review concerns
(such as changes to functional requirements, platform porting, and so forth.) This phase
occurs outside the boundaries of CSRS and results in new or modified source code that has
not been explicitly approved through review. External tools can be employed to
automatically input non-approved source code into CSRS as required by the overall
software development process model.

5. Software Process Improvement using CSRS

As illustrated in the scenario of code review in Section 2, the use of a specialized computer-
supported cooperative work environment for review provides major benefits. First, it
results in a richly linked repository for all artifacts of review, providing a resource that
facilitates rework, project scheduling, access to design/maintenance rationale, and so forth.
Second, it decreases the dependence in traditional review methods on same-time same-place
group work, by providing an additional avenue for collaboration. Third, it provides
automated support for the roles of producer, moderator, and reviewer, and essentially
eliminates the role of scribe, thus decreasing the labor-intensive manual activities implicit
in traditional review methods.

However, the use of CSRS provides an additional, equally significant benefit: the ability
to easily instrument review in order to collect metrics that facilitate maturation of its process
and products.

CSRS measures the review process by creating a log of each session, where
timestamped events are generated by an appropriate subset of the user actions. Currently,
actions such as retrieval of a CSRS node, locking and unlocking, node and link creation
and deletion, and so forth are all time-stamped and spooled to a log. This logfile of events
is then post-processed off-line to generate more condensed, useful information such as that
illustrated in the spreadsheet in Figure 5.

Depending upon the organization, application, and group characteristics, some degree of
process maturation may be possible via informal analysis of the historical values of these
metrics from prior reviews. For example, an organization might find relatively simple
correlations between such aggregate metrics as the number of source code lines, the amount
of time spent during review, the number of issues and actions raised, and the number of
participants. Such analysis can allow rough quantitative boundaries to be placed around
review parameters, such as "the number of reviewers should be between 4 and 7", or "the
number of lines of code to be reviewed should not exceed 800, nor should the number of
source code nodes exceed 12."

13

On the other hand, CSRS can also be used to provide more formal and robust empirical
data concerning the review process. For example, some researchers have claimed that the
use of standardized checklists can improve the quality of review, by forcing reviewers to
explicitly "check off" each item in a list as being satisfied by the artifact under study
(Knight, 1991). This claim can be disputed by arguing that if the standardized checklist is
not comprehensive, faults not covered by the checklist will be far less likely to be
uncovered. CSRS provides environmental support for empirical investigation of this issue.
For example, this particular question could be investigated via a simple repeated measures
experimental design where a set of reviewers and a set of source nodes are split into two
groups, and each participant reviews and each node is reviewed both with and without a
standardized checklist. Such an experiment could also answer such questions as: Is my
checklist comprehensive? Do checklists lengthen or shorten the time of review? Do
checklists improve the productivity of review in terms of issues identified per unit time?

Having now discussed the CSRS environment, process and data model, and application
to process maturity, the next section turns to a contrast of CSRS with other research
concerning review.

6. Related Work

While the idea of facilitating review process with computer support is not a new one, we
know of no other system that supports review as comprehensively as CSRS. Other
computer based review systems, such as ICICLE (Brothers, 1990) support only the face-
to-face group meeting by synchronizing and sharing the code window among participants;
the use of hypertext technology is basically untyped, non-context sensitive, and limited to
source code annotation.

CSRS provides similar benefits to those shown for other forms of computer-mediated
meeting support (Nunamaker, 1991). This research indicates that activities such as private
review, public review, and moderator consolidation can be more effective and efficient than
traditional face-to-face meetings. Such activities decrease process losses such as attention
blocking, air time fragmentation, domination, and many others. In fact, educational
materials on software inspection published by Software Engineering Institute (Deimel,
1991) discuss these exact problems in the context of review meetings: the moderator
dominates inspection, the producer is under attack, the reader is too fast, and so forth.

Martin and Tsai (1990) have shown that having n small teams inspect the same source is
more effective (in the sense of generating more faults) than a single large team working
together. Our past experience with traditional inspection also showed that faults detected
by different reviewers overlapped very little. Nunamaker (1991) describes this same
phenomena as reduction in free-riding by individual team members. The private review
phase in CSRS is designed in light of this research.

14

The CSRS instrumentation also helps reduce free-riding. Freedman (1990) states that a
major responsibility of the review leader is to ensure that participants come prepared to the
review, discusses the seriousness and frequency of insufficiently prepared review
members, and suggests several ways to address the problem. For example, they suggest
deliberately leaving out one page of the review artifact when distributing materials to
reviewers---those who adequately prepare will notice its absence and contact the leader.
CSRS supports a much less devious approach: the environment records which source
nodes have been visited, how long they have been visited, and whether they have been
marked as reviewed by each member. Since each member's summary window presents
such information, and since this information is known to be available to the moderator,
there is no point in trying to "bluff" one's way through the review meeting.

On the other hand, group review has its own benefits, since participants can learn from
each other, issues raised by one participant may stimulate other participants to raise new
issues, and a more objective evaluation can be obtained (Nunamaker, 1991). CSRS
follows the private review phase by a public review phase in order to benefit from group
review as well.

The CSRS data model is similar to the one used by gIBIS (Conklin, 1988) for issues
exploration and deliberation. However, the CSRS data model is specialized to review, and
thus allows more specific computational support and metrics collection. Also in contrast to
gIBIS, our data model is strongly tied to the process model and thus context-sensitive:
most artifacts can only be manipulated at certain phases defined in the process model.

InspeQ (Knight, 1991) is a review method whose contribution primarily rests in its
detailed description of a set of review phases, each of which contains an explicit checklist
for reviewers to follow. CSRS can be easily tailored to the InspeQ process model. In fact,
as illustrated in Section 5, CSRS can even be used to empirically determine whether or not
such a tailoring is desirable.

Finally, in contrast to traditional formal inspection (Fagan, 1976), CSRS supports
proposals for a course of action for each identified issue. Our experiences with traditional
inspection revealed to us that if actions are prohibited from the review process, the
programmer who is assigned to fix the errors often misunderstands the "real" issue. Thus,
action nodes can serve as issue clarification.

7. Current Status and Future Directions

The CSRS data and process model has been under development since 1991, with
refinements motivated by a variety of review experiences at both code and design level.
The current implementation of CSRS employs a Unix/X windows environment, with a
database server back-end written in C++ (Wiil, 1990) and a Lucid EMACS front-end
interface. Such a choice of environments makes CSRS easily integrable with current
development practices. For example, source code can be read from RCS or SCCS, and

15

CSRS can automatically generate e-mail messages to inform reviewers of the state of
review.

CSRS displays a property typical to most CSCW systems: introducing collaborative
support into a work process dramatically changes the work process. Fagan's code
inspection method, for example, is intimately tied to a work process lacking CSCW
support, and we are finding that many of the concepts (such as the role of scribe) and
constraints (strict prohibition of action discussion) to be irrelevent or inappropriate for a
CSCW-based FTR tool.

Currently, CSRS is in active use within our research group, and we plan to release a
public domain version for external evaluation within the next year. Our current work
concentrates on improving the usability of the system and the precision and expressiveness
of the metric information. We are beginning to build a database of review data based on
our personal experience with CSRS. A primary goal of public release is to obtain data
about review across a spectrum of applications, organizations, and review methods.

A long-range goal for CSRS is explicit support for learning during the review process.
We believe that the greatest potential review has for improving software quality comes not
from its ability to uncover faults in programs, but from its ability to uncover faults in
programmers. Review holds incredible potential to teach programmers how to write
correct, readable, and maintainable software, yet such a benefit is rarely recognized, much
less explicitly supported. We hope to use CSRS to discover effective ways to support this
aspect of software review.

Acknowledgments

We gratefully acknowledge the other members of the Collaborative Software Development Laboratory, who
have contributed greatly to this research: Dadong Wan, Kiran Kavoori, and Robert Brewer. Support for
this research was provided in part by the National Science Foundation Research Initiation Award CCR-
9110861 and the University of Hawaii Research Council Seed Money Award R-91-867-F-728-B-270.

References

L. Brothers, V. Sembugamoorthy, and M. Muller (1990): ICICLE: Groupware for code inspection. In
Proceedings of CSCW'90, pp. 169-181. ACM Press.

Jeff Conklin and Michael L. Begeman (1988): gIBIS: A hypertext tool for exploratory policy discussion.
In Proceedings of CSCW'88, pp. 140-152. ACM Press.

Lionel E. Deimel (1990): Scenes of Software Inspections: Video Dramatizations for the Classroom.
Software Engineering Institute, Carnegie Mellon University.

Robert Dunn (1990): Software Quality: Concepts and Plans. Prentice Hall.

Michael E. Fagan (1976): Design and code inspections to reduce errors in program development. IBM
System Journal, 15(3):182--211.

16

Michael E. Fagan (1986): Advances in software inspections. IEEE Transactions on Software Engineering,
SE-12(7), pp. 744-751.

D. P. Freedman and G. M. Weinberg (1990): Handbook of Walkthroughs, Inspections and Technical
Reviews. Little, Brown.

Philip M. Johnson (1992): Supporting exploratory CSCW with the EGRET framework. In Proceedings
of CSCW'92, ACM Press.

John C. Knight and E. Ann Myers (1991): Phased inspections and their implementation. Software
Engineering Notes, 16(3):29-35.

Johnny Martin and W. T Tsai (1990): N-fold inspection: A requirements analysis technique.
Communications of the ACM, 33(2):225-232.

J. F. Nunamaker, Alan R. Dennis, Joseph S. Valacich, Douglas R. Vogel, and Joey F. George (1991):
Electronic meeting systems to support group work. Communications of the ACM, 34(7):42--61.

Glen W. Russel (1991): Experience with inspection in ultralarge-scale developments. IEEE Software,
(9)1.

G. Gordon Schulmeyer and James I. McManus (1987): Handbook of Software Quality Assurance. Van
Nostrand Reinhold.

U. Wiil and K. Oesterbye (1990): Experiences with hyperbase-a multi-user back-end for hypertext
applications with emphasis on collaboration support. Technical Report 90-38, Department of
Mathematics and Computer Science, University of Aalborg, Denmark.

Edward Yourdon (1989): Structured Walkthrough. Prentice-Hall, Fourth Edition.

